MySQL 学习笔记(刷题篇)

SQL进阶挑战

聚合分组查询

SQL123

select tag, difficulty, round((sum(score) - max(score) - min(score) ) / (count(score) - 2) ,1)
as clip_avg_score
from examination_info as ei, exam_record as er
where ei.exam_id = er.exam_id  
and ei.tag = 'SQL'  
and ei.difficulty = 'hard' 
and er.score is not null;

SQL124

IF(expr1 , expr2 , expr3),expr1的值为TRUE 返回 expr2,否则返回 expr3
使用 distinct 是需要考虑 null 的,它会把 null 也算成一种情况
但是使用 count(字段) 是不用考虑 null 的,它不会计 null 为一种情况

select count(id) as total_pv, 
count(submit_time) as complete_pv, 
count(distinct if(submit_time is not null, exam_id, null)) as complete_exam_cnt
from exam_record
select count(id) as total_pv, 
count(submit_time) as complete_pv, 
count(distinct exam_id and score is not null) as complete_exam_cnt
from exam_record

SQL125

# 这样写为什么就错?
select min(score) as min_score_over_avg
from exam_record  #这样写没有保证查询的试卷类型是SQL
where score >= (select avg(score)from exam_record as er , examination_info as eiwhere ei.tag = 'SQL'and ei.exam_id = er.exam_idand er.score is not null
);
# correct
select min(score) as min_score_over_avg
from exam_record as er , examination_info as ei
where ei.tag = 'SQL'
and ei.exam_id = er.exam_id
and er.score is not null
and score >= (select avg(score)from exam_record as erwhere er.exam_id = ei.exam_idand er.score is not null
);

SQL126

题目:按年月进行分组,统计每组的用户id个数(也就是这个月有多少活跃用户),统计每组的用户活跃天数的平均值(总天数/总人数)
总天数计算方法: ∑ i = 1 i = l a s t − u s e r 第 i 个用户一个月内的登录天数之和 \sum_{i=1}^{i=last-user} 第i个用户一个月内的登录天数之和 i=1i=lastuseri个用户一个月内的登录天数之和

DATE_FORMAT(date,fmt) 按照字符串 fmt 格式化日期 date
YEAR(date) / MONTH(date) / DAY(date) 返回具体的日期值

count( distinct uid, date_format(submit_time, '%y%m%d') ),这里的知识点:count函数内本只能接收一个参数,distinct 修饰是所有字段的,并不是修饰一个字段
语句含义:去掉一个用户在一天内的多次登录计数的重复计数,保证如果同一用户在同一天进行了多次活动,只有一次会被计数。

select date_format(submit_time, '%Y%m') as month, # %Y四位年份,%m两位数字月份round( count(distinct uid, date_format(submit_time, '%y%m%d') )  / count(distinct uid) , 2) as avg_active_days,count(distinct uid) as mau #统计组内不同用户id数量
from exam_record
where submit_time is not null
and year(submit_time) = 2021
group by date_format(submit_time, '%Y%m') # 按照年月分组

SQL127

select date_format(submit_time, '%Y%m') as submit_month,count(distinct uid, submit_time) as month_q_cnt,round(count(distinct uid, submit_time) / max(DAY(LAST_DAY(submit_time))) #这里必须用一个聚合函数,由于汇总时的天数按31算,因此用max最为合适,day+lasy_day一起得到当月的天数, 3) as avg_day_q_cnt
from practice_record
where year(submit_time) = '2021' #过滤字段写到分组前
group by submit_monthunionselect '2021汇总' as submit_month,
count(distinct uid, submit_time) as month_q_cnt,
round(count(distinct uid, submit_time) / 31, 3) as avg_day_q_cnt
from practice_record
where year(submit_time) = '2021'order by submit_month;

COALESCE 是一个函数,coalesce (expression_1, expression_2, …,expression_n) ,依次检验,返回第一个不是 null 的值

MySQL5.7之后,sql_mode中ONLY_FULL_GROUP_BY模式默认设置为打开状态。
ONLY_FULL_GROUP_BY的语义就是确定select target list中的所有列的值都是明确语义,因此这里的coalesce是不好使的,可以通过any_value()函数来抑制ONLY_FULL_GROUP_BY值被拒绝,any_value()会选择被分到同一组的数据里第一条数据的指定列值作为返回数据

