KNN实战-图像识别

数据说明

是在循环0-9的数字一直循环500次所得到的数据,然后以手写照片的形式存在在这里插入图片描述

识别的步骤

  • 加载数据
  • 构建目标值
  • 构建模型
  • 参数调优
  • 可视化展示

加载数据

import numpy as np
import matplotlib.pyplot as plt
# 记载数据
data = np.load('./digit.npy')
data

构建目标值

# 构建基础的目标值
y = list(np.arange(0,10))*500
# 对生成的目标值进行排序,与图片的目标值进行对应
y.sort()
# 为了在拆分数据的时候可以正常拆分
y = np.array(y)

数据处理和数据拆分

数据处理

X = data.reshape(5000,-1)
X.shape # 784:是图片的像素值 ,也就是图像的特征

数据拆分

from sklearn.model_selection import train_test_split
X_tarin,X_test,y_train,y_test = train_test_split(X,y,# x,y的数据
test_size=0.05  # 验证集的占总数据的比重
,random_state=1024 # 随机数的种子)
display(X_tarin.shape,X_test.shape,y_train.shape,y_test.shape)

创建模型

from sklearn.neighbors import KNeighborsClassifier
# 创建模型
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_tarin,y_train)
# 数据分数
model.score(X_test,y_test)

训练数据的结果的分数
在这里插入图片描述

参数调优

%%time
from sklearn.model_selection import GridSearchCV
prams = dict(n_neighbors = [5,7,9,12,15,17,21,23,30],weights=['uniform','distance'],p=[1,2])
estimator = KNeighborsClassifier()
gCV = GridSearchCV(estimator,prams,cv=5,scoring='accuracy')
gCV.fit(X_tarin,y_train)

在这里插入图片描述

%%time:获取当前程序的运行时间

获取最佳参数

gCV.best_params_

获取平均分数

gCV.best_score_

获取最佳模型

gCV.best_estimator_

数据的验证与预测

best_model = gCV.best_estimator_
y_predict = gCV.predict(X_test)
print('测试值:',y_predict)
print('真实值:',y_test)
best_model.score(X_test,y_test)

得到的结果(在得分上看模型的质量还是有所提升的)
在这里插入图片描述

可视化

plt.figure(figsize=(5*2,10*3))
for i in range(50):plt.subplot(10,5,i+1)plt.imshow(X_test[i].reshape(28,28))true = y_test[i]predict = y_predict[i]plt.title(f'true:{true}\n'+f'predict:{predict}')

在这里插入图片描述

坚持学习,整理复盘
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/189963.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

webpack 使用打包报错 ERROR in node_modules\@types\node\ts4.8\assert.d.ts

报错如下: 解决方式,先查看自己的 node 版本 node -v然后再安装 types/node 对应版本,比如我的如下 npm i types/node14.10.0 -D然后再次打包,就没有报错了

Hdoop学习笔记(HDP)-Part.19 安装Kafka

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

Day47力扣打卡

打卡记录 多边形三角剖分的最低得分(区间DP) 链接 class Solution:def minScoreTriangulation(self, values: List[int]) -> int:n len(values)f [[0] * n for _ in range(n)]for i in range(n - 3, -1, -1):for j in range(i 2, n):f[i][j] mi…

iris+vue上传到本地存储【go/iris】

iris部分 //main.go package mainimport ("fmt""io""net/http""os" )//上传视频文件部分 func uploadHandler_video(w http.ResponseWriter, r *http.Request) {// 解析上传的文件err : r.ParseMultipartForm(10 << 20) // 设置…

高并发下缓存失效问题-缓存穿透、缓存击穿、缓存雪崩、Redis分布式锁简单实现、Redisson实现分布式锁

文章目录 缓存基本使用范式暴露的几个问题缓存失效问题---缓存穿透缓存失效问题---缓存击穿一、单机锁正确的锁粒度不正确的锁粒度无法保证查询数据库次数是唯一 二、分布式锁getCatalogJsonData()分布式锁演进---基本原理分布式锁(加锁)演进一&#xff1a;删锁失败导致死锁分布…

牛客小白月赛82(A~C)

目录 A.谜题&#xff1a;质数 输入描述 输出描述 输入 输出 解析 B.Kevin逛超市 2 (简单版本) 输入描述 输出描述 输入 输出 思路 C.被遗忘的书籍 题目描述 输入描述 输出描述 输入 输出 输入 输出 思路 比赛链接 牛客小白月赛82_ACM/NOI/CSP/CCPC/ICPC算…

C++基础 -28- 友元

友元用于访问类中的所有数据成员 类中的私有成员&#xff0c;类外不可访问 定义友元的格式&#xff08;友元函数必须要在类内&#xff0c;声明&#xff09; friend void show(person &b); 使用友元访问类的所有成员 #include "iostream"using namespace std…

