面试 Java 基础八股文十问十答第三期

面试 Java 基础八股文十问十答第三期

作者:程序员小白条,个人博客

⭐点赞⭐收藏⭐不迷路!⭐

21.说下Java8的Stream流的常用方法

答:

  • forEach遍历、find、match进行匹配
  • reduce进行归约,比如求和,乘,除
  • 聚合:max,min,count
  • 收集:collect: 1.统计summarizing,counting,averaging 2.groupingby,partitioningby 3.接合:joining 4.归约: reduce 5.归集 toList,toSet,toMap
  • 筛选: filter、映射: map 排序: sorted

22.说下ConcurrentHashMap原理

答:

  • ConcurrentHashMap是JDK1.5引入,在HashMap的基础上增加了线程安全的保障。

总结

做插入操作时,首先进入乐观锁,先计算得到哈希值,然后,在乐观锁中判断容器是否初始化,如果没初始化则初始化容器,如果已经初始化,则判断该hash位置的节点是否为空,如果为空,则通过CAS操作进行插入,失败则利用锁自选保证其成功。如果该节点不为空,再判断容器是否在扩容中,如果在扩容,则帮助其扩容。如果没有扩容,则进行最后一步,先加锁,然后判断是链表还是红黑树,如果是链表,找到hash值相同的那个节点(hash冲突),循环判断这个节点上的链表,决定做覆盖操作还是插入操作,如果是红黑树,那么用红黑树的方式进行插入,如果链表长度大于等于8,数组长度大于等于64,要进行树化。

23.Java8开始ConcurrentHashMap,为什么舍弃分段锁?

通过 JDK 的源码和官方文档看来, 他们认为的弃用分段锁的原因由以下几点:

  • 加入多个分段锁浪费内存空间。
  • 生产环境中, map 在放入时竞争同一个锁的概率非常小,分段锁反而会造成更新等操作的长时间等待。
  • 为了提高 GC 的效率

24.ConcurrentHashMap(JDK1.8)为什么要使用synchronized而不是如ReentranLock这样的可重入锁?

(1)锁的粒度

首先锁的粒度并没有变粗,甚至变得更细了。每当扩容一次,ConcurrentHashMap的并发度就扩大一倍。

(2)Hash冲突

JDK1.7中,ConcurrentHashMap(通过二次hash的方式(Segment -> HashEntry)能够快速的找到查找的元素。在1.8中通过链表加红黑树的形式弥补了put、get时的性能差距。JDK1.8中,在ConcurrentHashmap进行扩容时,其他线程可以通过检测数组中的节点决定是否对这条链表(红黑树)进行扩容,减小了扩容的粒度,提高了扩容的效率。

下面是我对面试中的那个问题的一下看法。

为什么是synchronized,而不是ReentranLock

(1)减少内存开销

假设使用可重入锁来获得同步支持,那么每个节点都需要通过继承AQS来获得同步支持。但并不是每个节点都需要获得同步支持的,只有链表的头节点(红黑树的根节点)需要同步,这无疑带来了巨大内存浪费。

(2)获得JVM的支持

可重入锁毕竟是API这个级别的,后续的性能优化空间很小。synchronized则是JVM直接支持的,JVM能够在运行时作出相应的优化措施:锁粗化、锁消除、锁自旋等等。这就使得synchronized能够随着JDK版本的升级而不改动代码的前提下获得性能上的提升。

  • JDK1.7分段数组+HashEntry数组+链表
  • JDK1.8Node数组+链表+红黑树

25.yml和properties的区别

  • yml是一种标记语言,可以跨语言,而properties只适用于SpringBoot项目。
  • yml采用key:value 键值对形式,而properties是k-v格式
  • yml采用UTF-8,中文不会乱码,但properties通过IO读取,默认ISO-8859-1中文会产生乱码
  • properties不保证加载顺序,yml有先后加载顺序。
  • 先加载yml,再properties,相同配置properties会覆盖yml的配置。

26.类加载器有哪些

Java 中有以下四种类加载器:

img

  1. 引导类加载器 (Bootstrap ClassLoader): 也作根类加载器,它用来加载 Java 的核心类,是用原生代码来实现的,并不继承自 java.lang.ClassLoader(负责加载$JAVA_HOME中jre/lib/rt.jar里所有的class,由C++实现,不是ClassLoader子类)。由于引导类加载器涉及到虚拟机本地实现细节,开发者无法直接获取到启动类加载器的引用,所以不允许直接通过引用进行操作。
  2. 扩展类加载器(extensions class loader):它负责加载JRE的扩展目录,lib/ext或者由java.ext.dirs系统属性指定的目录中的JAR包的类。由Java语言实现,父类加载器为null。
  3. 系统类加载器(system class loader):被称为系统(也称为应用)类加载器,它负责在JVM启动时加载来自Java命令的-classpath选项、java.class.path系统属性,或者CLASSPATH换将变量所指定的JAR包和类路径。程序可以通过ClassLoader的静态方法getSystemClassLoader()来获取系统类加载器。如果没有特别指定,则用户自定义的类加载器都以此类加载器作为父加载器。由Java语言实现,父类加载器为ExtClassLoader。