GROUP BY中使用WITH ROLLUP
WITH ROLLUP,使用 WITH ROLLUP 关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和
注意:当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。

SELECTany_value(coalesce(DATE_FORMAT(submit_time,"%Y%m"),'2021汇总')) as submit_month,count(submit_time) as month_q_cnt,# 因为汇总除的数也是31,因此这里取max聚合round(count(submit_time) / max(day(last_day(submit_time))),3) as avg_day_q_cnt
FROM practice_record
WHERE year(submit_time) = '2021'
GROUP BY date_format(submit_time,"%Y%m") with rollup;

SQL 128

使用 count() 函数实现条件统计的基础是:对于值为NULL的记录不计数,利用这个性质我们可以轻松统计出值不为 NULL 的记录,再统计总记录,即可得到值为 NULL 的记录。

# 统计num大于200的记录
select count(num > 200 or null) from a;
# or null 作用就是当条件不满足时,函数变成了count(null)不会统计数量
# 但是 num > 200 这个条件不成立时的 false 是会被统计到的

GROUP_CONCAT() 函数是mysql中非常实用的聚合函数,将给分组内的值连接为一个字符串。其完整语法:

GROUP_CONCAT([DISTINCT] 要连接的字段 [ORDER BY 排序字段 ASC/DESC] [SEPARATOR ‘分隔符’])
select uid,count(uid) - count(submit_time) as incomplete_cnt,count(submit_time) as complete_cnt,group_concat(distinct date_format(start_time, '%Y-%m-%d'), ':', tagOrder BY start_time ASC #排序字段SEPARATOR ';') as detail
from exam_record as er
inner join examination_info as ei
on er.exam_id = ei.exam_id
where year(start_time) = '2021'  #过滤字段写到分组前
group by uid
having incomplete_cnt < 5 and incomplete_cnt > 1
and complete_cnt >= 1
order by incomplete_cnt desc;

多表查询

SQL 129

先考虑简单的,找出 “当月均完成试卷数”不小于3的用户们,然后按 tag 分组统计存在 start_time 的作答记录个数即可

select tag, count(start_time) as tag_cnt
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where uid in (select uidfrom exam_record as erinner join examination_info as eion er.exam_id = ei.exam_idgroup by uid, date_format(start_time, '%Y%m')having count(date_format(submit_time, '%Y%m')) >= 3
)
group by tag
order by tag_cnt desc;

SQL 130

select ei.exam_id as exam_id,count(distinct uid) as uv,# round(avg(score) ,1) as avg_scoreround(sum(score) / count(score) , 1) as avg_score
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where date_format(start_time, '%Y%m%d') in ( # 时间select date_format(release_time, '%Y%m%d') # 先弄出SQL试卷的发出的时间字段from examination_infowhere tag = 'SQL'
)
and uid in ( # 用户select uid      # 再弄出等级大于5的用户的uidfrom user_infowhere level > 5
)
and tag = 'SQL'  # SQL试卷
group by ei.exam_id #所有的SQL试卷按exam_id分组
order by uv desc, avg_score;

SQL 131

select level, count(level) as level_cnt
from user_info as ui, (select uidfrom exam_record as erinner join examination_info as eion er.exam_id = ei.exam_idwhere tag = 'SQL' && score > 80
) as tmp
where ui.uid = tmp.uid
group by level
order by level_cnt desc;

SQL 132

再套一个 select 来使得子查询的排序独立

select * from (
select exam_id as tid, count(distinct uid) as uv,count(start_time) as pv 
from exam_record
group by exam_id
order by uv desc, pv desc
) as t1unionselect * from (
select question_id as tid,count(distinct uid) as uv,count(submit_time) as pv
from practice_record
group by question_id
order by uv desc, pv desc
) as t2

SQL 133

TIME_TO_SEC() 将时间差转换为秒

select uid, 'activity1' as activity
from exam_record
group by uid
having min(score) >= 85unionselect uid, 'activity2' as activity
from examination_info as ei
inner join exam_record as er
on er.exam_id = ei.exam_id
where score > 80
and difficulty = 'hard'
and TIME_TO_SEC(timediff(submit_time, start_time)) < duration * 30order by uid;