Istio可观测性

Istio可观测性 image-20231129072302901 前言 Istio 为网格内所有的服务通信生成详细的遥测数据。这种遥测技术提供了服务行为的可观测性&#xff0c;使运维人员能够排查故障、维护和优化应用程序&#xff0c;而不会给开发人员带来其他额外的负担。通过 Istio&#xff0c;运维…

好用的桌面管理软件推荐

随着电脑的普及&#xff0c;桌面管理软件已经成为我们日常生活和工作中不可或缺的一部分。一个好的桌面管理软件可以帮助我们更高效地组织和管理电脑上的文件和应用程序&#xff0c;提高我们的工作效率。下面&#xff0c;我将为大家推荐几款好用的桌面管理软件。 1、腾讯桌面整…

Nacos 注册中心下载到搭建详细步骤【微服务】

文章目录 一、下载与安装二、Nacos 服务注册1. 引入依赖2. 修改配置文件3. 开启 Nacos 注解4. 启动项目 三、Nacos 服务集群1. 模拟多实例部署2. 配置集群属性3. 服务权重配置 四、Nacos 环境隔离五、Nacos 注册中心原理1. Nacos 与 Eureka 比较2. 配置非临时实例 一、下载与安…

LeNet对MNIST 数据集中的图像进行分类--keras实现

我们将训练一个卷积神经网络来对 MNIST 数据库中的图像进行分类&#xff0c;可以与前面所提到的CNN实现对比CNN对 MNIST 数据库中的图像进行分类-CSDN博客 加载 MNIST 数据库 MNIST 是机器学习领域最著名的数据集之一。 它有 70,000 张手写数字图像 - 下载非常简单 - 图像尺…

MMdetection3.0 问题:DETR验证集上AP值全为0.0000

MMdetection3.0 问题&#xff1a;DETR验证集上AP值全为0.0000 条件&#xff1a; 1、选择的是NWPU-VHR-10数据集&#xff0c;其中训练集455张&#xff0c;验证、测试相同均为195张。 2、在Faster-rcnn、YOLOv3模型上均能训练成功&#xff0c;但是在DETR训练时&#xff0c;出现验…

《地理信息系统原理》笔记/期末复习资料(7. 空间分析)

目录 7. 空间分析 7.1 空间分析的内容与步骤 7.2 数据检索及表格分析 7.2.1 属性统计分析 7.2.2 布尔逻辑查询 7.2.3 空间数据库查询语言 7.2.4 重分类&#xff0c;边界消除与合并 7.3 叠置分析 7.3.1 栅格系统的叠加分析 7.3.2 矢量系统的叠加分析&#xff08;拓扑叠…

视频后期特效处理软件 Motion 5 mac中文版

Motion mac是一款运动图形和视频合成软件&#xff0c;适用于Mac OS平台。 Motion mac软件特点 - 精美的效果&#xff1a;Motion提供了多种高质量的运动图形和视频效果&#xff0c;例如3D效果、烟雾效果、粒子效果等&#xff0c;方便用户制作出丰富多彩的视频和动画。 - 高效的工…

设计模式-结构型模式之桥接设计模式

文章目录 三、桥接模式 三、桥接模式 桥接模式&#xff08;Bridge&#xff09;是用于把抽象化与实现化解耦&#xff0c;使得二者可以独立变化。它通过提供抽象化和实现化之间的桥接结构&#xff0c;来实现二者的解耦。 这种模式涉及到一个作为桥接的接口&#xff0c;使得实体类…

Windows本地搭建Emby媒体库服务器并实现远程访问「内网穿透」

文章目录 1.前言2. Emby网站搭建2.1. Emby下载和安装2.2 Emby网页测试 3. 本地网页发布3.1 注册并安装cpolar内网穿透3.2 Cpolar云端设置3.3 Cpolar内网穿透本地设置 4.公网访问测试5.结语 1.前言 在现代五花八门的网络应用场景中&#xff0c;观看视频绝对是主力应用场景之一&…

jQuery选择器、操作DOM、事件处理机制、动画、ADJX操作知识点梳理

jQuery 核心理念就是写的更少&#xff0c;做的更多实现的代码更加简洁有效的提高开发效率 jQuery跟JavaScript的用法是不一样的 跟jQuery相继诞生的JavaScript库还有很多&#xff0c;不包括node.js 关于代码$("li").get(0)&#xff0c;获取DOM对象 jQuery对象声…

前缀和 LeetCode1094 拼车

1094. 拼车 车上最初有 capacity 个空座位。车 只能 向一个方向行驶&#xff08;也就是说&#xff0c;不允许掉头或改变方向&#xff09; 给定整数 capacity 和一个数组 trips , trip[i] [numPassengersi, fromi, toi] 表示第 i 次旅行有 numPassengersi 乘客&#xff0c;接…

Tomcat 漏洞修复

1、去掉请求响应中Server信息 修复方法&#xff1a; 在Tomcat的配置文件的Connector中增加 server" " &#xff0c;server 的值可以改成你任意想返回的值。