神经网络 模型表示2

神经网络 模型表示2

使用向量化的方法会使得计算更为简便。以上面的神经网络为例,试着计算第二层的值:

在这里插入图片描述

我们令 z ( 2 ) = θ ( 1 ) x {{z}^{\left( 2 \right)}}={{\theta }^{\left( 1 \right)}}x z(2)=θ(1)x,则 a ( 2 ) = g ( z ( 2 ) ) {{a}^{\left( 2 \right)}}=g({{z}^{\left( 2 \right)}}) a(2)=g(z(2)) ,计算后添加 a 0 ( 2 ) = 1 a_{0}^{\left( 2 \right)}=1 a0(2)=1。 计算输出的值为:

在这里插入图片描述

我们令 z ( 3 ) = θ ( 2 ) a ( 2 ) {{z}^{\left( 3 \right)}}={{\theta }^{\left( 2 \right)}}{{a}^{\left( 2 \right)}} z(3)=θ(2)a(2),则 h θ ( x ) = a ( 3 ) = g ( z ( 3 ) ) h_\theta(x)={{a}^{\left( 3 \right)}}=g({{z}^{\left( 3 \right)}}) hθ(x)=a(3)=g(z(3))
这只是针对训练集中一个训练实例所进行的计算。如果我们要对整个训练集进行计算,我们需要将训练集特征矩阵进行转置,使得同一个实例的特征都在同一列里。即:
${{z}^{\left( 2 \right)}}={{\Theta }^{\left( 1 \right)}}\times {{X}^{T}} $

a ( 2 ) = g ( z ( 2 ) ) {{a}^{\left( 2 \right)}}=g({{z}^{\left( 2 \right)}}) a(2)=g(z(2))

为了更好了了解Neuron Networks的工作原理,我们先把左半部分遮住:

在这里插入图片描述

右半部分其实就是以 a 0 , a 1 , a 2 , a 3 a_0, a_1, a_2, a_3 a0,a1,a2,a3, 按照Logistic Regression的方式输出 h θ ( x ) h_\theta(x) hθ(x)

其实神经网络就像是logistic regression,只不过我们把logistic regression中的输入向量 [ x 1 ∼ x 3 ] \left[ x_1\sim {x_3} \right] [x1x3] 变成了中间层的 [ a 1 ( 2 ) ∼ a 3 ( 2 ) ] \left[ a_1^{(2)}\sim a_3^{(2)} \right] [a1(2)a3(2)], 即: h θ ( x ) = g ( Θ 0 ( 2 ) a 0 ( 2 ) + Θ 1 ( 2 ) a 1 ( 2 ) + Θ 2 ( 2 ) a 2 ( 2 ) + Θ 3 ( 2 ) a 3 ( 2 ) ) h_\theta(x)=g\left( \Theta_0^{\left( 2 \right)}a_0^{\left( 2 \right)}+\Theta_1^{\left( 2 \right)}a_1^{\left( 2 \right)}+\Theta_{2}^{\left( 2 \right)}a_{2}^{\left( 2 \right)}+\Theta_{3}^{\left( 2 \right)}a_{3}^{\left( 2 \right)} \right) hθ(x)=g(Θ0(2)a0(2)+Θ1(2)a1(2)+Θ2(2)a2(2)+Θ3(2)a3(2))
我们可以把 a 0 , a 1 , a 2 , a 3 a_0, a_1, a_2, a_3 a0,a1,a2,a3看成更为高级的特征值,也就是 x 0 , x 1 , x 2 , x 3 x_0, x_1, x_2, x_3 x0,x1,x2,x3的进化体,并且它们是由 x x x θ \theta θ决定的,因为是梯度下降的,所以 a a a是变化的,并且变得越来越厉害,所以这些更高级的特征值远比仅仅将 x x x次方厉害,也能更好的预测新数据。
这就是神经网络相比于逻辑回归和线性回归的优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/191223.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动态规划 | 打家劫舍1、2、3

198. 打家劫舍 https://leetcode.cn/problems/house-robber/description/ dp[i] 表示 考虑到下标为 i (包括i)的房子,可以偷到的最大金额。 dp[i] 有两个状态,分别是 偷 和 不偷。 偷,则需要考虑前 i-2 天的最大金额…

Linux常见指令大全及周边知识:让你的命令行变得更加强大

文章目录 目录 文章目录 前言 一,Linux操作系统是啥? 二,Linux操作系统具有以下特点 三,指令的学习 1,指令是什么? 2,ls 指令及其常用的衍生指令: 周边知识: ls…

Selenium page object模式Python

目录 概述 优点 示例 项目结构: 基础页面类BasePage 业务页面类BaiduHomePage 测试类test_baidu: 文件工具类file_util 运行日志: 测试结果: 概述 在web应用程序的UI中,有一些区域可以与测试交互。页面对象…

【虚拟机】Docker基础 【二】

2.2.数据卷 容器是隔离环境,容器内程序的文件、配置、运行时产生的容器都在容器内部,我们要读写容器内的文件非常不方便。大家思考几个问题: 如果要升级MySQL版本,需要销毁旧容器,那么数据岂不是跟着被销毁了&#x…

微信小程序实现打分效果代码整理

一、微信小程序点击对应点击高亮 js代码 Page({data: {list: [1, 2, 3, 4, 5],active: 0},itemClickOne(e){var nume.currentTarget.dataset.value;this.setData({active:num});}, }) wxml代码 <view class"list"><view class"item {{itemactive?…