需要注意的是,引导类加载器是最顶层的类加载器,它不会受到类加载器层级的限制。因此,如果引导类加载器无法加载所需的类,则可以尝试使用其他类加载器进行加载。

27.类加载机制(三种)

  • JVM的类加载机制主要有如下3种。
  • 全盘负责:所谓全盘负责,就是当一个类加载器负责加载某个Class时,该Class所依赖和引用其他Class也将由该类加载器负责载入,除非显示使用另外一个类加载器来载入。
  • 双亲委派:所谓的双亲委派,则是先让父类加载器试图加载该Class,只有在父类加载器无法加载该类时才尝试从自己的类路径中加载该类。通俗的讲,就是某个特定的类加载器在接到加载类的请求时,首先将加载任务委托给父加载器,依次递归,如果父加载器可以完成类加载任务,就成功返回;只有父加载器无法完成此加载任务时,才自己去加载。
  • 缓存机制。缓存机制将会保证所有加载过的Class都会被缓存,当程序中需要使用某个Class时,类加载器先从缓存区中搜寻该Class,只有当缓存区中不存在该Class对象时,系统才会读取该类对应的二进制数据,并将其转换成Class对象,存入缓冲区中。这就是为什么修改了Class后,必须重新启动JVM,程序所做的修改才会生效的原因。

28.类加载机制(什么时候类会被加载)

  1. 创建类的实例,也就是new一个对象
  2. 访问某个类或接口的静态变量,或者对该静态变量赋值
  3. 调用类的静态方法
  4. 反射(Class.forName(“com.lyj.load”))
  5. 初始化一个类的子类(会首先初始化子类的父类)
  6. JVM启动时标明的启动类,即文件名和类名相同的那个类

除此之外,下面几种情形需要特别指出:

对于一个final类型的静态变量,如果该变量的值在编译时就可以确定下来,那么这个变量相当于“宏变量”。Java编译器会在编译时直接把这个变量出现的地方替换成它的值,因此即使程序使用该静态变量,也不会导致该类的初始化。反之,如果final类型的静态Field的值不能在编译时确定下来,则必须等到运行时才可以确定该变量的值,如果通过该类来访问它的静态变量,则会导致该类被初始化。

29.HashMap 的长度为什么是 2 的幂次方

为了能让 HashMap 存取高效,尽量较少碰撞,也就是要尽量把数据分配均匀。我们上面也讲到了过了,Hash 值的范围值-2147483648 到 2147483647,前后加起来大概 40 亿的映射空间,只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个 40 亿长度的数组,内存是放不下的。所以这个散列值是不能直接拿来用的。用之前还要先做对数组的长度取模运算,得到的余数才能用来要存放的位置也就是对应的数组下标。这个数组下标的计算方法是“ (n - 1) & hash”。(n 代表数组长度)。这也就解释了 HashMap 的长度为什么是 2 的幂次方。

这个算法应该如何设计呢?

我们首先可能会想到采用%取余的操作来实现。但是,重点来了:“取余(%)操作中如果除数是 2 的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是 2 的 n 次方;)。” 并且 采用二进制位操作 &,相对于%能够提高运算效率,这就解释了 HashMap 的长度为什么是 2 的幂次方。

30.LinkedList 为什么不能实现 RandomAccess 接口?

RandomAccess 是一个标记接口,用来表明实现该接口的类支持随机访问(即可以通过索引快速访问元素)。由于 LinkedList 底层数据结构是链表,内存地址不连续,只能通过指针来定位,不支持随机快速访问,所以不能实现 RandomAccess 接口。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/191991.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

淘宝用户体验VOC标签体系

本专题共10篇内容,包含淘宝APP基础链路过去一年在用户体验数据科学领域(包括商详、物流、性能、消息、客服、旅程等)一些探索和实践经验。 在商详页基于用户动线和VOC挖掘用户决策因子带来浏览体验提升;在物流侧洞察用户求助时间与…

计算机组成原理笔记——存储器(静态RAM和动态RAM的区别,动态RAM的刷新, ROM……)

■ 随机存取存储器 ■ 1.随机存取存储器:按存储信息的原理不同分为:静态RAM和动态RAM 2.静态RAM(SRAM):用触发器工作原理存储信息,但电源掉电时,存储信息会丢失具有易失性。 3.存储器的基本单元…

springboot监听器模式源码精讲

1.前言 很多时候我们看源码的时候看不下去,其中一个原因是系统往往使用了许多设计模式,如果你不清楚这些设计模式,这无疑增加了你阅读源码的难度。 springboot中就大量使用了设计模式,本文主要介绍其中的一种监听器模式&#xf…

数学建模-基于BL回归模型和决策树模型对早产危险因素的探究和预测

整体求解过程概述(摘要) 近年来,全球早产率总体呈上升趋势,在我国,早产儿以每年 20 万的数目逐年递增,目前早产已经成为重大的公共卫生问题之一。据研究,早产是威胁胎儿及新生儿健康的重要因素,可能会造成死亡或智力体…

