Linux驱动开发——网络设备驱动(实战篇)

目录

四、 网络设备驱动实例

五、DM9000 网络设备驱动代码分析

六、NAPI

七、习题


书接上回:

Linux驱动开发——网络设备驱动(理论篇)-CSDN博客

(没看过上面博客的同学,skb是linux对于网络套接字缓冲区的一个虚拟结构体对象)


四、 网络设备驱动实例


        本节实现一个虚拟网络设备的驱动,其目的是使用数据结构和函数来搭建一个网络设备驱动的基本框架。这个虚拟的网络设备是基于内存的,也就是说,要通过网络设备发送的数据包都在驱动内部环回回去,可以实现 ping 命令的测试。但是源IP 地址和目的IP 地址应该不一样,否则上层的内核网络代码将直接使用系统自带的环回网络设备来完成环回。为了欺骗上层的网络模块,让上层感觉数据包被正常发送出去,然后被对端环回回来,在虚拟网络设备驱动的内部,将源地址和目的地址的最后一个字节做了交换,如图所示。
 


驱动的代码如下

#ifndef __VNET_H__
#define __VNET_H__#define DEBUG 1struct vnet_priv {struct sk_buff *txskb;int rxlen;unsigned char rxdata[ETH_DATA_LEN];
};#endif


        在 vnet.h 头文件中定义了一个结构 struct vnet_priv,成员txskb 用于记录发送的skb在发送成功后释放这个 skb。rxdata 则是用于从虚拟网卡中获取的数据包的临时缓冲区rxlen 记录从虚拟网卡中获取的数据包的长度。

#ifndef __VNET_H__
#define __VNET_H__#define DEBUG 1struct vnet_priv {struct sk_buff *txskb;int rxlen;unsigned char rxdata[ETH_DATA_LEN];
};#endif
book@100ask:~/makeru/driver/10_net$ cat vnet.c
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>#include <linux/ip.h>#include "vnet.h"struct net_device *vnet_dev;static int vnet_open(struct net_device *dev)
{netif_start_queue(dev);return 0;
}static int vnet_stop(struct net_device *dev)
{netif_stop_queue(dev);return 0;
}void vnet_rx(struct net_device *dev)
{struct sk_buff *skb;struct vnet_priv *priv = netdev_priv(dev);skb = dev_alloc_skb(priv->rxlen + 2);if (IS_ERR(skb)) {printk(KERN_NOTICE "vnet: low on mem - packet dropped\n");dev->stats.rx_dropped++;return;}skb_reserve(skb, 2);memcpy(skb_put(skb, priv->rxlen), priv->rxdata, priv->rxlen);skb->dev = dev;skb->protocol = eth_type_trans(skb, dev);skb->ip_summed = CHECKSUM_UNNECESSARY;dev->stats.rx_packets++;dev->stats.rx_bytes += priv->rxlen;netif_rx(skb);return;
}static void vnet_rx_int(char *buf, int len, struct net_device *dev)
{struct vnet_priv *priv;priv = netdev_priv(dev);priv->rxlen = len;memcpy(priv->rxdata, buf, len);vnet_rx(dev);return;
}static void vnet_hw_tx(char *buf, int len, struct net_device *dev)
{
#if DEBUGint i;
#endifstruct iphdr *ih;struct net_device *dest;struct vnet_priv *priv;u32 *saddr, *daddr;if (len < sizeof(struct ethhdr) + sizeof(struct iphdr)) {printk("vnet: Packet too short (%i octets)\n", len);return;}#if DEBUGprintk("len is %i\n", len);printk("data: ");for (i = 0; i < len; i++)printk(" %02x",buf[i] & 0xff);printk("\n");
#endifih = (struct iphdr *)(buf + sizeof(struct ethhdr));saddr = &ih->saddr;daddr = &ih->daddr;((u8 *)saddr)[3] = ((u8 *)saddr)[3] ^ ((u8 *)daddr)[3];((u8 *)daddr)[3] = ((u8 *)saddr)[3] ^ ((u8 *)daddr)[3];((u8 *)saddr)[3] = ((u8 *)saddr)[3] ^ ((u8 *)daddr)[3];ih->check = 0;ih->check = ip_fast_csum((unsigned char *)ih,ih->ihl);#if DEBUGprintk("len is %i\n", len);printk("data: ");for (i = 0; i < len; i++)printk(" %02x",buf[i] & 0xff);printk("\n\n");
#endifdest = vnet_dev;vnet_rx_int(buf, len, dest);dev->stats.tx_packets++;dev->stats.tx_bytes += len;priv = netdev_priv(dev);dev_kfree_skb(priv->txskb);
}static netdev_tx_t vnet_tx(struct sk_buff *skb, struct net_device *dev)
{int len;char *data, shortpkt[ETH_ZLEN];struct vnet_priv *priv = netdev_priv(dev);data = skb->data;len = skb->len;if (len < ETH_ZLEN) {memset(shortpkt, 0, ETH_ZLEN);memcpy(shortpkt, skb->data, skb->len);len = ETH_ZLEN;data = shortpkt;}dev->trans_start = jiffies;priv->txskb = skb;vnet_hw_tx(data, len, dev);return 0;
}static const struct net_device_ops vnet_ops = {.ndo_open		= vnet_open,.ndo_stop		= vnet_stop,.ndo_start_xmit 	= vnet_tx,
};static int __init vnet_init(void)
{int status;struct vnet_priv *priv;vnet_dev = alloc_etherdev(sizeof(struct vnet_priv));if (IS_ERR(vnet_dev))return -ENOMEM;ether_setup(vnet_dev);vnet_dev->netdev_ops = &vnet_ops;vnet_dev->flags |= IFF_NOARP;priv = netdev_priv(vnet_dev);memset(priv, 0, sizeof(struct vnet_priv));status = register_netdev(vnet_dev);if (status) {free_netdev(vnet_dev);return status;}return 0;
}static void __exit vnet_exit(void)
{unregister_netdev(vnet_dev);free_netdev(vnet_dev);
}module_init(vnet_init);
module_exit(vnet_exit);MODULE_LICENSE("GPL");
MODULE_AUTHOR("name <e-mail>");
MODULE_DESCRIPTION("Virtual ethernet driver");


        代码第 147 行使用alloc_etherdev 分配了一个struct net_device 结构对象的内存空间和struct vnet_priv 结构对象的内存空间,并按照以太网的相关属性初始化了 struct net_device结构对象。代码第 151行再次调用 ether_setup 初始化了 struct net_device 结构对象。代码第 152 行指定了网络设备的操作方法集合为 vnet_ops,只实现了3 个最基本的函数接口,分别是 ndo_open、ndo_stop 和 ndo_start_xmit,这个在后面会进一步描述。代码第153行给 struct net_device 结构对象的 flags 成员添加了IFF_NOARP 标志,这对这里的虚拟网络设备非常重要,因为没有真实的硬件,所以也没有办法完成 ARP 操作。代码第 154行使用netdev_priv 获取了 struct vnet_priv 结构对象的地址,然后将该结构对象的内存清零。代码第 157 行使用 register_netdev 注册了网络设备。代码第 169 行和第 170 行则是在模块卸载的时候进行注销和释放内存的操作。在 vnet open 函数中使用 netif start_queue 来启动发送队列,从而允许上层发送数据包。而在 vnet_stop 函数中则使用 netif_stop_queue 来停止发送队列。这两个操作完成了最基本的网络设备激活和禁止的操作。


        数据包的发送由 vnet_tx 函数来启动,代码第 120 行和第 121 行首先获取了要发送据包的缓冲区起始地址和数据包的长度。如果数据包的长度小于以太网允许的最短数换包长度,那么代码第 122 行和第 127 行则对数据包进行填充,以使数据包满足最短包长度的要求。代码第 128 行记录了数据包发送的时间,代码第 129 行记录了要发送数据的 skb 结构对象指针,方便在发送完成后释放该 skb。最后,代码第 130 行调用 vnet_hw_tx函数来真正发送数据包。
        在 vnet_hw_tx 函数中,代码第 74 行至第 77 行依然是对数据包长度的判断。代码第79 行至第 85 行则是为了调试方便将原始数据包的内容打印出来。代码第 87 行至第 92行则是取出源 IP 地址和目的 IP地址,然后将最后一个字节进行交换。代码第 94 行和95 行重新计算校验和。这部分代码和协议相关,不应该出现在网络设备驱动的代码中.但是为了完成环回操作,我们必须要修改地址。代码第 97 行至第 103 行也是调试的目的将修改后的数据包内容打印出来。代码第 105 行指定了应该接收该数据包的网络设备(也就是该虚拟网络设备本身),然后调用 vnet_rx_int 在目的网络设备上模拟产生了一次接收中断,从而来完成数据包的接收,这个将在后面进一步讨论。数据包发送成功后,代码第 108 行和第 109 行完成了发送统计信息的维护,代码第 110 行和第 111 行释放了发送的 skb。

        vnet_rx_int 是模拟的数据包接收中断函数,代码第 56 行记录了接收数据包的长度代码第 57 行从网络设备中将数据包复制到了临时的接收缓冲区 rxdata 中,然后调用vnet_rx 做进一步的处理。在 vnet_rx 函数中,代码第 32 行使用 dev_alloc_skb 函数分配一个 skb,虽然是模拟的中断,使用的还是 dev_alloc_skb 函数。skb 的缓冲区长度为rxlen + 2,多分配 2 个字节是为了对齐处理。因为以太网的协议包头为 14 个字节,再多偏移 2 个字节,可以使以太网数据包除去协议头后的净荷数据是 16 字节对齐的,有利充分利用高速缓存来加快对数据的处理过程。代码第 38 行使用 skb_reserve 函数保留个字节正是这个目的。代码第 39 行首先使用 skb_put 函数将 tail 向 end 方向偏移rxlen字节,函数返回的是 put 之前的 tail 指针,然后将数据从临时缓冲区复制到了 skb 中。复制完成后的 skb 示意图如图所示。


        代码第 41 行记录接收该数据包的网络设备。代码第 42 行指示接收到的数据包的协议,方便上层对该数据包进行拆包处理。代码第 43 行告诉上层代码不需要做校验和校验,第因为是直接的内存复制。代码第 44 行第 45 行维护收数据包的统计计数,最后使用netif_rx 向上层递交数据包。
编译和测试的命令如下,使用 dmesg 可以查看调试信息,也可以交叉编译,在目标板上运行。


五、DM9000 网络设备驱动代码分析


        本节将对 DM9000 网络设备驱动做简要的分析,主要是分析其中的核心框架代码,以进一步说明上面的框架是如何应用在真实的网络设备驱动中的。DM9000 在 FS4412 标板上的原理图如图 所示。
 


        DM9000AE 网卡芯片通过存储器总线和 Exynos4412 CPU 芯片相连,片选信号(第37脚)连接到了 Exynos4412的Xm0CSn1 管脚,查看 Exynos4412 的用户手册可知,该片选信号所对应的存储器基地址为 0x05000000.DM9000AE 的 CMD 管脚接在了地址线的ADDR2 上,该管脚决定是访 DM9000AE芯片内部的地址寄存器还是数据寄存器。根据这种接法可知,这两个寄存器的起始地址分别为 0x05000000 和 0x05000004。而数据总线的宽度为 16 位,所以这两个寄存器的结束地址分别为 0x05000001 和 0x05000005。芯片输出了一个中断,连接在了 Exynos4412CPU 芯片的 GPX0 组的 6 号管脚上(对应的中断为 XEINT6),查看 DM9000AE 的芯片手册可知,该管脚为高电平触发方式。
        DM9000 网络设备驱动是基于平台驱动的,所以要在设备树文件中编写一个设备树节点,这可以参考内核文档 Documentation/devicetree/bindings/net/davicom-dm9000.txt。根据该文档和上面的硬件信息,得出该设备节点的定义如下。
 

644     srom-cs1@5000000 {
645         compatible = "simple-bus";
646         #address-cells = <1>;
647         #size-cells = <1>;
648         reg = <0x5000000 0x1000000>;
649         ranges;
650         ethernet@5000000 {
651             compatible = "davicom,dm9000";
652             reg = <0x5000000 0x2 0x5000004 0x2>;
653             interrupt-parent = <&gpx0>;
654             interrupts = <6 4>;                                                                                         
655             davicom,no-eeprom;
656             mac-address = [00 0a 2d a6 55 a2];
657         };
658     };
  1. srom-cs1@5000000 { - 这定义了一个节点,它代表一个内存区域或设备。@5000000表示该设备或内存区域的基地址是0x5000000
  2. compatible = "simple-bus"; - 这表示该节点与"simple-bus"兼容,即它是一个简单的总线类型设备。
  3. #address-cells = <1>; - 定义地址单元的数量。在这里,它是1,表示子节点的地址是一个单一的数值。
  4. #size-cells = <1>; - 定义大小单元的数量。在这里,它也是1,表示子节点的大小是一个单一的数值。
  5. reg = <0x5000000 0x1000000>; - 这定义了该设备的物理地址和大小。它的基地址是0x5000000,大小是0x1000000字节。
  6. ranges; - 通常用于描述子节点的地址如何映射到父节点的地址空间。在这里,它是空的,可能表示没有映射或默认映射。
  7. ethernet@5000000 { - 这定义了一个子节点,代表一个以太网控制器。它的基地址是0x5000000
  8. compatible = "davicom,dm9000"; - 表示这个以太网控制器与"davicom,dm9000"兼容。
  9. reg = <0x5000000 0x2 0x5000004 0x2>; - 定义该以太网控制器的寄存器布局和大小。
  10. interrupt-parent = <&gpx0>; - 表示该设备的中断连接到名为"gpx0"的中断控制器。
  11. interrupts = <6 4>; - 这定义了中断号和触发类型。在这里,中断号是6,触发类型是4(通常是边缘触发)。
  12. davicom,no-eeprom; - 表示该设备没有EEPROM。
  13. mac-address = [00 0a 2d a6 55 a2]; - 这是该以太网控制器的MAC地址。
  14. }; - 结束ethernet@5000000节点的定义。
  15. }; - 结束srom-cs1@5000000节点的定义。


        代码首先定义了一个用于地址转换的父节点 srom-esl@50000,该节点的地址范围是0x5000000~0x5FFFFFF,子节点的地址和大小分别用一个cell(一个 32 位的二进制数素表示,1:1 映射。etheret@5000000 是其中的一个子节点,用于描述以太网卡的相关普备信息。其中 compatible 的值为“davicom,dm9000”,和驱动里面的设备列表相符合而reg属性则指定了两个寄存器的起始地址和大小,根据前面关于硬件原理图的分析,不难给出这个属性的值。而 interrupt-parent 则给出了使用中断的父节点,在设备树源文件所包含的一个文件 arch/arm/boot/dts/exynos4x12-pinctrl.dtsi中,定义了如下的一个关于GPX0组管脚的中断节点的定义。


        该节点是一个中断控制器,共有 8个中断,分别对应 GPX0的8 个管脚。对 interrupts的解释需要参考 Documentation/devicetree/bindings/arm/gic.txt 文档,其中第一个数字表示中断的类型为 SPI;第二个数字表示 SPI的号,查阅 Exynos4412 的芯片手册可知 EINT6中断对应的 SPI中断号为 22:最后一个数字表示的是中断触发的类型,0为未指定。

        ethernet@5000000 节点中的interrupts 属性表示使用了 gpx0 这组中断的以0开始计数的第 6个中断(<0 22 0>这个中断),中断的触发类型为高电平发。该属性值的解读以参考 Documentation/devicetree/bindings/interrupt-controller/interupts.txt 文档中的内容。从硬件原理图分析的结果不难给出该属性的值。

        接下来的属性“davicomno-eeprom”表示 DM9000AE 芯片没有外接 EEPROM配置芯片,而 mac-address 属性则指定了以太网卡的 MAC 地址。这些都可以通过查Documentation/devicetree/bindings/net/davicom-dm9000.xt 文档*解释。

        DM9000 网络设备驱动的代码的路径为 drivers/net/ethrnet/davicom/dm9000.c,代最后的几行就是支持的设备列表和平台驱动的注册和注销,这和我们之编写的平台整动类似,这里就不再列出代码了。对网络设备的初始化和注册发生在dm9000_probe 涵数中,接下来做简要的分析。
 