其他操作

SQL 146

select uid,floor(avg(any_value(coalesce(score, 0)))) as avg_score,round(avg(if(submit_time is not null, timestampdiff(minute, start_time, submit_time), duration)), 1) as avg_time_took
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where difficulty = 'hard'
and uid in (select uidfrom user_infowhere level = 0
)
group by uid

SQL 147

select uid, nick_name, achievement
from user_info
where nick_name like '牛客%'
and nick_name like '%号'
and achievement between 1200 and 2500
and uid in (select uidfrom exam_recordgroup by uidhaving max(date_format(start_time, '%Y%m')) = '202109'union select uidfrom practice_recordgroup by uidhaving max(date_format(submit_time, '%Y%m')) = '202109'
)
select uid, nick_name, achievement
from user_info
where nick_name like '牛客%'
and nick_name like '%号'
and achievement between 1200 and 2500
and (uid in(select uidfrom exam_recordgroup by uidhaving max(date_format(start_time, '%Y%m')) = '202109')or uid in(select uidfrom practice_recordgroup by uidhaving max(date_format(submit_time, '%Y%m')) = '202109')
)

SQL 148(正则表达式)

正则表达式匹配纯数字或者中间纯数字

select uid, er.exam_id,round(avg(score) ,0) as avg_score
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where uid in (select uidfrom user_infowhere nick_name regexp '^牛客[0-9]+号$'or nick_name regexp '^[0-9]+$'
)
and ei.exam_id in (select exam_idfrom examination_infowhere tag regexp '^[Cc]'
)
and score is not null
group by uid, exam_id
order by uid, avg_score

SQL 149(WITH AS)

比较复杂的一个题,需要用 WITH AS 存一下查询

with t as (select ui.uid as uid,count(start_time) - count(submit_time) as incomplete_cnt,round(if(count(start_time) - count(submit_time) > 0,(count(start_time) - count(submit_time)) / count(start_time),0),3) as incomplete_rate,level,count(start_time) as total_cnt # 作答个数from user_info as uileft join exam_record as eron ui.uid = er.uidgroup by uid
)select uid, incomplete_cnt, incomplete_rate
from t
where exists(select uid from t where level = 0 and incomplete_cnt > 2
)
and level = 0
union
select uid, incomplete_cnt, incomplete_rate
from t
where not exists (select uid from t where level = 0 and incomplete_cnt > 2
)
and total_cnt > 0 # 有作答记录的用户
order by incomplete_rate

SQL150(CASE WHEN THEN)

很烂但有用的代码

select ui.level,case when score >= 90 then '优'when score >= 75 then '良'when score >= 60 then '中'when score >= 0 then '差' end as score_grade,round(count( case when score >= 90 then '优'when score >= 75 then '良'when score >= 60 then '中'when score >= 0 then '差' end) / num, 3) as ratio
from exam_record as er, user_info as ui, (select level, count(level) as numfrom exam_record as erinner join user_info as uion er.uid = ui.uidwhere score is not nullgroup by levelorder by level desc
) as tmp
where er.uid = ui.uid
and tmp.level = ui.level
and score is not null
group by level, score_grade
order by level desc, ratio desc

SQL 152

select er.uid, level, register_time, score as max_score
from exam_record as er
inner join user_info as ui
on er.uid = ui.uid
where exam_id in ( # 把exam_record筛的只剩下job为算法的人做的算法试卷记录select exam_idfrom examination_infowhere tag = '算法'
)
and er.uid in (select uidfrom user_infowhere job = '算法'
)
and score is not null # 还得做完
order by score desc
limit 6, 3;

SQL 153(substring_index)

substring_index(str,delim,count),str:要处理的字符串,delm:分隔符

SELECT exam_id,substring_index(tag, ',', 1) AS tag,substring_index(substring_index(tag, ',', 2), ',', -1) AS difficulty,substring_index(tag, ',', -1) AS duration
FROM examination_info
WHERE tag LIKE '%,%';

SQL 154(IF)

简单的 IF 应用

select uid, (if(char_length(nick_name) > 13, concat(substring(nick_name, 1, 10), '...'),nick_name)
) as nick_name
from user_info
where char_length(nick_name) > 10;