深度学习 -- 神经网络

1、神经网络的历史 2、 M-P模型 M-P模型是首个通过模仿神经元而形成的模型。在M-P模型中,多个输入节点对应一个输出节点y。每个输入x,乘以相应的连接权重w,然后相加得到输出y。结果之和如果大于阈值h,则输出1,否则输出0。输入和输出均是0或1。 公式2.1: …

Redis 安装部署

文章目录 1、前言2、安装部署2.1、单机模式2.1.1、通过 yum 安装(不推荐,版本老旧)2.1.1、通过源码编译安装(推荐) 2.2、主从模式2.3、哨兵模式2.4、集群模式2.5、其他命令2.6、其他操作系统 3、使用3.1、Java 代码 —…

神经网络中的 Grad-CAM 热图(Gradient-weighted Class Activation Mapping)

Grad-CAM(Gradient-weighted Class Activation Mapping)是一种用于可视化卷积神经网络(CNN)中特定类别的激活区域的方法。其基本思想是使用网络的梯度信息来获取关于特定类别的空间定位信息。 Grad-CAM 的具体公式如下&#xff1…

Python逐步打造惊艳的折线图

大家好,Matplotlib可以快速轻松地使用现成的函数绘制图表,但是微调步骤需要花费更多精力。今天本文将介绍如何使用Matplotlib绘制吸引人的图表,实现折线图的惊艳变身。 1.数据 为了说明方法,本文使用了包含过去50年各国GDP信息的…

QT 中 QTimer 类 备查

基础 // 指定了父对象, 创建的堆内存可以自动析构 QTimer::QTimer(QObject *parent nullptr);// 根据指定的时间间隔启动或者重启定时器, 需要调用 setInterval() 设置时间间隔 void QTimer::start();// 启动或重新启动定时器,超时间隔为msec毫秒。 void QTimer::…

韩语语法中에和로/으로区别,柯桥发音入门韩语培训学校

에和로/으로在行动的去向与到达或涉及的地点一致时,二者可以互换。 但是에表示到达或涉及的具体地点,而로/으로表示的时动作指向的方向或经过的地点。 在只表示去向而不表示具体地点时,只能用로/으로,而在只表示具体地点而不表示方…

2023.12.2 做一个后台管理网页(左侧边栏实现手风琴和隐藏/出现效果)

2023.12.2 做一个后台管理网页(左侧边栏实现手风琴和隐藏/出现效果) 网页源码见附件,比较简单,之前用很多种方法实现过该效果,这次的效果相对更好。 实现功能: (1)实现左侧边栏的手…

摩根士丹利:人工智能推动增长

摩根士丹利(NYSE:MS)将人工智能战略整合到其财富管理业务中,标志着竞争性金融格局迈出了变革性的一步。该公司的人工智能计划,包括与 OpenAI 合作开发人工智能聊天机器人,促进了其财富部门的显着增长。值得…

【数据库】数据库基于封锁机制的调度器,使冲突可串行化,保障事务和调度一致性

封锁使可串行化 ​专栏内容: 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以及开发过程中的涉及的原理,遇到的问题等,让大家能跟上并且可以一起开发,让每个需要的人成为参与者。 本专栏会定期更…

Linux查看计算机处理器相关的信息

采用命令lscpu。部分结果如下:

MicroPython标准库

MicroPython标准库 arraybinascii(二进制/ASCII转换)builtins – 内置函数和异常cmath – 复数的数学函数collections – 集合和容器类型errno – 系统错误代码gc – 控制垃圾收集器hashlib – 散列算法heapq – 堆队列算法io – 输入/输出流json – JSON 编码和解码math – 数…

详解Spring中BeanPostProcessor在Spring工厂和Aop发挥的作用

😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783…

【开源】基于Vue+SpringBoot的音乐平台

项目编号: S 055 ,文末获取源码。 \color{red}{项目编号:S055,文末获取源码。} 项目编号:S055,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示 四、核心代码4.1 查询单首…

Vue安装及环境配置详细教程

一、下载node.js 访问node.js官网:Download | Node.js 选择Windows Installer (.msi)的64-bit进行下载。 在E盘新建一个文件夹,取名为nodejs,也可以在其他盘符新建。 在安装node.js时,点击Change...,进行切换盘符安…

使用 STM32 微控制器读取光电传感器数据的实现方法

本文介绍了如何使用 STM32 微控制器读取光电传感器数据的实现方法。通过配置和使用STM32的GPIO和ADC功能,可以实时读取光电传感器的模拟信号并进行数字化处理。本文将介绍硬件连接和配置,以及示例代码,帮助开发者完成光电传感器数据的读取。 …

<JavaEE> 什么是线程安全?产生线程不安全的原因和处理方式

目录 一、线程安全的概念 二、线程不安全经典示例 三、线程不安全的原因和处理方式 3.1 线程的随机调度和抢占式执行 3.2 修改共享数据 3.3 关键代码或指令不是“原子”的 3.4 内存可见性和指令重排序 四、Java标准库自带的线程安全类 一、线程安全的概念 线程安全是指…