/**      Davicom DM9000 Fast Ethernet driver for Linux.* 	Copyright (C) 1997  Sten Wang** 	This program is free software; you can redistribute it and/or* 	modify it under the terms of the GNU General Public License* 	as published by the Free Software Foundation; either version 2* 	of the License, or (at your option) any later version.** 	This program is distributed in the hope that it will be useful,* 	but WITHOUT ANY WARRANTY; without even the implied warranty of* 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the* 	GNU General Public License for more details.** (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.** Additional updates, Copyright:*	Ben Dooks <ben@simtec.co.uk>*	Sascha Hauer <s.hauer@pengutronix.de>*/#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/ethtool.h>
#include <linux/dm9000.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/slab.h>#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>#include "dm9000.h"/* Board/System/Debug information/definition ---------------- */#define DM9000_PHY		0x40	/* PHY address 0x01 */#define CARDNAME	"dm9000"
#define DRV_VERSION	"1.31"/** Transmit timeout, default 5 seconds.*/
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");/** Debug messages level*/
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");/* DM9000 register address locking.** The DM9000 uses an address register to control where data written* to the data register goes. This means that the address register* must be preserved over interrupts or similar calls.** During interrupt and other critical calls, a spinlock is used to* protect the system, but the calls themselves save the address* in the address register in case they are interrupting another* access to the device.** For general accesses a lock is provided so that calls which are* allowed to sleep are serialised so that the address register does* not need to be saved. This lock also serves to serialise access* to the EEPROM and PHY access registers which are shared between* these two devices.*//* The driver supports the original DM9000E, and now the two newer* devices, DM9000A and DM9000B.*/enum dm9000_type {TYPE_DM9000E,	/* original DM9000 */TYPE_DM9000A,TYPE_DM9000B
};/* Structure/enum declaration ------------------------------- */
typedef struct board_info {void __iomem	*io_addr;	/* Register I/O base address */void __iomem	*io_data;	/* Data I/O address */u16		 irq;		/* IRQ */u16		tx_pkt_cnt;u16		queue_pkt_len;u16		queue_start_addr;u16		queue_ip_summed;u16		dbug_cnt;u8		io_mode;		/* 0:word, 2:byte */u8		phy_addr;u8		imr_all;unsigned int	flags;unsigned int	in_suspend:1;unsigned int	wake_supported:1;enum dm9000_type type;void (*inblk)(void __iomem *port, void *data, int length);void (*outblk)(void __iomem *port, void *data, int length);void (*dumpblk)(void __iomem *port, int length);struct device	*dev;	     /* parent device */struct resource	*addr_res;   /* resources found */struct resource *data_res;struct resource	*addr_req;   /* resources requested */struct resource *data_req;struct resource *irq_res;int		 irq_wake;struct mutex	 addr_lock;	/* phy and eeprom access lock */struct delayed_work phy_poll;struct net_device  *ndev;spinlock_t	lock;struct mii_if_info mii;u32		msg_enable;u32		wake_state;int		ip_summed;
} board_info_t;/* debug code */#define dm9000_dbg(db, lev, msg...) do {		\if ((lev) < debug) {				\dev_dbg(db->dev, msg);			\}						\
} while (0)static inline board_info_t *to_dm9000_board(struct net_device *dev)
{return netdev_priv(dev);
}/* DM9000 network board routine ---------------------------- *//**   Read a byte from I/O port*/
static u8
ior(board_info_t *db, int reg)
{writeb(reg, db->io_addr);return readb(db->io_data);
}/**   Write a byte to I/O port*/static void
iow(board_info_t *db, int reg, int value)
{writeb(reg, db->io_addr);writeb(value, db->io_data);
}static void
dm9000_reset(board_info_t *db)
{dev_dbg(db->dev, "resetting device\n");/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29* The essential point is that we have to do a double reset, and the* instruction is to set LBK into MAC internal loopback mode.*/iow(db, DM9000_NCR, 0x03);udelay(100); /* Application note says at least 20 us */if (ior(db, DM9000_NCR) & 1)dev_err(db->dev, "dm9000 did not respond to first reset\n");iow(db, DM9000_NCR, 0);iow(db, DM9000_NCR, 0x03);udelay(100);if (ior(db, DM9000_NCR) & 1)dev_err(db->dev, "dm9000 did not respond to second reset\n");
}/* routines for sending block to chip */static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
{iowrite8_rep(reg, data, count);
}static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
{iowrite16_rep(reg, data, (count+1) >> 1);
}static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
{iowrite32_rep(reg, data, (count+3) >> 2);
}/* input block from chip to memory */static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
{ioread8_rep(reg, data, count);
}static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
{ioread16_rep(reg, data, (count+1) >> 1);
}static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
{ioread32_rep(reg, data, (count+3) >> 2);
}/* dump block from chip to null */static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
{int i;int tmp;for (i = 0; i < count; i++)tmp = readb(reg);
}static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
{int i;int tmp;count = (count + 1) >> 1;for (i = 0; i < count; i++)tmp = readw(reg);
}static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
{int i;int tmp;count = (count + 3) >> 2;for (i = 0; i < count; i++)tmp = readl(reg);
}/** Sleep, either by using msleep() or if we are suspending, then* use mdelay() to sleep.*/
static void dm9000_msleep(board_info_t *db, unsigned int ms)
{if (db->in_suspend)mdelay(ms);elsemsleep(ms);
}/* Read a word from phyxcer */
static int
dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
{board_info_t *db = netdev_priv(dev);unsigned long flags;unsigned int reg_save;int ret;mutex_lock(&db->addr_lock);spin_lock_irqsave(&db->lock, flags);/* Save previous register address */reg_save = readb(db->io_addr);/* Fill the phyxcer register into REG_0C */iow(db, DM9000_EPAR, DM9000_PHY | reg);/* Issue phyxcer read command */iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);writeb(reg_save, db->io_addr);spin_unlock_irqrestore(&db->lock, flags);dm9000_msleep(db, 1);		/* Wait read complete */spin_lock_irqsave(&db->lock, flags);reg_save = readb(db->io_addr);iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command *//* The read data keeps on REG_0D & REG_0E */ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);/* restore the previous address */writeb(reg_save, db->io_addr);spin_unlock_irqrestore(&db->lock, flags);mutex_unlock(&db->addr_lock);dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);return ret;
}/* Write a word to phyxcer */
static void
dm9000_phy_write(struct net_device *dev,int phyaddr_unused, int reg, int value)
{board_info_t *db = netdev_priv(dev);unsigned long flags;unsigned long reg_save;dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);mutex_lock(&db->addr_lock);spin_lock_irqsave(&db->lock, flags);/* Save previous register address */reg_save = readb(db->io_addr);/* Fill the phyxcer register into REG_0C */iow(db, DM9000_EPAR, DM9000_PHY | reg);/* Fill the written data into REG_0D & REG_0E */iow(db, DM9000_EPDRL, value);iow(db, DM9000_EPDRH, value >> 8);/* Issue phyxcer write command */iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);writeb(reg_save, db->io_addr);spin_unlock_irqrestore(&db->lock, flags);dm9000_msleep(db, 1);		/* Wait write complete */spin_lock_irqsave(&db->lock, flags);reg_save = readb(db->io_addr);iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command *//* restore the previous address */writeb(reg_save, db->io_addr);spin_unlock_irqrestore(&db->lock, flags);mutex_unlock(&db->addr_lock);
}/* dm9000_set_io** select the specified set of io routines to use with the* device*/static void dm9000_set_io(struct board_info *db, int byte_width)
{/* use the size of the data resource to work out what IO* routines we want to use*/switch (byte_width) {case 1:db->dumpblk = dm9000_dumpblk_8bit;db->outblk  = dm9000_outblk_8bit;db->inblk   = dm9000_inblk_8bit;break;case 3:dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");case 2:db->dumpblk = dm9000_dumpblk_16bit;db->outblk  = dm9000_outblk_16bit;db->inblk   = dm9000_inblk_16bit;break;case 4:default:db->dumpblk = dm9000_dumpblk_32bit;db->outblk  = dm9000_outblk_32bit;db->inblk   = dm9000_inblk_32bit;break;}
}static void dm9000_schedule_poll(board_info_t *db)
{if (db->type == TYPE_DM9000E)schedule_delayed_work(&db->phy_poll, HZ * 2);
}static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{board_info_t *dm = to_dm9000_board(dev);if (!netif_running(dev))return -EINVAL;return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
}static unsigned int
dm9000_read_locked(board_info_t *db, int reg)
{unsigned long flags;unsigned int ret;spin_lock_irqsave(&db->lock, flags);ret = ior(db, reg);spin_unlock_irqrestore(&db->lock, flags);return ret;
}static int dm9000_wait_eeprom(board_info_t *db)
{unsigned int status;int timeout = 8;	/* wait max 8msec *//* The DM9000 data sheets say we should be able to* poll the ERRE bit in EPCR to wait for the EEPROM* operation. From testing several chips, this bit* does not seem to work.** We attempt to use the bit, but fall back to the* timeout (which is why we do not return an error* on expiry) to say that the EEPROM operation has* completed.*/while (1) {status = dm9000_read_locked(db, DM9000_EPCR);if ((status & EPCR_ERRE) == 0)break;msleep(1);if (timeout-- < 0) {dev_dbg(db->dev, "timeout waiting EEPROM\n");break;}}return 0;
}/**  Read a word data from EEPROM*/
static void
dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
{unsigned long flags;if (db->flags & DM9000_PLATF_NO_EEPROM) {to[0] = 0xff;to[1] = 0xff;return;}mutex_lock(&db->addr_lock);spin_lock_irqsave(&db->lock, flags);iow(db, DM9000_EPAR, offset);iow(db, DM9000_EPCR, EPCR_ERPRR);spin_unlock_irqrestore(&db->lock, flags);dm9000_wait_eeprom(db);/* delay for at-least 150uS */msleep(1);spin_lock_irqsave(&db->lock, flags);iow(db, DM9000_EPCR, 0x0);to[0] = ior(db, DM9000_EPDRL);to[1] = ior(db, DM9000_EPDRH);spin_unlock_irqrestore(&db->lock, flags);mutex_unlock(&db->addr_lock);
}/** Write a word data to SROM*/
static void
dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
{unsigned long flags;if (db->flags & DM9000_PLATF_NO_EEPROM)return;mutex_lock(&db->addr_lock);spin_lock_irqsave(&db->lock, flags);iow(db, DM9000_EPAR, offset);iow(db, DM9000_EPDRH, data[1]);iow(db, DM9000_EPDRL, data[0]);iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);spin_unlock_irqrestore(&db->lock, flags);dm9000_wait_eeprom(db);mdelay(1);	/* wait at least 150uS to clear */spin_lock_irqsave(&db->lock, flags);iow(db, DM9000_EPCR, 0);spin_unlock_irqrestore(&db->lock, flags);mutex_unlock(&db->addr_lock);
}/* ethtool ops */static void dm9000_get_drvinfo(struct net_device *dev,struct ethtool_drvinfo *info)
{board_info_t *dm = to_dm9000_board(dev);strlcpy(info->driver, CARDNAME, sizeof(info->driver));strlcpy(info->version, DRV_VERSION, sizeof(info->version));strlcpy(info->bus_info, to_platform_device(dm->dev)->name,sizeof(info->bus_info));
}static u32 dm9000_get_msglevel(struct net_device *dev)
{board_info_t *dm = to_dm9000_board(dev);return dm->msg_enable;
}static void dm9000_set_msglevel(struct net_device *dev, u32 value)
{board_info_t *dm = to_dm9000_board(dev);dm->msg_enable = value;
}static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{board_info_t *dm = to_dm9000_board(dev);mii_ethtool_gset(&dm->mii, cmd);return 0;
}static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{board_info_t *dm = to_dm9000_board(dev);return mii_ethtool_sset(&dm->mii, cmd);
}static int dm9000_nway_reset(struct net_device *dev)
{board_info_t *dm = to_dm9000_board(dev);return mii_nway_restart(&dm->mii);
}static int dm9000_set_features(struct net_device *dev,netdev_features_t features)
{board_info_t *dm = to_dm9000_board(dev);netdev_features_t changed = dev->features ^ features;unsigned long flags;if (!(changed & NETIF_F_RXCSUM))return 0;spin_lock_irqsave(&dm->lock, flags);iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);spin_unlock_irqrestore(&dm->lock, flags);return 0;
}static u32 dm9000_get_link(struct net_device *dev)
{board_info_t *dm = to_dm9000_board(dev);u32 ret;if (dm->flags & DM9000_PLATF_EXT_PHY)ret = mii_link_ok(&dm->mii);elseret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;return ret;
}#define DM_EEPROM_MAGIC		(0x444D394B)static int dm9000_get_eeprom_len(struct net_device *dev)
{return 128;
}static int dm9000_get_eeprom(struct net_device *dev,struct ethtool_eeprom *ee, u8 *data)
{board_info_t *dm = to_dm9000_board(dev);int offset = ee->offset;int len = ee->len;int i;/* EEPROM access is aligned to two bytes */if ((len & 1) != 0 || (offset & 1) != 0)return -EINVAL;if (dm->flags & DM9000_PLATF_NO_EEPROM)return -ENOENT;ee->magic = DM_EEPROM_MAGIC;for (i = 0; i < len; i += 2)dm9000_read_eeprom(dm, (offset + i) / 2, data + i);return 0;
}static int dm9000_set_eeprom(struct net_device *dev,struct ethtool_eeprom *ee, u8 *data)
{board_info_t *dm = to_dm9000_board(dev);int offset = ee->offset;int len = ee->len;int done;/* EEPROM access is aligned to two bytes */if (dm->flags & DM9000_PLATF_NO_EEPROM)return -ENOENT;if (ee->magic != DM_EEPROM_MAGIC)return -EINVAL;while (len > 0) {if (len & 1 || offset & 1) {int which = offset & 1;u8 tmp[2];dm9000_read_eeprom(dm, offset / 2, tmp);tmp[which] = *data;dm9000_write_eeprom(dm, offset / 2, tmp);done = 1;} else {dm9000_write_eeprom(dm, offset / 2, data);done = 2;}data += done;offset += done;len -= done;}return 0;
}static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
{board_info_t *dm = to_dm9000_board(dev);memset(w, 0, sizeof(struct ethtool_wolinfo));/* note, we could probably support wake-phy too */w->supported = dm->wake_supported ? WAKE_MAGIC : 0;w->wolopts = dm->wake_state;
}static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
{board_info_t *dm = to_dm9000_board(dev);unsigned long flags;u32 opts = w->wolopts;u32 wcr = 0;if (!dm->wake_supported)return -EOPNOTSUPP;if (opts & ~WAKE_MAGIC)return -EINVAL;if (opts & WAKE_MAGIC)wcr |= WCR_MAGICEN;mutex_lock(&dm->addr_lock);spin_lock_irqsave(&dm->lock, flags);iow(dm, DM9000_WCR, wcr);spin_unlock_irqrestore(&dm->lock, flags);mutex_unlock(&dm->addr_lock);if (dm->wake_state != opts) {/* change in wol state, update IRQ state */if (!dm->wake_state)irq_set_irq_wake(dm->irq_wake, 1);else if (dm->wake_state && !opts)irq_set_irq_wake(dm->irq_wake, 0);}dm->wake_state = opts;return 0;
}static const struct ethtool_ops dm9000_ethtool_ops = {.get_drvinfo		= dm9000_get_drvinfo,.get_settings		= dm9000_get_settings,.set_settings		= dm9000_set_settings,.get_msglevel		= dm9000_get_msglevel,.set_msglevel		= dm9000_set_msglevel,.nway_reset		= dm9000_nway_reset,.get_link		= dm9000_get_link,.get_wol		= dm9000_get_wol,.set_wol		= dm9000_set_wol,.get_eeprom_len		= dm9000_get_eeprom_len,.get_eeprom		= dm9000_get_eeprom,.set_eeprom		= dm9000_set_eeprom,
};static void dm9000_show_carrier(board_info_t *db,unsigned carrier, unsigned nsr)
{int lpa;struct net_device *ndev = db->ndev;struct mii_if_info *mii = &db->mii;unsigned ncr = dm9000_read_locked(db, DM9000_NCR);if (carrier) {lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);dev_info(db->dev,"%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",ndev->name, (nsr & NSR_SPEED) ? 10 : 100,(ncr & NCR_FDX) ? "full" : "half", lpa);} else {dev_info(db->dev, "%s: link down\n", ndev->name);}
}static void
dm9000_poll_work(struct work_struct *w)
{struct delayed_work *dw = to_delayed_work(w);board_info_t *db = container_of(dw, board_info_t, phy_poll);struct net_device *ndev = db->ndev;if (db->flags & DM9000_PLATF_SIMPLE_PHY &&!(db->flags & DM9000_PLATF_EXT_PHY)) {unsigned nsr = dm9000_read_locked(db, DM9000_NSR);unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;unsigned new_carrier;new_carrier = (nsr & NSR_LINKST) ? 1 : 0;if (old_carrier != new_carrier) {if (netif_msg_link(db))dm9000_show_carrier(db, new_carrier, nsr);if (!new_carrier)netif_carrier_off(ndev);elsenetif_carrier_on(ndev);}} elsemii_check_media(&db->mii, netif_msg_link(db), 0);if (netif_running(ndev))dm9000_schedule_poll(db);
}/* dm9000_release_board** release a board, and any mapped resources*/static void
dm9000_release_board(struct platform_device *pdev, struct board_info *db)
{/* unmap our resources */iounmap(db->io_addr);iounmap(db->io_data);/* release the resources */release_resource(db->data_req);kfree(db->data_req);release_resource(db->addr_req);kfree(db->addr_req);
}static unsigned char dm9000_type_to_char(enum dm9000_type type)
{switch (type) {case TYPE_DM9000E: return 'e';case TYPE_DM9000A: return 'a';case TYPE_DM9000B: return 'b';}return '?';
}/**  Set DM9000 multicast address*/
static void
dm9000_hash_table_unlocked(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);struct netdev_hw_addr *ha;int i, oft;u32 hash_val;u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;dm9000_dbg(db, 1, "entering %s\n", __func__);for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)iow(db, oft, dev->dev_addr[i]);if (dev->flags & IFF_PROMISC)rcr |= RCR_PRMSC;if (dev->flags & IFF_ALLMULTI)rcr |= RCR_ALL;/* the multicast address in Hash Table : 64 bits */netdev_for_each_mc_addr(ha, dev) {hash_val = ether_crc_le(6, ha->addr) & 0x3f;hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);}/* Write the hash table to MAC MD table */for (i = 0, oft = DM9000_MAR; i < 4; i++) {iow(db, oft++, hash_table[i]);iow(db, oft++, hash_table[i] >> 8);}iow(db, DM9000_RCR, rcr);
}static void
dm9000_hash_table(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);unsigned long flags;spin_lock_irqsave(&db->lock, flags);dm9000_hash_table_unlocked(dev);spin_unlock_irqrestore(&db->lock, flags);
}/** Initialize dm9000 board*/
static void