SQL 155

这个题写的我脑子有点乱

select t1.tag, t2.total_num
from (select tag, num # 查询试卷作答数小于3的exam_id对应的tag和个数from examination_info as ei, ( select exam_id, count(exam_id) as num #按exam_id分组,并统计个数from exam_recordgroup by exam_id) as tmpwhere ei.exam_id = tmp.exam_id # 多表查询and num < 3
) as t1, (select tag, sum(num) as total_num #按tag分类,把大写的tag聚合起来统计个数from examination_info as ei, (select exam_id, count(exam_id) as numfrom exam_recordgroup by exam_id) as tmpwhere ei.exam_id = tmp.exam_idgroup by tag 
) as t2
where upper(t1.tag) = t2.tag  # 小写的t1.tag匹配大写的t2.tag
and t1.tag != t2.tag

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187899.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录刷题题Day2

刷题的第二天&#xff0c;希望自己能够不断坚持下去&#xff0c;迎来蜕变。&#x1f600;&#x1f600;&#x1f600; 刷题语言&#xff1a;C / Python Day2 任务 977.有序数组的平方 209.长度最小的子数组 59.螺旋矩阵 II 1 有序数组的平方&#xff08;重点&#xff1a;双指针…

将项目放到gitee上

参考 将IDEA中的项目上传到Gitee仓库中_哔哩哔哩_bilibili 如果cmd运行ssh不行的话&#xff0c;要换成git bash 如果初始化后的命令用不了&#xff0c;直接用idea项放右键&#xff0c;用git工具操作

XXL-Job详解(二):安装部署

目录 前言环境下载项目调度中心部署执行器部署 前言 看该文章之前&#xff0c;最好看一下之前的文章&#xff0c;比较方便我们理解 XXL-Job详解&#xff08;一&#xff09;&#xff1a;组件架构 环境 Maven3 Jdk1.8 Mysql5.7 下载项目 源码仓库地址链接: https://github.…

前端对浏览器的理解

浏览器的主要构成 用户界面 &#xff0d; 包括地址栏、后退/前进按钮、书签目录等&#xff0c;也就是你所看到的除了用来显示你所请求页面的主窗口之外的其他部分。 浏览器引擎 &#xff0d; 用来查询及操作渲染引擎的接口。 渲染引擎 &#xff0d; 用来显示请求的内容&#…

中国丙烯基弹性体PBE市场调研与预测报告(2023版)

内容简介&#xff1a; 丙烯基弹性体&#xff08;PBE&#xff09;是以丙烯为主要原料&#xff0c;加入少量乙烯&#xff08;或α-烯烃&#xff09;单体经溶液聚合而得到的以无定形区域为主的低结晶聚合物。与传统的乙丙橡胶不同&#xff0c;PBE的乙烯含量通常低于20%&#xff0…

某60区块链安全之薅羊毛攻击实战一学习记录

区块链安全 文章目录 区块链安全薅羊毛攻击实战一实验目的实验环境实验工具实验原理实验内容薅羊毛攻击实战一 实验步骤EXP利用 薅羊毛攻击实战一 实验目的 学会使用python3的web3模块 学会分析以太坊智能合约薅羊毛攻击漏洞 找到合约漏洞进行分析并形成利用 实验环境 Ubun…

JVM类加载与运行时数据区

目录 一、类加载器 jvm类的加载过程 第一阶段&#xff1a;加载 第二阶段&#xff1a;链接阶段 第三阶段&#xff1a;初始化阶段&#xff1a; 双亲委派机制 沙箱安全机制 运行时数据区 栈-Xss1m 堆 TLAB 逃逸分析 方法区 常量池中有什么 StringTable为什么要调整位…

c# statusStrip 显示电脑主机名、IP地址、MAC地址

控件&#xff1a; ToolStripStatusLabel 主机名&#xff1a; Dns.GetHostName() IP地址&#xff1a; Dns.GetHostAddresses(Dns.GetHostName())[0].ToString() 当前程序的版本&#xff1a; Assembly.GetExecutingAssembly().GetName().Version.ToString() 获取系统版本 …

VS Code C++可视化调试配置Natvis,查看Qt、STL变量内容

VS Code C可视化调试配置Natvis 使用GlobalVisualizersDirectory Windows下 C:\Users\YourName\.vscode\extensions\ms-vscode.cpptools-1.18.5-win32-x64\debugAdapters\vsdbg\bin\Visualizers\Linux下 ~\.vscode\extensions\ms-vscode.cpptools-1.18.5-win32-x64\debugAd…