IDC MarketScape2023年分布式数据库报告:OceanBase位列“领导者”类别,产品能力突出

12 月 1 日&#xff0c;全球领先的IT市场研究和咨询公司 IDC 发布《IDC MarketScape:中国分布式关系型数据库2023年厂商评估》&#xff08;Document number:# CHC50734323&#xff09;。报告认为&#xff0c;头部厂商的优势正在扩大&#xff0c;OceanBase 位列“领导者”类别。…

C#语言高阶开发

目录 数据结构 集合 动态数组ArrayList 习题&#xff1a;声明一个Monster类&#xff0c;有一个Attack方法,用一个ArrayList去封装Monster的对象,装10个&#xff0c;遍历monster的list让他们释放攻击方法 哈希表HashTable 创建一个武器类&#xff0c;有一个属性叫做id,每个…

【数据中台】开源项目(3)-Linkis

关于 Linkis Linkis 在上层应用程序和底层引擎之间构建了一层计算中间件。通过使用Linkis 提供的REST/WebSocket/JDBC 等标准接口&#xff0c;上层应用可以方便地连接访问MySQL/Spark/Hive/Presto/Flink 等底层引擎&#xff0c;同时实现统一变量、脚本、用户定义函数和资源文件…

web:very_easy_sql(sql、ssrf、gopher协议sql注入)

题目 页面显示如下 显示不是内部用户&#xff0c;无法识别信息 查看源码&#xff0c;找到一个use.php 访问之后显示如下 随便输入了一个&#xff0c;发现url有参数显示 试一下靶机的网址&#xff0c;返回nonono 联系之前原始页面写的“不是内网用户&#xff0c;无法别识身份”…

【PTA-C语言】实验三-循环结构I

如果代码存在问题&#xff0c;麻烦大家指正 ~ ~有帮助麻烦点个赞 ~ ~ 实验三-循环结构I 7-1 求交错序列前N项和 &#xff08;分数 15&#xff09;7-2 寻找250&#xff08;分数 15&#xff09;7-3 最大公约数和最小公倍数&#xff08;分数 15&#xff09;7-4 统计字符&#xff0…

Redis 发布订阅机制深入探索

Redis 的发布订阅&#xff08;pub/sub&#xff09;机制是一种消息传递模式&#xff0c;允许消息的发送者&#xff08;发布者&#xff09;和消息的接收者&#xff08;订阅者&#xff09;通过一个中介层&#xff08;频道&#xff09;进行通信&#xff0c;而无需彼此直接交互。以下…

231202 刷题日报

周四周五&#xff0c;边值班边扯皮&#xff0c;没有刷题。。 今天主要是做了: 1. 稀疏矩阵压缩&#xff0c;十字链表法 2. 快速排序 3.349. 两个数组的交集​​​​​ 4. 174. 地下城游戏 要注意溢出问题&#xff01;

外包搞了6年,技术退步明显......

先说情况&#xff0c;大专毕业&#xff0c;18年通过校招进入湖南某软件公司&#xff0c;干了接近6年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试&#xf…

vue项目报错及解决npm run build:prod打包错误

vue项目报错及解决npm run build:prod打包错误 执行dev环境时加载失败了该变量&#xff0c;在package.json文件中 删掉 解决方法&#xff1a; 打包成功&#xff1a;

使用 OpenFunction 在任何基础设施上运行 Serverless 工作负载

作者&#xff1a; 霍秉杰&#xff1a;KubeSphere 可观测性、边缘计算和 Serverless 团队负责人&#xff0c;Fluent Operator 和 OpenFunction 项目的创始人&#xff0c;还是多个可观测性开源项目包括 Kube-Events、Notification Manager 等的作者&#xff0c;热爱云原生技术&am…

Hdoop学习笔记(HDP)-Part.16 安装HBase

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

MathType 7.5.2中文版软件使用期到了怎么办?

MathType 7.5.2中文版作为一款专业的公式编辑器&#xff0c;MathType受到很多人的青睐&#xff0c;它可以将编辑好的公式保存成多种图片格式或透明图片模式&#xff0c;可以很方便的添加或移除符号、表达式等模板&#xff08;只需要简单地用鼠标拖进拖出即可)&#xff0c;也可以…

基于SpringBoot蜗牛兼职网的设计与实现

摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;蜗牛兼职网当然也不能排除在外。蜗牛兼职网是以实际运用为开发背景&#xff0c;运用软件工程原理和开发方法&#xff0c…

css中元素水平居中的方式

文章目录 前言水平居中&#xff1a;垂直居中方法一: text-align: centerdisplay: table-cell方法二:父元素静态定位子元素通过相对定位来实现方法三:通过静态和相对定位方法四 css图片居中用text-align:center无效怎么回事&#xff1f;如何让图片在DIV中水平和垂直两个方向都居…

接口自动化测试思路和实战之模块化测试脚本框架

模块化测试脚本框架 需要创建独立的可描述的模块、程序片断以及待测试应用程序的脚本。这些小脚本进行组合&#xff0c;就能组成用来独立运行特定的测试的测试用例脚本。 场景一: 开发把 access_token接口地址由/cgi-bin/token 改为/cgi-bin/get_token或者修改参数等 》开发把…