dm9000_init_dm9000(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);unsigned int imr;unsigned int ncr;dm9000_dbg(db, 1, "entering %s\n", __func__);/* I/O mode */db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode *//* Checksum mode */if (dev->hw_features & NETIF_F_RXCSUM)iow(db, DM9000_RCSR,(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */iow(db, DM9000_GPR, 0);/* If we are dealing with DM9000B, some extra steps are required: a* manual phy reset, and setting init params.*/if (db->type == TYPE_DM9000B) {dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);}ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;/* if wol is needed, then always set NCR_WAKEEN otherwise we end* up dumping the wake events if we disable this. There is already* a wake-mask in DM9000_WCR */if (db->wake_supported)ncr |= NCR_WAKEEN;iow(db, DM9000_NCR, ncr);/* Program operating register */iow(db, DM9000_TCR, 0);	        /* TX Polling clear */iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */iow(db, DM9000_FCR, 0xff);	/* Flow Control */iow(db, DM9000_SMCR, 0);        /* Special Mode *//* clear TX status */iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status *//* Set address filter table */dm9000_hash_table_unlocked(dev);imr = IMR_PAR | IMR_PTM | IMR_PRM;if (db->type != TYPE_DM9000E)imr |= IMR_LNKCHNG;db->imr_all = imr;/* Enable TX/RX interrupt mask */iow(db, DM9000_IMR, imr);/* Init Driver variable */db->tx_pkt_cnt = 0;db->queue_pkt_len = 0;dev->trans_start = jiffies;
}/* Our watchdog timed out. Called by the networking layer */
static void dm9000_timeout(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);u8 reg_save;unsigned long flags;/* Save previous register address */spin_lock_irqsave(&db->lock, flags);reg_save = readb(db->io_addr);netif_stop_queue(dev);dm9000_reset(db);dm9000_init_dm9000(dev);/* We can accept TX packets again */dev->trans_start = jiffies; /* prevent tx timeout */netif_wake_queue(dev);/* Restore previous register address */writeb(reg_save, db->io_addr);spin_unlock_irqrestore(&db->lock, flags);
}static void dm9000_send_packet(struct net_device *dev,int ip_summed,u16 pkt_len)
{board_info_t *dm = to_dm9000_board(dev);/* The DM9000 is not smart enough to leave fragmented packets alone. */if (dm->ip_summed != ip_summed) {if (ip_summed == CHECKSUM_NONE)iow(dm, DM9000_TCCR, 0);elseiow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);dm->ip_summed = ip_summed;}/* Set TX length to DM9000 */iow(dm, DM9000_TXPLL, pkt_len);iow(dm, DM9000_TXPLH, pkt_len >> 8);/* Issue TX polling command */iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
}/**  Hardware start transmission.*  Send a packet to media from the upper layer.*/
static int
dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
{unsigned long flags;board_info_t *db = netdev_priv(dev);dm9000_dbg(db, 3, "%s:\n", __func__);if (db->tx_pkt_cnt > 1)return NETDEV_TX_BUSY;spin_lock_irqsave(&db->lock, flags);/* Move data to DM9000 TX RAM */writeb(DM9000_MWCMD, db->io_addr);(db->outblk)(db->io_data, skb->data, skb->len);dev->stats.tx_bytes += skb->len;db->tx_pkt_cnt++;/* TX control: First packet immediately send, second packet queue */if (db->tx_pkt_cnt == 1) {dm9000_send_packet(dev, skb->ip_summed, skb->len);} else {/* Second packet */db->queue_pkt_len = skb->len;db->queue_ip_summed = skb->ip_summed;netif_stop_queue(dev);}spin_unlock_irqrestore(&db->lock, flags);/* free this SKB */dev_kfree_skb(skb);return NETDEV_TX_OK;
}/** DM9000 interrupt handler* receive the packet to upper layer, free the transmitted packet*/static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
{int tx_status = ior(db, DM9000_NSR);	/* Got TX status */if (tx_status & (NSR_TX2END | NSR_TX1END)) {/* One packet sent complete */db->tx_pkt_cnt--;dev->stats.tx_packets++;if (netif_msg_tx_done(db))dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);/* Queue packet check & send */if (db->tx_pkt_cnt > 0)dm9000_send_packet(dev, db->queue_ip_summed,db->queue_pkt_len);netif_wake_queue(dev);}
}struct dm9000_rxhdr {u8	RxPktReady;u8	RxStatus;__le16	RxLen;
} __packed;/**  Received a packet and pass to upper layer*/
static void
dm9000_rx(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);struct dm9000_rxhdr rxhdr;struct sk_buff *skb;u8 rxbyte, *rdptr;bool GoodPacket;int RxLen;/* Check packet ready or not */do {ior(db, DM9000_MRCMDX);	/* Dummy read *//* Get most updated data */rxbyte = readb(db->io_data);/* Status check: this byte must be 0 or 1 */if (rxbyte & DM9000_PKT_ERR) {dev_warn(db->dev, "status check fail: %d\n", rxbyte);iow(db, DM9000_RCR, 0x00);	/* Stop Device */iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */return;}if (!(rxbyte & DM9000_PKT_RDY))return;/* A packet ready now  & Get status/length */GoodPacket = true;writeb(DM9000_MRCMD, db->io_addr);(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));RxLen = le16_to_cpu(rxhdr.RxLen);if (netif_msg_rx_status(db))dev_dbg(db->dev, "RX: status %02x, length %04x\n",rxhdr.RxStatus, RxLen);/* Packet Status check */if (RxLen < 0x40) {GoodPacket = false;if (netif_msg_rx_err(db))dev_dbg(db->dev, "RX: Bad Packet (runt)\n");}if (RxLen > DM9000_PKT_MAX) {dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);}/* rxhdr.RxStatus is identical to RSR register. */if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |RSR_PLE | RSR_RWTO |RSR_LCS | RSR_RF)) {GoodPacket = false;if (rxhdr.RxStatus & RSR_FOE) {if (netif_msg_rx_err(db))dev_dbg(db->dev, "fifo error\n");dev->stats.rx_fifo_errors++;}if (rxhdr.RxStatus & RSR_CE) {if (netif_msg_rx_err(db))dev_dbg(db->dev, "crc error\n");dev->stats.rx_crc_errors++;}if (rxhdr.RxStatus & RSR_RF) {if (netif_msg_rx_err(db))dev_dbg(db->dev, "length error\n");dev->stats.rx_length_errors++;}}/* Move data from DM9000 */if (GoodPacket &&((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {skb_reserve(skb, 2);rdptr = (u8 *) skb_put(skb, RxLen - 4);/* Read received packet from RX SRAM */(db->inblk)(db->io_data, rdptr, RxLen);dev->stats.rx_bytes += RxLen;/* Pass to upper layer */skb->protocol = eth_type_trans(skb, dev);if (dev->features & NETIF_F_RXCSUM) {if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)skb->ip_summed = CHECKSUM_UNNECESSARY;elseskb_checksum_none_assert(skb);}netif_rx(skb);dev->stats.rx_packets++;} else {/* need to dump the packet's data */(db->dumpblk)(db->io_data, RxLen);}} while (rxbyte & DM9000_PKT_RDY);
}static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
{struct net_device *dev = dev_id;board_info_t *db = netdev_priv(dev);int int_status;unsigned long flags;u8 reg_save;dm9000_dbg(db, 3, "entering %s\n", __func__);/* A real interrupt coming *//* holders of db->lock must always block IRQs */spin_lock_irqsave(&db->lock, flags);/* Save previous register address */reg_save = readb(db->io_addr);/* Disable all interrupts */iow(db, DM9000_IMR, IMR_PAR);/* Got DM9000 interrupt status */int_status = ior(db, DM9000_ISR);	/* Got ISR */iow(db, DM9000_ISR, int_status);	/* Clear ISR status */if (netif_msg_intr(db))dev_dbg(db->dev, "interrupt status %02x\n", int_status);/* Received the coming packet */if (int_status & ISR_PRS)dm9000_rx(dev);/* Trnasmit Interrupt check */if (int_status & ISR_PTS)dm9000_tx_done(dev, db);if (db->type != TYPE_DM9000E) {if (int_status & ISR_LNKCHNG) {/* fire a link-change request */schedule_delayed_work(&db->phy_poll, 1);}}/* Re-enable interrupt mask */iow(db, DM9000_IMR, db->imr_all);/* Restore previous register address */writeb(reg_save, db->io_addr);spin_unlock_irqrestore(&db->lock, flags);return IRQ_HANDLED;
}static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
{struct net_device *dev = dev_id;board_info_t *db = netdev_priv(dev);unsigned long flags;unsigned nsr, wcr;spin_lock_irqsave(&db->lock, flags);nsr = ior(db, DM9000_NSR);wcr = ior(db, DM9000_WCR);dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);if (nsr & NSR_WAKEST) {/* clear, so we can avoid */iow(db, DM9000_NSR, NSR_WAKEST);if (wcr & WCR_LINKST)dev_info(db->dev, "wake by link status change\n");if (wcr & WCR_SAMPLEST)dev_info(db->dev, "wake by sample packet\n");if (wcr & WCR_MAGICST)dev_info(db->dev, "wake by magic packet\n");if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))dev_err(db->dev, "wake signalled with no reason? ""NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);}spin_unlock_irqrestore(&db->lock, flags);return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
}#ifdef CONFIG_NET_POLL_CONTROLLER
/**Used by netconsole*/
static void dm9000_poll_controller(struct net_device *dev)
{disable_irq(dev->irq);dm9000_interrupt(dev->irq, dev);enable_irq(dev->irq);
}
#endif/**  Open the interface.*  The interface is opened whenever "ifconfig" actives it.*/
static int
dm9000_open(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;if (netif_msg_ifup(db))dev_dbg(db->dev, "enabling %s\n", dev->name);/* If there is no IRQ type specified, default to something that* may work, and tell the user that this is a problem */if (irqflags == IRQF_TRIGGER_NONE)dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");irqflags |= IRQF_SHARED;/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */mdelay(1); /* delay needs by DM9000B *//* Initialize DM9000 board */dm9000_reset(db);dm9000_init_dm9000(dev);if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))return -EAGAIN;/* Init driver variable */db->dbug_cnt = 0;mii_check_media(&db->mii, netif_msg_link(db), 1);netif_start_queue(dev);dm9000_schedule_poll(db);return 0;
}static void
dm9000_shutdown(struct net_device *dev)
{board_info_t *db = netdev_priv(dev);/* RESET device */dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */iow(db, DM9000_RCR, 0x00);	/* Disable RX */
}/** Stop the interface.* The interface is stopped when it is brought.*/
static int
dm9000_stop(struct net_device *ndev)
{board_info_t *db = netdev_priv(ndev);if (netif_msg_ifdown(db))dev_dbg(db->dev, "shutting down %s\n", ndev->name);cancel_delayed_work_sync(&db->phy_poll);netif_stop_queue(ndev);netif_carrier_off(ndev);/* free interrupt */free_irq(ndev->irq, ndev);dm9000_shutdown(ndev);return 0;
}static const struct net_device_ops dm9000_netdev_ops = {.ndo_open		= dm9000_open,.ndo_stop		= dm9000_stop,.ndo_start_xmit		= dm9000_start_xmit,.ndo_tx_timeout		= dm9000_timeout,.ndo_set_rx_mode	= dm9000_hash_table,.ndo_do_ioctl		= dm9000_ioctl,.ndo_change_mtu		= eth_change_mtu,.ndo_set_features	= dm9000_set_features,.ndo_validate_addr	= eth_validate_addr,.ndo_set_mac_address	= eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER.ndo_poll_controller	= dm9000_poll_controller,
#endif
};static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
{struct dm9000_plat_data *pdata;struct device_node *np = dev->of_node;const void *mac_addr;if (!IS_ENABLED(CONFIG_OF) || !np)return NULL;pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);if (!pdata)return ERR_PTR(-ENOMEM);if (of_find_property(np, "davicom,ext-phy", NULL))pdata->flags |= DM9000_PLATF_EXT_PHY;if (of_find_property(np, "davicom,no-eeprom", NULL))pdata->flags |= DM9000_PLATF_NO_EEPROM;mac_addr = of_get_mac_address(np);if (mac_addr)memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));return pdata;
}/** Search DM9000 board, allocate space and register it*/
static int
dm9000_probe(struct platform_device *pdev)
{struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);struct board_info *db;	/* Point a board information structure */struct net_device *ndev;const unsigned char *mac_src;int ret = 0;int iosize;int i;u32 id_val;if (!pdata) {pdata = dm9000_parse_dt(&pdev->dev);if (IS_ERR(pdata))return PTR_ERR(pdata);}/* Init network device */ndev = alloc_etherdev(sizeof(struct board_info));if (!ndev)return -ENOMEM;SET_NETDEV_DEV(ndev, &pdev->dev);dev_dbg(&pdev->dev, "dm9000_probe()\n");/* setup board info structure */db = netdev_priv(ndev);db->dev = &pdev->dev;db->ndev = ndev;spin_lock_init(&db->lock);mutex_init(&db->addr_lock);INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);if (db->addr_res == NULL || db->data_res == NULL ||db->irq_res == NULL) {dev_err(db->dev, "insufficient resources\n");ret = -ENOENT;goto out;}db->irq_wake = platform_get_irq(pdev, 1);if (db->irq_wake >= 0) {dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);ret = request_irq(db->irq_wake, dm9000_wol_interrupt,IRQF_SHARED, dev_name(db->dev), ndev);if (ret) {dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);} else {/* test to see if irq is really wakeup capable */ret = irq_set_irq_wake(db->irq_wake, 1);if (ret) {dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",db->irq_wake, ret);ret = 0;} else {irq_set_irq_wake(db->irq_wake, 0);db->wake_supported = 1;}}}iosize = resource_size(db->addr_res);db->addr_req = request_mem_region(db->addr_res->start, iosize,pdev->name);if (db->addr_req == NULL) {dev_err(db->dev, "cannot claim address reg area\n");ret = -EIO;goto out;}db->io_addr = ioremap(db->addr_res->start, iosize);if (db->io_addr == NULL) {dev_err(db->dev, "failed to ioremap address reg\n");ret = -EINVAL;goto out;}iosize = resource_size(db->data_res);db->data_req = request_mem_region(db->data_res->start, iosize,pdev->name);if (db->data_req == NULL) {dev_err(db->dev, "cannot claim data reg area\n");ret = -EIO;goto out;}db->io_data = ioremap(db->data_res->start, iosize);if (db->io_data == NULL) {dev_err(db->dev, "failed to ioremap data reg\n");ret = -EINVAL;goto out;}/* fill in parameters for net-dev structure */ndev->base_addr = (unsigned long)db->io_addr;ndev->irq	= db->irq_res->start;/* ensure at least we have a default set of IO routines */dm9000_set_io(db, iosize);/* check to see if anything is being over-ridden */if (pdata != NULL) {/* check to see if the driver wants to over-ride the* default IO width */if (pdata->flags & DM9000_PLATF_8BITONLY)dm9000_set_io(db, 1);if (pdata->flags & DM9000_PLATF_16BITONLY)dm9000_set_io(db, 2);if (pdata->flags & DM9000_PLATF_32BITONLY)dm9000_set_io(db, 4);/* check to see if there are any IO routine* over-rides */if (pdata->inblk != NULL)db->inblk = pdata->inblk;if (pdata->outblk != NULL)db->outblk = pdata->outblk;if (pdata->dumpblk != NULL)db->dumpblk = pdata->dumpblk;db->flags = pdata->flags;}#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLLdb->flags |= DM9000_PLATF_SIMPLE_PHY;
#endif/* Fixing bug on dm9000_probe, takeover dm9000_reset(db),* Need 'NCR_MAC_LBK' bit to indeed stable our DM9000 fifo* while probe stage.*/iow(db, DM9000_NCR, NCR_MAC_LBK | NCR_RST);/* try multiple times, DM9000 sometimes gets the read wrong */for (i = 0; i < 8; i++) {id_val  = ior(db, DM9000_VIDL);id_val |= (u32)ior(db, DM9000_VIDH) << 8;id_val |= (u32)ior(db, DM9000_PIDL) << 16;id_val |= (u32)ior(db, DM9000_PIDH) << 24;if (id_val == DM9000_ID)break;dev_err(db->dev, "read wrong id 0x%08x\n", id_val);}if (id_val != DM9000_ID) {dev_err(db->dev, "wrong id: 0x%08x\n", id_val);ret = -ENODEV;goto out;}/* Identify what type of DM9000 we are working on */id_val = ior(db, DM9000_CHIPR);dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);switch (id_val) {case CHIPR_DM9000A:db->type = TYPE_DM9000A;break;case CHIPR_DM9000B:db->type = TYPE_DM9000B;break;default:dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);db->type = TYPE_DM9000E;}/* dm9000a/b are capable of hardware checksum offload */if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;ndev->features |= ndev->hw_features;}/* from this point we assume that we have found a DM9000 *//* driver system function */ether_setup(ndev);ndev->netdev_ops	= &dm9000_netdev_ops;ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);ndev->ethtool_ops	= &dm9000_ethtool_ops;db->msg_enable       = NETIF_MSG_LINK;db->mii.phy_id_mask  = 0x1f;db->mii.reg_num_mask = 0x1f;db->mii.force_media  = 0;db->mii.full_duplex  = 0;db->mii.dev	     = ndev;db->mii.mdio_read    = dm9000_phy_read;db->mii.mdio_write   = dm9000_phy_write;mac_src = "eeprom";/* try reading the node address from the attached EEPROM */for (i = 0; i < 6; i += 2)dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {mac_src = "platform data";memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);}if (!is_valid_ether_addr(ndev->dev_addr)) {/* try reading from mac */mac_src = "chip";for (i = 0; i < 6; i++)ndev->dev_addr[i] = ior(db, i+DM9000_PAR);}if (!is_valid_ether_addr(ndev->dev_addr)) {dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please ""set using ifconfig\n", ndev->name);eth_hw_addr_random(ndev);mac_src = "random";}platform_set_drvdata(pdev, ndev);ret = register_netdev(ndev);if (ret == 0)printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",ndev->name, dm9000_type_to_char(db->type),db->io_addr, db->io_data, ndev->irq,ndev->dev_addr, mac_src);return 0;out:dev_err(db->dev, "not found (%d).\n", ret);dm9000_release_board(pdev, db);free_netdev(ndev);return ret;
}static int
dm9000_drv_suspend(struct device *dev)
{struct platform_device *pdev = to_platform_device(dev);struct net_device *ndev = platform_get_drvdata(pdev);board_info_t *db;if (ndev) {db = netdev_priv(ndev);db->in_suspend = 1;if (!netif_running(ndev))return 0;netif_device_detach(ndev);/* only shutdown if not using WoL */if (!db->wake_state)dm9000_shutdown(ndev);}return 0;
}static int
dm9000_drv_resume(struct device *dev)
{struct platform_device *pdev = to_platform_device(dev);struct net_device *ndev = platform_get_drvdata(pdev);board_info_t *db = netdev_priv(ndev);if (ndev) {if (netif_running(ndev)) {/* reset if we were not in wake mode to ensure if* the device was powered off it is in a known state */if (!db->wake_state) {dm9000_reset(db);dm9000_init_dm9000(ndev);}netif_device_attach(ndev);}db->in_suspend = 0;}return 0;
}static const struct dev_pm_ops dm9000_drv_pm_ops = {.suspend	= dm9000_drv_suspend,.resume		= dm9000_drv_resume,
};static int
dm9000_drv_remove(struct platform_device *pdev)
{struct net_device *ndev = platform_get_drvdata(pdev);unregister_netdev(ndev);dm9000_release_board(pdev, netdev_priv(ndev));free_netdev(ndev);		/* free device structure */dev_dbg(&pdev->dev, "released and freed device\n");return 0;
}#ifdef CONFIG_OF
static const struct of_device_id dm9000_of_matches[] = {{ .compatible = "davicom,dm9000", },{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, dm9000_of_matches);
#endifstatic struct platform_driver dm9000_driver = {.driver	= {.name    = "dm9000",.owner	 = THIS_MODULE,.pm	 = &dm9000_drv_pm_ops,.of_match_table = of_match_ptr(dm9000_of_matches),},.probe   = dm9000_probe,.remove  = dm9000_drv_remove,
};module_platform_driver(dm9000_driver);MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
MODULE_DESCRIPTION("Davicom DM9000 network driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dm9000");