Spring Cloud 原理(第一节)

一、百度百科 Spring Cloud是一系列框架的有序集合。它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发&#xff0c;如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等&#xff0c;都可以用Spring Boot的开发风格做到一键启动和部署。Spri…

播放器开发(六):音频帧处理并用SDL播放

目录 学习课题&#xff1a;逐步构建开发播放器【QT5 FFmpeg6 SDL2】 步骤 AudioOutPut模块 1、初始化【分配缓存、读取信息】 2、开始线程工作【从队列读帧->重采样->SDL回调->写入音频播放数据->SDL进行播放】 主要代码 分配缓存 // 对于样本队列 av_audio_…

实验五 C语言函数程序设计习题 (使用函数计算两点间的距离,请编写函数fun,使用函数输出字符矩阵,使用函数求最大公约数和最小公倍数)

1. 使用函数计算两点间的距离&#xff1a;给定平面任意两点坐标(x1,y1)和(x2,y2)&#xff0c;求这两点之间的距离(保留2位)小数。要求定义和调用dist(x1,y1,x2,y2)计算两点间的距离。坐标中两点坐标之间的距离公式如下&#xff1a; #include <stdio.h> #include <math…

1.ORB-SLAM3中如何保存多地图、关键帧、地图点到二进制文件中

1 保存多地图 1.1 为什么保存(视觉)地图 因为我们要去做导航&#xff0c;导航需要先验地图。因此需要保存地图供导航使用&#xff0c;下面来为大家讲解如何保存多地图。 1.2 保存多地图的主函数SaveAtlas 2051 mStrSaveAtlasToFile是配置文件中传递的参数&#xff1a; 这里我们…

ssh远程连接阿里云CentOS:修改为密码登录

文章目录 控制台添加密钥下载Xshell修改密码连接重启服务&#xff1a;重复Xshell使用密码登录 控制台添加密钥 会下载一个pem文件 下载Xshell 新建 通过public key登录 修改密码连接 passwd root然后输入你想要设置的密码两遍 cd /etc/ssh/ vi sshd_config将PasswordAuth…

[论文精读]利用大语言模型对扩散模型进行自我修正

本博客是一篇最新论文的精读&#xff0c;论文为UC伯克利大学相关研究者新近(2023.11.27)在arxiv上上传的《Self-correcting LLM-controlled Diffusion Models》 。 内容提要: 现有的基于扩散的文本到图像生成模型在生成与复杂提示精确对齐的图像时仍然存在困难,尤其是需要数值和…

研习代码 day45 | 动态规划——子序列问题

一、最长递增子序列 1.1 题目 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&#xff0c;[3,6,2,7] 是数组 [0,3,1,6,2,2,…

python代码打包成.so的方法

前提条件&#xff1a; 确保电脑已经安装gcc且终端能检索到确保Python中已经安装cython包&#xff0c;若未安装&#xff0c;则先使用pip install cython进行安装 打包方法&#xff1a; step1&#xff1a;编写编译脚本setup.py&#xff0c;代码如下&#xff1a; # encoding ut…

生成对抗网络(DCGAN)手写数字生成

文章目录 一、前言二、前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09; 二、什么是生成对抗网络1. 简单介绍2. 应用领域 三、创建模型1. 生成器2. 判别器 四、定义损失函数和优化器1. 判别器损失2. 生成器损失 五、定义训练循环六、训练模型七、创建 G…

“前端八股文背诵版“,终于整理完了,堪称最强!

随着互联网的快速发展&#xff0c;前端开发领域成为了IT行业中的热门领域之一。很多求职者都希望能够进入这个领域&#xff0c;但是面对着如此激烈的竞争&#xff0c;很多人都感到无从下手。为了帮助大家更好地掌握前端开发的相关知识&#xff0c;小编整理了一份前端面试题合集…

单片机怎么实现真正的多线程?

单片机怎么实现真正的多线程? 不考虑多核情况时&#xff0c;CPU在一个时间点只能做一件事&#xff0c;因为切换的速度快所以看起来好像是同时执行多个线程而已。 实际上就是用定时器来做时基&#xff0c;以时间片的方式分别执行来实现的&#xff0c;只不过实现起来细节比较复…