好好好又是ben,coeddump机制就是这小子写的,我之前实习的时候也叫这个,真是有缘。


        在 dm9000_probe 函数中,代码第 1421 行,函数一开始使用 alloc_etherdev分配了网络设备对象的内存,并使用 netdev_priv 得到了私有数据的起始地址。

        代码第 1440行至第 1442 行分别获取了两个寄存器的地址和中断号,然后使用ioremap 对这两个寄存器进行了映射,最后将 I/O 端口地址记录在设备对象的 base_addr成员中,将中断号记录在了设备对象的 irg 成员中。
        接下来设置了端口数据总线的宽度,因为 DM9000 是一个系列的芯片,有的宽度是8 位,有的宽度是 16 位,也有宽度是 32 位的,FS4412 目标板使用的是 16 位。在数密位宽设定好了后,就可以对设备进行访问,以判断硬件是否真实存在。
 


        (1558~1590)代码先多次读取 DM9000 的 ID 号(因为前面几次读取可能会失败),然后再判断 ID 号是否正确,如果正确,那么说明硬件存在,继续读取芯片的类型 ID,并根据该ID做进一步的设置。这里用到的 ior 宏是先将 DM9000 内部存器的地址写入到地址寄存器中,然后再读数据寄存器,iow 宏有类似的过程,只是后面是写数据寄存器。这样就可以通过两个寄存器来访问 DM9000 内部的 256 个寄存器。

        (1601~1645)接下来使用了 ether_setup 又一次初始化了设备对象 ndev,然后将操作方法集、发送超时和 ethtool 对应的接口分别进行了初始化。代码第 1608 行至第 1614 行是与 PHY 相关的初始化,因为 DM9000内部集成了一个 PHY(以太网通信链路层全部功能的器件),后面又使用几种方法来尝试获得 MAC地址,如果都失败了就随机生成一个MAC 地址,最后使用reister_netdev 注册了网设备。在 dm9000_probe 函数中还使用 INIT_DELAYED_WORK(&db_phy_poll, dm900_poll_work)初始化了一个延时函数 dm9000_poll_work。这个函数用于定期检测网线的连接状态,在网卡激活时启动该函数,在网卡禁止时停止该检测.
 

        接下来我们还是主要关注 DM9000 网络设备的激活、停止、发送数包和接收数据包的部分。DM9000 网络设备激活的函数是 dm9000_open,

(1282~1319)


        代码第 1300 行激活了 PHY。代码第 1304 行和第 1305 行复位并初始化了 DM9000芯片。代码第 1307 行注册了中断处理函数 dm9000_interrupt。最后启动了队列并调度了延时工作函数 dm9000_poll_work 的运行。

        DM9000 网络设备禁止的函数是 dm9000_stop,它的工作刚好和激活函数相反,这就不再列出代码了
        DM9000 网络设备的数据包发送函数是 dm9000_start_xmit,代码(1003~1039).

        DM9000 内部采用双缓冲机制,可以同时将两个待发送的数据包写入 DM9000 芯片后再依次发送。代码第 1011 行首先判断 DM9000 内部的两个缓冲区是否都被占用,如果是则返回忙。如果不是,那么在代码第 1017 行至第 1020 行就将数据包写入 DM900内部的缓冲区。如果目前只有一个缓冲区被占用,那么在代码第 1025 行马上启动数据包的发送;如果两个缓冲区都被占用,则记录好信息,并且停止队列。最后释放包含发送数据包的 skb。当数据包发送完成后,DM9000 会产生一个发送中断,这会导致前面注册的中断处理函数被调用,在中断处理函数中进一步调用 dm9000_tx_done函数,代码见(1046~1064)

        代码主要对发送统计行了维护,如果 DM9000 内部还有一个缓冲区的数据未发送则立即启动下一个数据包的发送。接下来调用了 netif_wake_queue 函数重新启动了队列,这样就完成了流控操作。
        当 DM9000 接收到数据包后会产生中断,导致中断处理函数被调用,中断处理函数进一步调用 dm9000_rx 函数来完成对接收数据包的处理,代码见(1075~1176)。

        在 dm9000_rx 函数中,首先对数据包的正确性做了判断,,如果数据包是好的,那么使用 netdev_alloc_skb 分配了 skb,然后在代码第 1156 行将数据包从 DM9000 内部的接收缓冲区中读入了 skb 中。代码第 1160 行设置了数据包的数据链路层的协议后,在代码第1167 行使用 netif_rx 递交了数据包,并维护了接收统计计数信息。在 dm9000_rx 函数中当处理完一个数据包后,要判断是否还有数据包未处理,如果有则继续处理,直到所有的数据包都处理完。
        另外,当发送数据包超时时,dm9000_timeout 超时函数将会被调用。在该函数中最主要的就是复位并重新初始化了 DM9000 芯片。
        可以发现,DM9000 网络设备驱动除了硬件处理的细节,主体框架和我们上一节实现的虚拟网络设备驱动是一样的。
 


六、NAPI


        一直以来,中断都意味着高效的处理,因为现在 I/O 的速度一般远远低于 CPU 的处理速度。如果让 CPU 轮询 I/O 的状态,在 I/O 准备好的情况下再进行处理的话,大量宝贵的 CPU 时间被浪费在无谓的轮询等待上,这显然是不合适的。所以,普遍的教科书都一致推荐使用中断来代替轮询。但是,如果中断非常频繁地发生,中断的机制不一定会比轮询具有更高的效率。因为中断进入和退出需要保护现场和恢复现场,频繁发生的中断将会导致在这方面的处理太消耗时间,轮询反而是更合适的选择。在这种情况下每次轮询几乎都会成功,也就不存在等待的时间消耗了。现在千兆以太网已经很常见,人们对高带宽的要求也是越来越强烈,短期密集型数据包的到来的情况越来越多。为了适应这一情况,Linux 开发了 NAPI(New API) 机制,这种机制的实现思想也非常直观:以轮询为主,以中断为辅。平时设备以中断方式进行工作,接收到数据包后先进入中断处理函数进行处理,然后转为轮询的方式进行工作,持续接收后续的数据包,满足一定的条件后退出轮询模式,再以中断的方式进行工作。

        但不是每一个网络设备都能实现 NAPI机制,必须要满足以下两个条件:

        (1) 设备能够保留多个接收到的数据包,如多缓冲机制。否则,后面新到来的数据包将会被丢弃,进入轮询模式后也就没有意义了。
        (2)能独立禁止接收数据包产生的中断。否则如果将其他中断也禁止,将会严重影响其他设备的工作。
        为了支持NAPI机制,内核引入了新的数据结构 struct napi_struct,定义如下。

 306 struct napi_struct { 307     /* The poll_list must only be managed by the entity which 308      * changes the state of the NAPI_STATE_SCHED bit.  This means 309      * whoever atomically sets that bit can add this napi_struct 310      * to the per-cpu poll_list, and whoever clears that bit 311      * can remove from the list right before clearing the bit. 312      */ 313     struct list_head    poll_list; 314  315     unsigned long       state; 316     int         weight; 317     unsigned int        gro_count; 318     int         (*poll)(struct napi_struct *, int); 319 #ifdef CONFIG_NETPOLL 320     spinlock_t      poll_lock; 321     int         poll_owner; 322 #endif 323     struct net_device   *dev; 324     struct sk_buff      *gro_list; 325     struct sk_buff      *skb; 326     struct list_head    dev_list; 327     struct hlist_node   napi_hash_node; 328     unsigned int        napi_id; 329 };


        最重要的成员有 3 个,分别是 poll_list、weight 和 poll,其中 poll_list 将所有要轮询的网络设备通过链表链接起来,weight 是该设备被轮询的时间的一个权重。也就是说,如果系统中有多个网络设备都实现了 NAPI,那么内核将会轮询这个链表中的每一个设备,而每个设备轮询多长时间是由 weight 这个权重来决定的。当轮询一个具体的设备时又会进一步轮询多个接收的数据包。所以完整的轮询有两个层次,先是设备这一层次,然后是一个设备的多个接收数据包这一层次。poll 是指向网络设备驱动实现的轮询函数的指针。围绕这个结构,有下面一些函数。


 

void netif_napi_add(struct net_device  *dev,struct napi_struct *napi, int (*poll)(struct napi_struct *, int),int weight);
void netif_napi_del(struct napi_struct *napi);
void napi_enable(struct napi_struct *n);
void napi_disable(struct napi_struct *n);
void napi_schedule(struct napi_struct *n);
void napi_complete(struct napi_struct *n);

        上面函数的含义都比较直观,这里就不再一一介绍了。接下来以 drivers/net/ethemmevrealtek/r8169.c 驱动代码为例来说明 NAPI的使用方法。

/** r8169.c: RealTek 8169/8168/8101 ethernet driver.** Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw>* Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com>* Copyright (c) a lot of people too. Please respect their work.** See MAINTAINERS file for support contact information.*/#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/firmware.h>
#include <linux/pci-aspm.h>
#include <linux/prefetch.h>#include <asm/io.h>
#include <asm/irq.h>#define RTL8169_VERSION "2.3LK-NAPI"
#define MODULENAME "r8169"
#define PFX MODULENAME ": "#define FIRMWARE_8168D_1	"rtl_nic/rtl8168d-1.fw"
#define FIRMWARE_8168D_2	"rtl_nic/rtl8168d-2.fw"
#define FIRMWARE_8168E_1	"rtl_nic/rtl8168e-1.fw"
#define FIRMWARE_8168E_2	"rtl_nic/rtl8168e-2.fw"
#define FIRMWARE_8168E_3	"rtl_nic/rtl8168e-3.fw"
#define FIRMWARE_8168F_1	"rtl_nic/rtl8168f-1.fw"
#define FIRMWARE_8168F_2	"rtl_nic/rtl8168f-2.fw"
#define FIRMWARE_8105E_1	"rtl_nic/rtl8105e-1.fw"
#define FIRMWARE_8402_1		"rtl_nic/rtl8402-1.fw"
#define FIRMWARE_8411_1		"rtl_nic/rtl8411-1.fw"
#define FIRMWARE_8411_2		"rtl_nic/rtl8411-2.fw"
#define FIRMWARE_8106E_1	"rtl_nic/rtl8106e-1.fw"
#define FIRMWARE_8106E_2	"rtl_nic/rtl8106e-2.fw"
#define FIRMWARE_8168G_2	"rtl_nic/rtl8168g-2.fw"
#define FIRMWARE_8168G_3	"rtl_nic/rtl8168g-3.fw"#ifdef RTL8169_DEBUG
#define assert(expr) \if (!(expr)) {					\printk( "Assertion failed! %s,%s,%s,line=%d\n",	\#expr,__FILE__,__func__,__LINE__);		\}
#define dprintk(fmt, args...) \do { printk(KERN_DEBUG PFX fmt, ## args); } while (0)
#else
#define assert(expr) do {} while (0)
#define dprintk(fmt, args...)	do {} while (0)
#endif /* RTL8169_DEBUG */#define R8169_MSG_DEFAULT \(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)#define TX_SLOTS_AVAIL(tp) \(tp->dirty_tx + NUM_TX_DESC - tp->cur_tx)/* A skbuff with nr_frags needs nr_frags+1 entries in the tx queue */
#define TX_FRAGS_READY_FOR(tp,nr_frags) \(TX_SLOTS_AVAIL(tp) >= (nr_frags + 1))/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).The RTL chips use a 64 element hash table based on the Ethernet CRC. */
static const int multicast_filter_limit = 32;#define MAX_READ_REQUEST_SHIFT	12
#define TX_DMA_BURST	7	/* Maximum PCI burst, '7' is unlimited */
#define InterFrameGap	0x03	/* 3 means InterFrameGap = the shortest one */#define R8169_REGS_SIZE		256
#define R8169_NAPI_WEIGHT	64
#define NUM_TX_DESC	64	/* Number of Tx descriptor registers */
#define NUM_RX_DESC	256U	/* Number of Rx descriptor registers */
#define R8169_TX_RING_BYTES	(NUM_TX_DESC * sizeof(struct TxDesc))
#define R8169_RX_RING_BYTES	(NUM_RX_DESC * sizeof(struct RxDesc))#define RTL8169_TX_TIMEOUT	(6*HZ)
#define RTL8169_PHY_TIMEOUT	(10*HZ)/* write/read MMIO register */
#define RTL_W8(reg, val8)	writeb ((val8), ioaddr + (reg))
#define RTL_W16(reg, val16)	writew ((val16), ioaddr + (reg))
#define RTL_W32(reg, val32)	writel ((val32), ioaddr + (reg))
#define RTL_R8(reg)		readb (ioaddr + (reg))
#define RTL_R16(reg)		readw (ioaddr + (reg))
#define RTL_R32(reg)		readl (ioaddr + (reg))enum mac_version {RTL_GIGA_MAC_VER_01 = 0,RTL_GIGA_MAC_VER_02,RTL_GIGA_MAC_VER_03,RTL_GIGA_MAC_VER_04,RTL_GIGA_MAC_VER_05,RTL_GIGA_MAC_VER_06,RTL_GIGA_MAC_VER_07,RTL_GIGA_MAC_VER_08,RTL_GIGA_MAC_VER_09,RTL_GIGA_MAC_VER_10,RTL_GIGA_MAC_VER_11,RTL_GIGA_MAC_VER_12,RTL_GIGA_MAC_VER_13,RTL_GIGA_MAC_VER_14,RTL_GIGA_MAC_VER_15,RTL_GIGA_MAC_VER_16,RTL_GIGA_MAC_VER_17,RTL_GIGA_MAC_VER_18,RTL_GIGA_MAC_VER_19,RTL_GIGA_MAC_VER_20,RTL_GIGA_MAC_VER_21,RTL_GIGA_MAC_VER_22,RTL_GIGA_MAC_VER_23,RTL_GIGA_MAC_VER_24,RTL_GIGA_MAC_VER_25,RTL_GIGA_MAC_VER_26,RTL_GIGA_MAC_VER_27,RTL_GIGA_MAC_VER_28,RTL_GIGA_MAC_VER_29,RTL_GIGA_MAC_VER_30,RTL_GIGA_MAC_VER_31,RTL_GIGA_MAC_VER_32,RTL_GIGA_MAC_VER_33,RTL_GIGA_MAC_VER_34,RTL_GIGA_MAC_VER_35,RTL_GIGA_MAC_VER_36,RTL_GIGA_MAC_VER_37,RTL_GIGA_MAC_VER_38,RTL_GIGA_MAC_VER_39,RTL_GIGA_MAC_VER_40,RTL_GIGA_MAC_VER_41,RTL_GIGA_MAC_VER_42,RTL_GIGA_MAC_VER_43,RTL_GIGA_MAC_VER_44,RTL_GIGA_MAC_NONE   = 0xff,
};enum rtl_tx_desc_version {RTL_TD_0	= 0,RTL_TD_1	= 1,
};#define JUMBO_1K	ETH_DATA_LEN
#define JUMBO_4K	(4*1024 - ETH_HLEN - 2)
#define JUMBO_6K	(6*1024 - ETH_HLEN - 2)
#define JUMBO_7K	(7*1024 - ETH_HLEN - 2)
#define JUMBO_9K	(9*1024 - ETH_HLEN - 2)#define _R(NAME,TD,FW,SZ,B) {	\.name = NAME,		\.txd_version = TD,	\.fw_name = FW,		\.jumbo_max = SZ,	\.jumbo_tx_csum = B	\
}static const struct {const char *name;enum rtl_tx_desc_version txd_version;const char *fw_name;u16 jumbo_max;bool jumbo_tx_csum;
} rtl_chip_infos[] = {/* PCI devices. */[RTL_GIGA_MAC_VER_01] =_R("RTL8169",		RTL_TD_0, NULL, JUMBO_7K, true),[RTL_GIGA_MAC_VER_02] =_R("RTL8169s",		RTL_TD_0, NULL, JUMBO_7K, true),[RTL_GIGA_MAC_VER_03] =_R("RTL8110s",		RTL_TD_0, NULL, JUMBO_7K, true),[RTL_GIGA_MAC_VER_04] =_R("RTL8169sb/8110sb",	RTL_TD_0, NULL, JUMBO_7K, true),[RTL_GIGA_MAC_VER_05] =_R("RTL8169sc/8110sc",	RTL_TD_0, NULL, JUMBO_7K, true),[RTL_GIGA_MAC_VER_06] =_R("RTL8169sc/8110sc",	RTL_TD_0, NULL, JUMBO_7K, true),/* PCI-E devices. */[RTL_GIGA_MAC_VER_07] =_R("RTL8102e",		RTL_TD_1, NULL, JUMBO_1K, true),[RTL_GIGA_MAC_VER_08] =_R("RTL8102e",		RTL_TD_1, NULL, JUMBO_1K, true),[RTL_GIGA_MAC_VER_09] =_R("RTL8102e",		RTL_TD_1, NULL, JUMBO_1K, true),[RTL_GIGA_MAC_VER_10] =_R("RTL8101e",		RTL_TD_0, NULL, JUMBO_1K, true),[RTL_GIGA_MAC_VER_11] =_R("RTL8168b/8111b",	RTL_TD_0, NULL, JUMBO_4K, false),[RTL_GIGA_MAC_VER_12] =_R("RTL8168b/8111b",	RTL_TD_0, NULL, JUMBO_4K, false),[RTL_GIGA_MAC_VER_13] =_R("RTL8101e",		RTL_TD_0, NULL, JUMBO_1K, true),[RTL_GIGA_MAC_VER_14] =_R("RTL8100e",		RTL_TD_0, NULL, JUMBO_1K, true),[RTL_GIGA_MAC_VER_15] =_R("RTL8100e",		RTL_TD_0, NULL, JUMBO_1K, true),[RTL_GIGA_MAC_VER_16] =_R("RTL8101e",		RTL_TD_0, NULL, JUMBO_1K, true),[RTL_GIGA_MAC_VER_17] =_R("RTL8168b/8111b",	RTL_TD_0, NULL, JUMBO_4K, false),[RTL_GIGA_MAC_VER_18] =_R("RTL8168cp/8111cp",	RTL_TD_1, NULL, JUMBO_6K, false),[RTL_GIGA_MAC_VER_19] =_R("RTL8168c/8111c",	RTL_TD_1, NULL, JUMBO_6K, false),[RTL_GIGA_MAC_VER_20] =_R("RTL8168c/8111c",	RTL_TD_1, NULL, JUMBO_6K, false),[RTL_GIGA_MAC_VER_21] =_R("RTL8168c/8111c",	RTL_TD_1, NULL, JUMBO_6K, false),[RTL_GIGA_MAC_VER_22] =_R("RTL8168c/8111c",	RTL_TD_1, NULL, JUMBO_6K, false),[RTL_GIGA_MAC_VER_23] =_R("RTL8168cp/8111cp",	RTL_TD_1, NULL, JUMBO_6K, false),[RTL_GIGA_MAC_VER_24] =_R("RTL8168cp/8111cp",	RTL_TD_1, NULL, JUMBO_6K, false),[RTL_GIGA_MAC_VER_25] =_R("RTL8168d/8111d",	RTL_TD_1, FIRMWARE_8168D_1,JUMBO_9K, false),[RTL_GIGA_MAC_VER_26] =_R("RTL8168d/8111d",	RTL_TD_1, FIRMWARE_8168D_2,JUMBO_9K, false),[RTL_GIGA_MAC_VER_27] =_R("RTL8168dp/8111dp",	RTL_TD_1, NULL, JUMBO_9K, false),[RTL_GIGA_MAC_VER_28] =_R("RTL8168dp/8111dp",	RTL_TD_1, NULL, JUMBO_9K, false),[RTL_GIGA_MAC_VER_29] =_R("RTL8105e",		RTL_TD_1, FIRMWARE_8105E_1,JUMBO_1K, true),[RTL_GIGA_MAC_VER_30] =_R("RTL8105e",		RTL_TD_1, FIRMWARE_8105E_1,JUMBO_1K, true),[RTL_GIGA_MAC_VER_31] =_R("RTL8168dp/8111dp",	RTL_TD_1, NULL, JUMBO_9K, false),[RTL_GIGA_MAC_VER_32] =_R("RTL8168e/8111e",	RTL_TD_1, FIRMWARE_8168E_1,JUMBO_9K, false),[RTL_GIGA_MAC_VER_33] =_R("RTL8168e/8111e",	RTL_TD_1, FIRMWARE_8168E_2,JUMBO_9K, false),[RTL_GIGA_MAC_VER_34] =_R("RTL8168evl/8111evl",RTL_TD_1, FIRMWARE_8168E_3,JUMBO_9K, false),[RTL_GIGA_MAC_VER_35] =_R("RTL8168f/8111f",	RTL_TD_1, FIRMWARE_8168F_1,JUMBO_9K, false),[RTL_GIGA_MAC_VER_36] =_R("RTL8168f/8111f",	RTL_TD_1, FIRMWARE_8168F_2,JUMBO_9K, false),[RTL_GIGA_MAC_VER_37] =_R("RTL8402",		RTL_TD_1, FIRMWARE_8402_1,JUMBO_1K, true),[RTL_GIGA_MAC_VER_38] =_R("RTL8411",		RTL_TD_1, FIRMWARE_8411_1,JUMBO_9K, false),[RTL_GIGA_MAC_VER_39] =_R("RTL8106e",		RTL_TD_1, FIRMWARE_8106E_1,JUMBO_1K, true),[RTL_GIGA_MAC_VER_40] =_R("RTL8168g/8111g",	RTL_TD_1, FIRMWARE_8168G_2,JUMBO_9K, false),[RTL_GIGA_MAC_VER_41] =_R("RTL8168g/8111g",	RTL_TD_1, NULL, JUMBO_9K, false),[RTL_GIGA_MAC_VER_42] =_R("RTL8168g/8111g",	RTL_TD_1, FIRMWARE_8168G_3,JUMBO_9K, false),[RTL_GIGA_MAC_VER_43] =_R("RTL8106e",		RTL_TD_1, FIRMWARE_8106E_2,JUMBO_1K, true),[RTL_GIGA_MAC_VER_44] =_R("RTL8411",		RTL_TD_1, FIRMWARE_8411_2,JUMBO_9K, false),
};
#undef _Renum cfg_version {RTL_CFG_0 = 0x00,RTL_CFG_1,RTL_CFG_2
};static DEFINE_PCI_DEVICE_TABLE(rtl8169_pci_tbl) = {{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8129), 0, 0, RTL_CFG_0 },{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8136), 0, 0, RTL_CFG_2 },{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8167), 0, 0, RTL_CFG_0 },{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8168), 0, 0, RTL_CFG_1 },{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK,	0x8169), 0, 0, RTL_CFG_0 },{ PCI_VENDOR_ID_DLINK,			0x4300,PCI_VENDOR_ID_DLINK, 0x4b10,		 0, 0, RTL_CFG_1 },{ PCI_DEVICE(PCI_VENDOR_ID_DLINK,	0x4300), 0, 0, RTL_CFG_0 },{ PCI_DEVICE(PCI_VENDOR_ID_DLINK,	0x4302), 0, 0, RTL_CFG_0 },{ PCI_DEVICE(PCI_VENDOR_ID_AT,		0xc107), 0, 0, RTL_CFG_0 },{ PCI_DEVICE(0x16ec,			0x0116), 0, 0, RTL_CFG_0 },{ PCI_VENDOR_ID_LINKSYS,		0x1032,PCI_ANY_ID, 0x0024, 0, 0, RTL_CFG_0 },{ 0x0001,				0x8168,PCI_ANY_ID, 0x2410, 0, 0, RTL_CFG_2 },{0,},
};MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);static int rx_buf_sz = 16383;
static int use_dac;
static struct {u32 msg_enable;
} debug = { -1 };enum rtl_registers {MAC0		= 0,	/* Ethernet hardware address. */MAC4		= 4,MAR0		= 8,	/* Multicast filter. */CounterAddrLow		= 0x10,CounterAddrHigh		= 0x14,TxDescStartAddrLow	= 0x20,TxDescStartAddrHigh	= 0x24,TxHDescStartAddrLow	= 0x28,TxHDescStartAddrHigh	= 0x2c,FLASH		= 0x30,ERSR		= 0x36,ChipCmd		= 0x37,TxPoll		= 0x38,IntrMask	= 0x3c,IntrStatus	= 0x3e,TxConfig	= 0x40,
#define	TXCFG_AUTO_FIFO			(1 << 7)	/* 8111e-vl */
#define	TXCFG_EMPTY			(1 << 11)	/* 8111e-vl */RxConfig	= 0x44,
#define	RX128_INT_EN			(1 << 15)	/* 8111c and later */
#define	RX_MULTI_EN			(1 << 14)	/* 8111c only */
#define	RXCFG_FIFO_SHIFT		13/* No threshold before first PCI xfer */
#define	RX_FIFO_THRESH			(7 << RXCFG_FIFO_SHIFT)
#define	RX_EARLY_OFF			(1 << 11)
#define	RXCFG_DMA_SHIFT			8/* Unlimited maximum PCI burst. */
#define	RX_DMA_BURST			(7 << RXCFG_DMA_SHIFT)RxMissed	= 0x4c,Cfg9346		= 0x50,Config0		= 0x51,Config1		= 0x52,Config2		= 0x53,
#define PME_SIGNAL			(1 << 5)	/* 8168c and later */Config3		= 0x54,Config4		= 0x55,Config5		= 0x56,MultiIntr	= 0x5c,PHYAR		= 0x60,PHYstatus	= 0x6c,RxMaxSize	= 0xda,CPlusCmd	= 0xe0,IntrMitigate	= 0xe2,RxDescAddrLow	= 0xe4,RxDescAddrHigh	= 0xe8,EarlyTxThres	= 0xec,	/* 8169. Unit of 32 bytes. */#define NoEarlyTx	0x3f	/* Max value : no early transmit. */MaxTxPacketSize	= 0xec,	/* 8101/8168. Unit of 128 bytes. */#define TxPacketMax	(8064 >> 7)
#define EarlySize	0x27FuncEvent	= 0xf0,FuncEventMask	= 0xf4,FuncPresetState	= 0xf8,FuncForceEvent	= 0xfc,
};enum rtl8110_registers {TBICSR			= 0x64,TBI_ANAR		= 0x68,TBI_LPAR		= 0x6a,
};enum rtl8168_8101_registers {CSIDR			= 0x64,CSIAR			= 0x68,
#define	CSIAR_FLAG			0x80000000
#define	CSIAR_WRITE_CMD			0x80000000
#define	CSIAR_BYTE_ENABLE		0x0f
#define	CSIAR_BYTE_ENABLE_SHIFT		12
#define	CSIAR_ADDR_MASK			0x0fff
#define CSIAR_FUNC_CARD			0x00000000
#define CSIAR_FUNC_SDIO			0x00010000
#define CSIAR_FUNC_NIC			0x00020000
#define CSIAR_FUNC_NIC2			0x00010000PMCH			= 0x6f,EPHYAR			= 0x80,
#define	EPHYAR_FLAG			0x80000000
#define	EPHYAR_WRITE_CMD		0x80000000
#define	EPHYAR_REG_MASK			0x1f
#define	EPHYAR_REG_SHIFT		16
#define	EPHYAR_DATA_MASK		0xffffDLLPR			= 0xd0,
#define	PFM_EN				(1 << 6)DBG_REG			= 0xd1,
#define	FIX_NAK_1			(1 << 4)
#define	FIX_NAK_2			(1 << 3)TWSI			= 0xd2,MCU			= 0xd3,
#define	NOW_IS_OOB			(1 << 7)
#define	TX_EMPTY			(1 << 5)
#define	RX_EMPTY			(1 << 4)
#define	RXTX_EMPTY			(TX_EMPTY | RX_EMPTY)
#define	EN_NDP				(1 << 3)
#define	EN_OOB_RESET			(1 << 2)
#define	LINK_LIST_RDY			(1 << 1)EFUSEAR			= 0xdc,
#define	EFUSEAR_FLAG			0x80000000
#define	EFUSEAR_WRITE_CMD		0x80000000
#define	EFUSEAR_READ_CMD		0x00000000
#define	EFUSEAR_REG_MASK		0x03ff
#define	EFUSEAR_REG_SHIFT		8
#define	EFUSEAR_DATA_MASK		0xff
};enum rtl8168_registers {LED_FREQ		= 0x1a,EEE_LED			= 0x1b,ERIDR			= 0x70,ERIAR			= 0x74,
#define ERIAR_FLAG			0x80000000
#define ERIAR_WRITE_CMD			0x80000000
#define ERIAR_READ_CMD			0x00000000
#define ERIAR_ADDR_BYTE_ALIGN		4
#define ERIAR_TYPE_SHIFT		16
#define ERIAR_EXGMAC			(0x00 << ERIAR_TYPE_SHIFT)
#define ERIAR_MSIX			(0x01 << ERIAR_TYPE_SHIFT)
#define ERIAR_ASF			(0x02 << ERIAR_TYPE_SHIFT)
#define ERIAR_MASK_SHIFT		12
#define ERIAR_MASK_0001			(0x1 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0011			(0x3 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0101			(0x5 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_1111			(0xf << ERIAR_MASK_SHIFT)EPHY_RXER_NUM		= 0x7c,OCPDR			= 0xb0,	/* OCP GPHY access */
#define OCPDR_WRITE_CMD			0x80000000
#define OCPDR_READ_CMD			0x00000000
#define OCPDR_REG_MASK			0x7f
#define OCPDR_GPHY_REG_SHIFT		16
#define OCPDR_DATA_MASK			0xffffOCPAR			= 0xb4,
#define OCPAR_FLAG			0x80000000
#define OCPAR_GPHY_WRITE_CMD		0x8000f060
#define OCPAR_GPHY_READ_CMD		0x0000f060GPHY_OCP		= 0xb8,RDSAR1			= 0xd0,	/* 8168c only. Undocumented on 8168dp */MISC			= 0xf0,	/* 8168e only. */
#define TXPLA_RST			(1 << 29)
#define DISABLE_LAN_EN			(1 << 23) /* Enable GPIO pin */
#define PWM_EN				(1 << 22)
#define RXDV_GATED_EN			(1 << 19)
#define EARLY_TALLY_EN			(1 << 16)
};enum rtl_register_content {/* InterruptStatusBits */SYSErr		= 0x8000,PCSTimeout	= 0x4000,SWInt		= 0x0100,TxDescUnavail	= 0x0080,RxFIFOOver	= 0x0040,LinkChg		= 0x0020,RxOverflow	= 0x0010,TxErr		= 0x0008,TxOK		= 0x0004,RxErr		= 0x0002,RxOK		= 0x0001,/* RxStatusDesc */RxBOVF	= (1 << 24),RxFOVF	= (1 << 23),RxRWT	= (1 << 22),RxRES	= (1 << 21),RxRUNT	= (1 << 20),RxCRC	= (1 << 19),/* ChipCmdBits */StopReq		= 0x80,CmdReset	= 0x10,CmdRxEnb	= 0x08,CmdTxEnb	= 0x04,RxBufEmpty	= 0x01,/* TXPoll register p.5 */HPQ		= 0x80,		/* Poll cmd on the high prio queue */NPQ		= 0x40,		/* Poll cmd on the low prio queue */FSWInt		= 0x01,		/* Forced software interrupt *//* Cfg9346Bits */Cfg9346_Lock	= 0x00,Cfg9346_Unlock	= 0xc0,/* rx_mode_bits */AcceptErr	= 0x20,AcceptRunt	= 0x10,AcceptBroadcast	= 0x08,AcceptMulticast	= 0x04,AcceptMyPhys	= 0x02,AcceptAllPhys	= 0x01,
#define RX_CONFIG_ACCEPT_MASK		0x3f/* TxConfigBits */TxInterFrameGapShift = 24,TxDMAShift = 8,	/* DMA burst value (0-7) is shift this many bits *//* Config1 register p.24 */LEDS1		= (1 << 7),LEDS0		= (1 << 6),Speed_down	= (1 << 4),MEMMAP		= (1 << 3),IOMAP		= (1 << 2),VPD		= (1 << 1),PMEnable	= (1 << 0),	/* Power Management Enable *//* Config2 register p. 25 */ClkReqEn	= (1 << 7),	/* Clock Request Enable */MSIEnable	= (1 << 5),	/* 8169 only. Reserved in the 8168. */PCI_Clock_66MHz = 0x01,PCI_Clock_33MHz = 0x00,/* Config3 register p.25 */MagicPacket	= (1 << 5),	/* Wake up when receives a Magic Packet */LinkUp		= (1 << 4),	/* Wake up when the cable connection is re-established */Jumbo_En0	= (1 << 2),	/* 8168 only. Reserved in the 8168b */Beacon_en	= (1 << 0),	/* 8168 only. Reserved in the 8168b *//* Config4 register */Jumbo_En1	= (1 << 1),	/* 8168 only. Reserved in the 8168b *//* Config5 register p.27 */BWF		= (1 << 6),	/* Accept Broadcast wakeup frame */MWF		= (1 << 5),	/* Accept Multicast wakeup frame */UWF		= (1 << 4),	/* Accept Unicast wakeup frame */Spi_en		= (1 << 3),LanWake		= (1 << 1),	/* LanWake enable/disable */PMEStatus	= (1 << 0),	/* PME status can be reset by PCI RST# */ASPM_en		= (1 << 0),	/* ASPM enable *//* TBICSR p.28 */TBIReset	= 0x80000000,TBILoopback	= 0x40000000,TBINwEnable	= 0x20000000,TBINwRestart	= 0x10000000,TBILinkOk	= 0x02000000,TBINwComplete	= 0x01000000,/* CPlusCmd p.31 */EnableBist	= (1 << 15),	// 8168 8101Mac_dbgo_oe	= (1 << 14),	// 8168 8101Normal_mode	= (1 << 13),	// unusedForce_half_dup	= (1 << 12),	// 8168 8101Force_rxflow_en	= (1 << 11),	// 8168 8101Force_txflow_en	= (1 << 10),	// 8168 8101Cxpl_dbg_sel	= (1 << 9),	// 8168 8101ASF		= (1 << 8),	// 8168 8101PktCntrDisable	= (1 << 7),	// 8168 8101Mac_dbgo_sel	= 0x001c,	// 8168RxVlan		= (1 << 6),RxChkSum	= (1 << 5),PCIDAC		= (1 << 4),PCIMulRW	= (1 << 3),INTT_0		= 0x0000,	// 8168INTT_1		= 0x0001,	// 8168INTT_2		= 0x0002,	// 8168INTT_3		= 0x0003,	// 8168/* rtl8169_PHYstatus */TBI_Enable	= 0x80,TxFlowCtrl	= 0x40,RxFlowCtrl	= 0x20,_1000bpsF	= 0x10,_100bps		= 0x08,_10bps		= 0x04,LinkStatus	= 0x02,FullDup		= 0x01,/* _TBICSRBit */TBILinkOK	= 0x02000000,/* DumpCounterCommand */CounterDump	= 0x8,
};enum rtl_desc_bit {/* First doubleword. */DescOwn		= (1 << 31), /* Descriptor is owned by NIC */RingEnd		= (1 << 30), /* End of descriptor ring */FirstFrag	= (1 << 29), /* First segment of a packet */LastFrag	= (1 << 28), /* Final segment of a packet */
};/* Generic case. */
enum rtl_tx_desc_bit {/* First doubleword. */TD_LSO		= (1 << 27),		/* Large Send Offload */
#define TD_MSS_MAX			0x07ffu	/* MSS value *//* Second doubleword. */TxVlanTag	= (1 << 17),		/* Add VLAN tag */
};/* 8169, 8168b and 810x except 8102e. */
enum rtl_tx_desc_bit_0 {/* First doubleword. */
#define TD0_MSS_SHIFT			16	/* MSS position (11 bits) */TD0_TCP_CS	= (1 << 16),		/* Calculate TCP/IP checksum */TD0_UDP_CS	= (1 << 17),		/* Calculate UDP/IP checksum */TD0_IP_CS	= (1 << 18),		/* Calculate IP checksum */
};/* 8102e, 8168c and beyond. */
enum rtl_tx_desc_bit_1 {/* Second doubleword. */
#define TD1_MSS_SHIFT			18	/* MSS position (11 bits) */TD1_IP_CS	= (1 << 29),		/* Calculate IP checksum */TD1_TCP_CS	= (1 << 30),		/* Calculate TCP/IP checksum */TD1_UDP_CS	= (1 << 31),		/* Calculate UDP/IP checksum */
};static const struct rtl_tx_desc_info {struct {u32 udp;u32 tcp;} checksum;u16 mss_shift;u16 opts_offset;
} tx_desc_info [] = {[RTL_TD_0] = {.checksum = {.udp	= TD0_IP_CS | TD0_UDP_CS,.tcp	= TD0_IP_CS | TD0_TCP_CS},.mss_shift	= TD0_MSS_SHIFT,.opts_offset	= 0},[RTL_TD_1] = {.checksum = {.udp	= TD1_IP_CS | TD1_UDP_CS,.tcp	= TD1_IP_CS | TD1_TCP_CS},.mss_shift	= TD1_MSS_SHIFT,.opts_offset	= 1}
};enum rtl_rx_desc_bit {/* Rx private */PID1		= (1 << 18), /* Protocol ID bit 1/2 */PID0		= (1 << 17), /* Protocol ID bit 2/2 */#define RxProtoUDP	(PID1)
#define RxProtoTCP	(PID0)
#define RxProtoIP	(PID1 | PID0)
#define RxProtoMask	RxProtoIPIPFail		= (1 << 16), /* IP checksum failed */UDPFail		= (1 << 15), /* UDP/IP checksum failed */TCPFail		= (1 << 14), /* TCP/IP checksum failed */RxVlanTag	= (1 << 16), /* VLAN tag available */
};#define RsvdMask	0x3fffc000struct TxDesc {__le32 opts1;__le32 opts2;__le64 addr;
};struct RxDesc {__le32 opts1;__le32 opts2;__le64 addr;
};struct ring_info {struct sk_buff	*skb;u32		len;u8		__pad[sizeof(void *) - sizeof(u32)];
};enum features {RTL_FEATURE_WOL		= (1 << 0),RTL_FEATURE_MSI		= (1 << 1),RTL_FEATURE_GMII	= (1 << 2),
};struct rtl8169_counters {__le64	tx_packets;__le64	rx_packets;__le64	tx_errors;__le32	rx_errors;__le16	rx_missed;__le16	align_errors;__le32	tx_one_collision;__le32	tx_multi_collision;__le64	rx_unicast;__le64	rx_broadcast;__le32	rx_multicast;__le16	tx_aborted;__le16	tx_underun;
};enum rtl_flag {RTL_FLAG_TASK_ENABLED,RTL_FLAG_TASK_SLOW_PENDING,RTL_FLAG_TASK_RESET_PENDING,RTL_FLAG_TASK_PHY_PENDING,RTL_FLAG_MAX
};struct rtl8169_stats {u64			packets;u64			bytes;struct u64_stats_sync	syncp;
};struct rtl8169_private {void __iomem *mmio_addr;	/* memory map physical address */struct pci_dev *pci_dev;struct net_device *dev;struct napi_struct napi;u32 msg_enable;u16 txd_version;u16 mac_version;u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */u32 dirty_tx;struct rtl8169_stats rx_stats;struct rtl8169_stats tx_stats;struct TxDesc *TxDescArray;	/* 256-aligned Tx descriptor ring */struct RxDesc *RxDescArray;	/* 256-aligned Rx descriptor ring */dma_addr_t TxPhyAddr;dma_addr_t RxPhyAddr;void *Rx_databuff[NUM_RX_DESC];	/* Rx data buffers */struct ring_info tx_skb[NUM_TX_DESC];	/* Tx data buffers */struct timer_list timer;u16 cp_cmd;u16 event_slow;struct mdio_ops {void (*write)(struct rtl8169_private *, int, int);int (*read)(struct rtl8169_private *, int);} mdio_ops;struct pll_power_ops {void (*down)(struct rtl8169_private *);void (*up)(struct rtl8169_private *);} pll_power_ops;struct jumbo_ops {void (*enable)(struct rtl8169_private *);void (*disable)(struct rtl8169_private *);} jumbo_ops;struct csi_ops {void (*write)(struct rtl8169_private *, int, int);u32 (*read)(struct rtl8169_private *, int);} csi_ops;int (*set_speed)(struct net_device *, u8 aneg, u16 sp, u8 dpx, u32 adv);int (*get_settings)(struct net_device *, struct ethtool_cmd *);void (*phy_reset_enable)(struct rtl8169_private *tp);void (*hw_start)(struct net_device *);unsigned int (*phy_reset_pending)(struct rtl8169_private *tp);unsigned int (*link_ok)(void __iomem *);int (*do_ioctl)(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd);struct {DECLARE_BITMAP(flags, RTL_FLAG_MAX);struct mutex mutex;struct work_struct work;} wk;unsigned features;struct mii_if_info mii;struct rtl8169_counters counters;u32 saved_wolopts;u32 opts1_mask;struct rtl_fw {const struct firmware *fw;#define RTL_VER_SIZE		32char version[RTL_VER_SIZE];struct rtl_fw_phy_action {__le32 *code;size_t size;} phy_action;} *rtl_fw;
#define RTL_FIRMWARE_UNKNOWN	ERR_PTR(-EAGAIN)u32 ocp_base;
};MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver");
module_param(use_dac, int, 0);
MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot.");
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
MODULE_LICENSE("GPL");
MODULE_VERSION(RTL8169_VERSION);
MODULE_FIRMWARE(FIRMWARE_8168D_1);
MODULE_FIRMWARE(FIRMWARE_8168D_2);
MODULE_FIRMWARE(FIRMWARE_8168E_1);
MODULE_FIRMWARE(FIRMWARE_8168E_2);
MODULE_FIRMWARE(FIRMWARE_8168E_3);
MODULE_FIRMWARE(FIRMWARE_8105E_1);
MODULE_FIRMWARE(FIRMWARE_8168F_1);
MODULE_FIRMWARE(FIRMWARE_8168F_2);
MODULE_FIRMWARE(FIRMWARE_8402_1);
MODULE_FIRMWARE(FIRMWARE_8411_1);
MODULE_FIRMWARE(FIRMWARE_8411_2);
MODULE_FIRMWARE(FIRMWARE_8106E_1);
MODULE_FIRMWARE(FIRMWARE_8106E_2);
MODULE_FIRMWARE(FIRMWARE_8168G_2);
MODULE_FIRMWARE(FIRMWARE_8168G_3);static void rtl_lock_work(struct rtl8169_private *tp)
{mutex_lock(&tp->wk.mutex);
}static void rtl_unlock_work(struct rtl8169_private *tp)
{mutex_unlock(&tp->wk.mutex);
}static void rtl_tx_performance_tweak(struct pci_dev *pdev, u16 force)
{pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,PCI_EXP_DEVCTL_READRQ, force);
}struct rtl_cond {bool (*check)(struct rtl8169_private *);const char *msg;
};static void rtl_udelay(unsigned int d)
{udelay(d);
}static bool rtl_loop_wait(struct rtl8169_private *tp, const struct rtl_cond *c,void (*delay)(unsigned int), unsigned int d, int n,bool high)
{int i;for (i = 0; i < n; i++) {delay(d);if (c->check(tp) == high)return true;}netif_err(tp, drv, tp->dev, "%s == %d (loop: %d, delay: %d).\n",c->msg, !high, n, d);return false;
}static bool rtl_udelay_loop_wait_high(struct rtl8169_private *tp,const struct rtl_cond *c,unsigned int d, int n)
{return rtl_loop_wait(tp, c, rtl_udelay, d, n, true);
}static bool rtl_udelay_loop_wait_low(struct rtl8169_private *tp,const struct rtl_cond *c,unsigned int d, int n)
{return rtl_loop_wait(tp, c, rtl_udelay, d, n, false);
}static bool rtl_msleep_loop_wait_high(struct rtl8169_private *tp,const struct rtl_cond *c,unsigned int d, int n)
{return rtl_loop_wait(tp, c, msleep, d, n, true);
}static bool rtl_msleep_loop_wait_low(struct rtl8169_private *tp,const struct rtl_cond *c,unsigned int d, int n)
{return rtl_loop_wait(tp, c, msleep, d, n, false);
}#define DECLARE_RTL_COND(name)				\
static bool name ## _check(struct rtl8169_private *);	\\
static const struct rtl_cond name = {			\.check	= name ## _check,			\.msg	= #name					\
};							\\
static bool name ## _check(struct rtl8169_private *tp)DECLARE_RTL_COND(rtl_ocpar_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(OCPAR) & OCPAR_FLAG;
}static u32 ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(OCPAR, ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 100, 20) ?RTL_R32(OCPDR) : ~0;
}static void ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg, u32 data)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(OCPDR, data);RTL_W32(OCPAR, OCPAR_FLAG | ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 100, 20);
}DECLARE_RTL_COND(rtl_eriar_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(ERIAR) & ERIAR_FLAG;
}static void rtl8168_oob_notify(struct rtl8169_private *tp, u8 cmd)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(ERIDR, cmd);RTL_W32(ERIAR, 0x800010e8);msleep(2);if (!rtl_udelay_loop_wait_low(tp, &rtl_eriar_cond, 100, 5))return;ocp_write(tp, 0x1, 0x30, 0x00000001);
}#define OOB_CMD_RESET		0x00
#define OOB_CMD_DRIVER_START	0x05
#define OOB_CMD_DRIVER_STOP	0x06static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp)
{return (tp->mac_version == RTL_GIGA_MAC_VER_31) ? 0xb8 : 0x10;
}DECLARE_RTL_COND(rtl_ocp_read_cond)
{u16 reg;reg = rtl8168_get_ocp_reg(tp);return ocp_read(tp, 0x0f, reg) & 0x00000800;
}static void rtl8168_driver_start(struct rtl8169_private *tp)
{rtl8168_oob_notify(tp, OOB_CMD_DRIVER_START);rtl_msleep_loop_wait_high(tp, &rtl_ocp_read_cond, 10, 10);
}static void rtl8168_driver_stop(struct rtl8169_private *tp)
{rtl8168_oob_notify(tp, OOB_CMD_DRIVER_STOP);rtl_msleep_loop_wait_low(tp, &rtl_ocp_read_cond, 10, 10);
}static int r8168dp_check_dash(struct rtl8169_private *tp)
{u16 reg = rtl8168_get_ocp_reg(tp);return (ocp_read(tp, 0x0f, reg) & 0x00008000) ? 1 : 0;
}static bool rtl_ocp_reg_failure(struct rtl8169_private *tp, u32 reg)
{if (reg & 0xffff0001) {netif_err(tp, drv, tp->dev, "Invalid ocp reg %x!\n", reg);return true;}return false;
}DECLARE_RTL_COND(rtl_ocp_gphy_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(GPHY_OCP) & OCPAR_FLAG;
}static void r8168_phy_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{void __iomem *ioaddr = tp->mmio_addr;if (rtl_ocp_reg_failure(tp, reg))return;RTL_W32(GPHY_OCP, OCPAR_FLAG | (reg << 15) | data);rtl_udelay_loop_wait_low(tp, &rtl_ocp_gphy_cond, 25, 10);
}static u16 r8168_phy_ocp_read(struct rtl8169_private *tp, u32 reg)
{void __iomem *ioaddr = tp->mmio_addr;if (rtl_ocp_reg_failure(tp, reg))return 0;RTL_W32(GPHY_OCP, reg << 15);return rtl_udelay_loop_wait_high(tp, &rtl_ocp_gphy_cond, 25, 10) ?(RTL_R32(GPHY_OCP) & 0xffff) : ~0;
}static void r8168_mac_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{void __iomem *ioaddr = tp->mmio_addr;if (rtl_ocp_reg_failure(tp, reg))return;RTL_W32(OCPDR, OCPAR_FLAG | (reg << 15) | data);
}static u16 r8168_mac_ocp_read(struct rtl8169_private *tp, u32 reg)
{void __iomem *ioaddr = tp->mmio_addr;if (rtl_ocp_reg_failure(tp, reg))return 0;RTL_W32(OCPDR, reg << 15);return RTL_R32(OCPDR);
}#define OCP_STD_PHY_BASE	0xa400static void r8168g_mdio_write(struct rtl8169_private *tp, int reg, int value)
{if (reg == 0x1f) {tp->ocp_base = value ? value << 4 : OCP_STD_PHY_BASE;return;}if (tp->ocp_base != OCP_STD_PHY_BASE)reg -= 0x10;r8168_phy_ocp_write(tp, tp->ocp_base + reg * 2, value);
}static int r8168g_mdio_read(struct rtl8169_private *tp, int reg)
{if (tp->ocp_base != OCP_STD_PHY_BASE)reg -= 0x10;return r8168_phy_ocp_read(tp, tp->ocp_base + reg * 2);
}static void mac_mcu_write(struct rtl8169_private *tp, int reg, int value)
{if (reg == 0x1f) {tp->ocp_base = value << 4;return;}r8168_mac_ocp_write(tp, tp->ocp_base + reg, value);
}static int mac_mcu_read(struct rtl8169_private *tp, int reg)
{return r8168_mac_ocp_read(tp, tp->ocp_base + reg);
}DECLARE_RTL_COND(rtl_phyar_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(PHYAR) & 0x80000000;
}static void r8169_mdio_write(struct rtl8169_private *tp, int reg, int value)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(PHYAR, 0x80000000 | (reg & 0x1f) << 16 | (value & 0xffff));rtl_udelay_loop_wait_low(tp, &rtl_phyar_cond, 25, 20);/** According to hardware specs a 20us delay is required after write* complete indication, but before sending next command.*/udelay(20);
}static int r8169_mdio_read(struct rtl8169_private *tp, int reg)
{void __iomem *ioaddr = tp->mmio_addr;int value;RTL_W32(PHYAR, 0x0 | (reg & 0x1f) << 16);value = rtl_udelay_loop_wait_high(tp, &rtl_phyar_cond, 25, 20) ?RTL_R32(PHYAR) & 0xffff : ~0;/** According to hardware specs a 20us delay is required after read* complete indication, but before sending next command.*/udelay(20);return value;
}static void r8168dp_1_mdio_access(struct rtl8169_private *tp, int reg, u32 data)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(OCPDR, data | ((reg & OCPDR_REG_MASK) << OCPDR_GPHY_REG_SHIFT));RTL_W32(OCPAR, OCPAR_GPHY_WRITE_CMD);RTL_W32(EPHY_RXER_NUM, 0);rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 1000, 100);
}static void r8168dp_1_mdio_write(struct rtl8169_private *tp, int reg, int value)
{r8168dp_1_mdio_access(tp, reg,OCPDR_WRITE_CMD | (value & OCPDR_DATA_MASK));
}static int r8168dp_1_mdio_read(struct rtl8169_private *tp, int reg)
{void __iomem *ioaddr = tp->mmio_addr;r8168dp_1_mdio_access(tp, reg, OCPDR_READ_CMD);mdelay(1);RTL_W32(OCPAR, OCPAR_GPHY_READ_CMD);RTL_W32(EPHY_RXER_NUM, 0);return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 1000, 100) ?RTL_R32(OCPDR) & OCPDR_DATA_MASK : ~0;
}#define R8168DP_1_MDIO_ACCESS_BIT	0x00020000static void r8168dp_2_mdio_start(void __iomem *ioaddr)
{RTL_W32(0xd0, RTL_R32(0xd0) & ~R8168DP_1_MDIO_ACCESS_BIT);
}static void r8168dp_2_mdio_stop(void __iomem *ioaddr)
{RTL_W32(0xd0, RTL_R32(0xd0) | R8168DP_1_MDIO_ACCESS_BIT);
}static void r8168dp_2_mdio_write(struct rtl8169_private *tp, int reg, int value)
{void __iomem *ioaddr = tp->mmio_addr;r8168dp_2_mdio_start(ioaddr);r8169_mdio_write(tp, reg, value);r8168dp_2_mdio_stop(ioaddr);
}static int r8168dp_2_mdio_read(struct rtl8169_private *tp, int reg)
{void __iomem *ioaddr = tp->mmio_addr;int value;r8168dp_2_mdio_start(ioaddr);value = r8169_mdio_read(tp, reg);r8168dp_2_mdio_stop(ioaddr);return value;
}static void rtl_writephy(struct rtl8169_private *tp, int location, u32 val)
{tp->mdio_ops.write(tp, location, val);
}static int rtl_readphy(struct rtl8169_private *tp, int location)
{return tp->mdio_ops.read(tp, location);
}static void rtl_patchphy(struct rtl8169_private *tp, int reg_addr, int value)
{rtl_writephy(tp, reg_addr, rtl_readphy(tp, reg_addr) | value);
}static void rtl_w1w0_phy(struct rtl8169_private *tp, int reg_addr, int p, int m)
{int val;val = rtl_readphy(tp, reg_addr);rtl_writephy(tp, reg_addr, (val | p) & ~m);
}static void rtl_mdio_write(struct net_device *dev, int phy_id, int location,int val)
{struct rtl8169_private *tp = netdev_priv(dev);rtl_writephy(tp, location, val);
}static int rtl_mdio_read(struct net_device *dev, int phy_id, int location)
{struct rtl8169_private *tp = netdev_priv(dev);return rtl_readphy(tp, location);
}DECLARE_RTL_COND(rtl_ephyar_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(EPHYAR) & EPHYAR_FLAG;
}static void rtl_ephy_write(struct rtl8169_private *tp, int reg_addr, int value)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) |(reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);rtl_udelay_loop_wait_low(tp, &rtl_ephyar_cond, 10, 100);udelay(10);
}static u16 rtl_ephy_read(struct rtl8169_private *tp, int reg_addr)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);return rtl_udelay_loop_wait_high(tp, &rtl_ephyar_cond, 10, 100) ?RTL_R32(EPHYAR) & EPHYAR_DATA_MASK : ~0;
}static void rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask,u32 val, int type)
{void __iomem *ioaddr = tp->mmio_addr;BUG_ON((addr & 3) || (mask == 0));RTL_W32(ERIDR, val);RTL_W32(ERIAR, ERIAR_WRITE_CMD | type | mask | addr);rtl_udelay_loop_wait_low(tp, &rtl_eriar_cond, 100, 100);
}static u32 rtl_eri_read(struct rtl8169_private *tp, int addr, int type)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(ERIAR, ERIAR_READ_CMD | type | ERIAR_MASK_1111 | addr);return rtl_udelay_loop_wait_high(tp, &rtl_eriar_cond, 100, 100) ?RTL_R32(ERIDR) : ~0;
}static void rtl_w1w0_eri(struct rtl8169_private *tp, int addr, u32 mask, u32 p,u32 m, int type)
{u32 val;val = rtl_eri_read(tp, addr, type);rtl_eri_write(tp, addr, mask, (val & ~m) | p, type);
}struct exgmac_reg {u16 addr;u16 mask;u32 val;
};static void rtl_write_exgmac_batch(struct rtl8169_private *tp,const struct exgmac_reg *r, int len)
{while (len-- > 0) {rtl_eri_write(tp, r->addr, r->mask, r->val, ERIAR_EXGMAC);r++;}
}DECLARE_RTL_COND(rtl_efusear_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(EFUSEAR) & EFUSEAR_FLAG;
}static u8 rtl8168d_efuse_read(struct rtl8169_private *tp, int reg_addr)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT);return rtl_udelay_loop_wait_high(tp, &rtl_efusear_cond, 100, 300) ?RTL_R32(EFUSEAR) & EFUSEAR_DATA_MASK : ~0;
}static u16 rtl_get_events(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R16(IntrStatus);
}static void rtl_ack_events(struct rtl8169_private *tp, u16 bits)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W16(IntrStatus, bits);mmiowb();
}static void rtl_irq_disable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W16(IntrMask, 0);mmiowb();
}static void rtl_irq_enable(struct rtl8169_private *tp, u16 bits)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W16(IntrMask, bits);
}#define RTL_EVENT_NAPI_RX	(RxOK | RxErr)
#define RTL_EVENT_NAPI_TX	(TxOK | TxErr)
#define RTL_EVENT_NAPI		(RTL_EVENT_NAPI_RX | RTL_EVENT_NAPI_TX)static void rtl_irq_enable_all(struct rtl8169_private *tp)
{rtl_irq_enable(tp, RTL_EVENT_NAPI | tp->event_slow);
}static void rtl8169_irq_mask_and_ack(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;rtl_irq_disable(tp);rtl_ack_events(tp, RTL_EVENT_NAPI | tp->event_slow);RTL_R8(ChipCmd);
}static unsigned int rtl8169_tbi_reset_pending(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(TBICSR) & TBIReset;
}static unsigned int rtl8169_xmii_reset_pending(struct rtl8169_private *tp)
{return rtl_readphy(tp, MII_BMCR) & BMCR_RESET;
}static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr)
{return RTL_R32(TBICSR) & TBILinkOk;
}static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr)
{return RTL_R8(PHYstatus) & LinkStatus;
}static void rtl8169_tbi_reset_enable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset);
}static void rtl8169_xmii_reset_enable(struct rtl8169_private *tp)
{unsigned int val;val = rtl_readphy(tp, MII_BMCR) | BMCR_RESET;rtl_writephy(tp, MII_BMCR, val & 0xffff);
}static void rtl_link_chg_patch(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct net_device *dev = tp->dev;if (!netif_running(dev))return;if (tp->mac_version == RTL_GIGA_MAC_VER_34 ||tp->mac_version == RTL_GIGA_MAC_VER_38) {if (RTL_R8(PHYstatus) & _1000bpsF) {rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011,ERIAR_EXGMAC);rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,ERIAR_EXGMAC);} else if (RTL_R8(PHYstatus) & _100bps) {rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,ERIAR_EXGMAC);rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,ERIAR_EXGMAC);} else {rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,ERIAR_EXGMAC);rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f,ERIAR_EXGMAC);}/* Reset packet filter */rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01,ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00,ERIAR_EXGMAC);} else if (tp->mac_version == RTL_GIGA_MAC_VER_35 ||tp->mac_version == RTL_GIGA_MAC_VER_36) {if (RTL_R8(PHYstatus) & _1000bpsF) {rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011,ERIAR_EXGMAC);rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,ERIAR_EXGMAC);} else {rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,ERIAR_EXGMAC);rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f,ERIAR_EXGMAC);}} else if (tp->mac_version == RTL_GIGA_MAC_VER_37) {if (RTL_R8(PHYstatus) & _10bps) {rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x4d02,ERIAR_EXGMAC);rtl_eri_write(tp, 0x1dc, ERIAR_MASK_0011, 0x0060,ERIAR_EXGMAC);} else {rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000,ERIAR_EXGMAC);}}
}static void __rtl8169_check_link_status(struct net_device *dev,struct rtl8169_private *tp,void __iomem *ioaddr, bool pm)
{if (tp->link_ok(ioaddr)) {rtl_link_chg_patch(tp);/* This is to cancel a scheduled suspend if there's one. */if (pm)pm_request_resume(&tp->pci_dev->dev);netif_carrier_on(dev);if (net_ratelimit())netif_info(tp, ifup, dev, "link up\n");} else {netif_carrier_off(dev);netif_info(tp, ifdown, dev, "link down\n");if (pm)pm_schedule_suspend(&tp->pci_dev->dev, 5000);}
}static void rtl8169_check_link_status(struct net_device *dev,struct rtl8169_private *tp,void __iomem *ioaddr)
{__rtl8169_check_link_status(dev, tp, ioaddr, false);
}#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)static u32 __rtl8169_get_wol(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;u8 options;u32 wolopts = 0;options = RTL_R8(Config1);if (!(options & PMEnable))return 0;options = RTL_R8(Config3);if (options & LinkUp)wolopts |= WAKE_PHY;if (options & MagicPacket)wolopts |= WAKE_MAGIC;options = RTL_R8(Config5);if (options & UWF)wolopts |= WAKE_UCAST;if (options & BWF)wolopts |= WAKE_BCAST;if (options & MWF)wolopts |= WAKE_MCAST;return wolopts;
}static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{struct rtl8169_private *tp = netdev_priv(dev);rtl_lock_work(tp);wol->supported = WAKE_ANY;wol->wolopts = __rtl8169_get_wol(tp);rtl_unlock_work(tp);
}static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts)
{void __iomem *ioaddr = tp->mmio_addr;unsigned int i;static const struct {u32 opt;u16 reg;u8  mask;} cfg[] = {{ WAKE_PHY,   Config3, LinkUp },{ WAKE_MAGIC, Config3, MagicPacket },{ WAKE_UCAST, Config5, UWF },{ WAKE_BCAST, Config5, BWF },{ WAKE_MCAST, Config5, MWF },{ WAKE_ANY,   Config5, LanWake }};u8 options;RTL_W8(Cfg9346, Cfg9346_Unlock);for (i = 0; i < ARRAY_SIZE(cfg); i++) {options = RTL_R8(cfg[i].reg) & ~cfg[i].mask;if (wolopts & cfg[i].opt)options |= cfg[i].mask;RTL_W8(cfg[i].reg, options);}switch (tp->mac_version) {case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_17:options = RTL_R8(Config1) & ~PMEnable;if (wolopts)options |= PMEnable;RTL_W8(Config1, options);break;default:options = RTL_R8(Config2) & ~PME_SIGNAL;if (wolopts)options |= PME_SIGNAL;RTL_W8(Config2, options);break;}RTL_W8(Cfg9346, Cfg9346_Lock);
}static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{struct rtl8169_private *tp = netdev_priv(dev);rtl_lock_work(tp);if (wol->wolopts)tp->features |= RTL_FEATURE_WOL;elsetp->features &= ~RTL_FEATURE_WOL;__rtl8169_set_wol(tp, wol->wolopts);rtl_unlock_work(tp);device_set_wakeup_enable(&tp->pci_dev->dev, wol->wolopts);return 0;
}static const char *rtl_lookup_firmware_name(struct rtl8169_private *tp)
{return rtl_chip_infos[tp->mac_version].fw_name;
}static void rtl8169_get_drvinfo(struct net_device *dev,struct ethtool_drvinfo *info)
{struct rtl8169_private *tp = netdev_priv(dev);struct rtl_fw *rtl_fw = tp->rtl_fw;strlcpy(info->driver, MODULENAME, sizeof(info->driver));strlcpy(info->version, RTL8169_VERSION, sizeof(info->version));strlcpy(info->bus_info, pci_name(tp->pci_dev), sizeof(info->bus_info));BUILD_BUG_ON(sizeof(info->fw_version) < sizeof(rtl_fw->version));if (!IS_ERR_OR_NULL(rtl_fw))strlcpy(info->fw_version, rtl_fw->version,sizeof(info->fw_version));
}static int rtl8169_get_regs_len(struct net_device *dev)
{return R8169_REGS_SIZE;
}static int rtl8169_set_speed_tbi(struct net_device *dev,u8 autoneg, u16 speed, u8 duplex, u32 ignored)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;int ret = 0;u32 reg;reg = RTL_R32(TBICSR);if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) &&(duplex == DUPLEX_FULL)) {RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart));} else if (autoneg == AUTONEG_ENABLE)RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart);else {netif_warn(tp, link, dev,"incorrect speed setting refused in TBI mode\n");ret = -EOPNOTSUPP;}return ret;
}static int rtl8169_set_speed_xmii(struct net_device *dev,u8 autoneg, u16 speed, u8 duplex, u32 adv)
{struct rtl8169_private *tp = netdev_priv(dev);int giga_ctrl, bmcr;int rc = -EINVAL;rtl_writephy(tp, 0x1f, 0x0000);if (autoneg == AUTONEG_ENABLE) {int auto_nego;auto_nego = rtl_readphy(tp, MII_ADVERTISE);auto_nego &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL |ADVERTISE_100HALF | ADVERTISE_100FULL);if (adv & ADVERTISED_10baseT_Half)auto_nego |= ADVERTISE_10HALF;if (adv & ADVERTISED_10baseT_Full)auto_nego |= ADVERTISE_10FULL;if (adv & ADVERTISED_100baseT_Half)auto_nego |= ADVERTISE_100HALF;if (adv & ADVERTISED_100baseT_Full)auto_nego |= ADVERTISE_100FULL;auto_nego |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;giga_ctrl = rtl_readphy(tp, MII_CTRL1000);giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);/* The 8100e/8101e/8102e do Fast Ethernet only. */if (tp->mii.supports_gmii) {if (adv & ADVERTISED_1000baseT_Half)giga_ctrl |= ADVERTISE_1000HALF;if (adv & ADVERTISED_1000baseT_Full)giga_ctrl |= ADVERTISE_1000FULL;} else if (adv & (ADVERTISED_1000baseT_Half |ADVERTISED_1000baseT_Full)) {netif_info(tp, link, dev,"PHY does not support 1000Mbps\n");goto out;}bmcr = BMCR_ANENABLE | BMCR_ANRESTART;rtl_writephy(tp, MII_ADVERTISE, auto_nego);rtl_writephy(tp, MII_CTRL1000, giga_ctrl);} else {giga_ctrl = 0;if (speed == SPEED_10)bmcr = 0;else if (speed == SPEED_100)bmcr = BMCR_SPEED100;elsegoto out;if (duplex == DUPLEX_FULL)bmcr |= BMCR_FULLDPLX;}rtl_writephy(tp, MII_BMCR, bmcr);if (tp->mac_version == RTL_GIGA_MAC_VER_02 ||tp->mac_version == RTL_GIGA_MAC_VER_03) {if ((speed == SPEED_100) && (autoneg != AUTONEG_ENABLE)) {rtl_writephy(tp, 0x17, 0x2138);rtl_writephy(tp, 0x0e, 0x0260);} else {rtl_writephy(tp, 0x17, 0x2108);rtl_writephy(tp, 0x0e, 0x0000);}}rc = 0;
out:return rc;
}static int rtl8169_set_speed(struct net_device *dev,u8 autoneg, u16 speed, u8 duplex, u32 advertising)
{struct rtl8169_private *tp = netdev_priv(dev);int ret;ret = tp->set_speed(dev, autoneg, speed, duplex, advertising);if (ret < 0)goto out;if (netif_running(dev) && (autoneg == AUTONEG_ENABLE) &&(advertising & ADVERTISED_1000baseT_Full)) {mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT);}
out:return ret;
}static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{struct rtl8169_private *tp = netdev_priv(dev);int ret;del_timer_sync(&tp->timer);rtl_lock_work(tp);ret = rtl8169_set_speed(dev, cmd->autoneg, ethtool_cmd_speed(cmd),cmd->duplex, cmd->advertising);rtl_unlock_work(tp);return ret;
}static netdev_features_t rtl8169_fix_features(struct net_device *dev,netdev_features_t features)
{struct rtl8169_private *tp = netdev_priv(dev);if (dev->mtu > TD_MSS_MAX)features &= ~NETIF_F_ALL_TSO;if (dev->mtu > JUMBO_1K &&!rtl_chip_infos[tp->mac_version].jumbo_tx_csum)features &= ~NETIF_F_IP_CSUM;return features;
}static void __rtl8169_set_features(struct net_device *dev,netdev_features_t features)
{struct rtl8169_private *tp = netdev_priv(dev);netdev_features_t changed = features ^ dev->features;void __iomem *ioaddr = tp->mmio_addr;if (!(changed & (NETIF_F_RXALL | NETIF_F_RXCSUM |NETIF_F_HW_VLAN_CTAG_RX)))return;if (changed & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) {if (features & NETIF_F_RXCSUM)tp->cp_cmd |= RxChkSum;elsetp->cp_cmd &= ~RxChkSum;if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)tp->cp_cmd |= RxVlan;elsetp->cp_cmd &= ~RxVlan;RTL_W16(CPlusCmd, tp->cp_cmd);RTL_R16(CPlusCmd);}if (changed & NETIF_F_RXALL) {int tmp = (RTL_R32(RxConfig) & ~(AcceptErr | AcceptRunt));if (features & NETIF_F_RXALL)tmp |= (AcceptErr | AcceptRunt);RTL_W32(RxConfig, tmp);}
}static int rtl8169_set_features(struct net_device *dev,netdev_features_t features)
{struct rtl8169_private *tp = netdev_priv(dev);rtl_lock_work(tp);__rtl8169_set_features(dev, features);rtl_unlock_work(tp);return 0;
}static inline u32 rtl8169_tx_vlan_tag(struct sk_buff *skb)
{return (vlan_tx_tag_present(skb)) ?TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
}static void rtl8169_rx_vlan_tag(struct RxDesc *desc, struct sk_buff *skb)
{u32 opts2 = le32_to_cpu(desc->opts2);if (opts2 & RxVlanTag)__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
}static int rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;u32 status;cmd->supported =SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE;cmd->port = PORT_FIBRE;cmd->transceiver = XCVR_INTERNAL;status = RTL_R32(TBICSR);cmd->advertising = (status & TBINwEnable) ?  ADVERTISED_Autoneg : 0;cmd->autoneg = !!(status & TBINwEnable);ethtool_cmd_speed_set(cmd, SPEED_1000);cmd->duplex = DUPLEX_FULL; /* Always set */return 0;
}static int rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd)
{struct rtl8169_private *tp = netdev_priv(dev);return mii_ethtool_gset(&tp->mii, cmd);
}static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{struct rtl8169_private *tp = netdev_priv(dev);int rc;rtl_lock_work(tp);rc = tp->get_settings(dev, cmd);rtl_unlock_work(tp);return rc;
}static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,void *p)
{struct rtl8169_private *tp = netdev_priv(dev);u32 __iomem *data = tp->mmio_addr;u32 *dw = p;int i;rtl_lock_work(tp);for (i = 0; i < R8169_REGS_SIZE; i += 4)memcpy_fromio(dw++, data++, 4);rtl_unlock_work(tp);
}static u32 rtl8169_get_msglevel(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);return tp->msg_enable;
}static void rtl8169_set_msglevel(struct net_device *dev, u32 value)
{struct rtl8169_private *tp = netdev_priv(dev);tp->msg_enable = value;
}static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {"tx_packets","rx_packets","tx_errors","rx_errors","rx_missed","align_errors","tx_single_collisions","tx_multi_collisions","unicast","broadcast","multicast","tx_aborted","tx_underrun",
};static int rtl8169_get_sset_count(struct net_device *dev, int sset)
{switch (sset) {case ETH_SS_STATS:return ARRAY_SIZE(rtl8169_gstrings);default:return -EOPNOTSUPP;}
}DECLARE_RTL_COND(rtl_counters_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(CounterAddrLow) & CounterDump;
}static void rtl8169_update_counters(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;struct device *d = &tp->pci_dev->dev;struct rtl8169_counters *counters;dma_addr_t paddr;u32 cmd;/** Some chips are unable to dump tally counters when the receiver* is disabled.*/if ((RTL_R8(ChipCmd) & CmdRxEnb) == 0)return;counters = dma_alloc_coherent(d, sizeof(*counters), &paddr, GFP_KERNEL);if (!counters)return;RTL_W32(CounterAddrHigh, (u64)paddr >> 32);cmd = (u64)paddr & DMA_BIT_MASK(32);RTL_W32(CounterAddrLow, cmd);RTL_W32(CounterAddrLow, cmd | CounterDump);if (rtl_udelay_loop_wait_low(tp, &rtl_counters_cond, 10, 1000))memcpy(&tp->counters, counters, sizeof(*counters));RTL_W32(CounterAddrLow, 0);RTL_W32(CounterAddrHigh, 0);dma_free_coherent(d, sizeof(*counters), counters, paddr);
}static void rtl8169_get_ethtool_stats(struct net_device *dev,struct ethtool_stats *stats, u64 *data)
{struct rtl8169_private *tp = netdev_priv(dev);ASSERT_RTNL();rtl8169_update_counters(dev);data[0] = le64_to_cpu(tp->counters.tx_packets);data[1] = le64_to_cpu(tp->counters.rx_packets);data[2] = le64_to_cpu(tp->counters.tx_errors);data[3] = le32_to_cpu(tp->counters.rx_errors);data[4] = le16_to_cpu(tp->counters.rx_missed);data[5] = le16_to_cpu(tp->counters.align_errors);data[6] = le32_to_cpu(tp->counters.tx_one_collision);data[7] = le32_to_cpu(tp->counters.tx_multi_collision);data[8] = le64_to_cpu(tp->counters.rx_unicast);data[9] = le64_to_cpu(tp->counters.rx_broadcast);data[10] = le32_to_cpu(tp->counters.rx_multicast);data[11] = le16_to_cpu(tp->counters.tx_aborted);data[12] = le16_to_cpu(tp->counters.tx_underun);
}static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{switch(stringset) {case ETH_SS_STATS:memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));break;}
}static const struct ethtool_ops rtl8169_ethtool_ops = {.get_drvinfo		= rtl8169_get_drvinfo,.get_regs_len		= rtl8169_get_regs_len,.get_link		= ethtool_op_get_link,.get_settings		= rtl8169_get_settings,.set_settings		= rtl8169_set_settings,.get_msglevel		= rtl8169_get_msglevel,.set_msglevel		= rtl8169_set_msglevel,.get_regs		= rtl8169_get_regs,.get_wol		= rtl8169_get_wol,.set_wol		= rtl8169_set_wol,.get_strings		= rtl8169_get_strings,.get_sset_count		= rtl8169_get_sset_count,.get_ethtool_stats	= rtl8169_get_ethtool_stats,.get_ts_info		= ethtool_op_get_ts_info,
};static void rtl8169_get_mac_version(struct rtl8169_private *tp,struct net_device *dev, u8 default_version)
{void __iomem *ioaddr = tp->mmio_addr;/** The driver currently handles the 8168Bf and the 8168Be identically* but they can be identified more specifically through the test below* if needed:** (RTL_R32(TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be** Same thing for the 8101Eb and the 8101Ec:** (RTL_R32(TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec*/static const struct rtl_mac_info {u32 mask;u32 val;int mac_version;} mac_info[] = {/* 8168G family. */{ 0x7cf00000, 0x5c800000,	RTL_GIGA_MAC_VER_44 },{ 0x7cf00000, 0x50900000,	RTL_GIGA_MAC_VER_42 },{ 0x7cf00000, 0x4c100000,	RTL_GIGA_MAC_VER_41 },{ 0x7cf00000, 0x4c000000,	RTL_GIGA_MAC_VER_40 },/* 8168F family. */{ 0x7c800000, 0x48800000,	RTL_GIGA_MAC_VER_38 },{ 0x7cf00000, 0x48100000,	RTL_GIGA_MAC_VER_36 },{ 0x7cf00000, 0x48000000,	RTL_GIGA_MAC_VER_35 },/* 8168E family. */{ 0x7c800000, 0x2c800000,	RTL_GIGA_MAC_VER_34 },{ 0x7cf00000, 0x2c200000,	RTL_GIGA_MAC_VER_33 },{ 0x7cf00000, 0x2c100000,	RTL_GIGA_MAC_VER_32 },{ 0x7c800000, 0x2c000000,	RTL_GIGA_MAC_VER_33 },/* 8168D family. */{ 0x7cf00000, 0x28300000,	RTL_GIGA_MAC_VER_26 },{ 0x7cf00000, 0x28100000,	RTL_GIGA_MAC_VER_25 },{ 0x7c800000, 0x28000000,	RTL_GIGA_MAC_VER_26 },/* 8168DP family. */{ 0x7cf00000, 0x28800000,	RTL_GIGA_MAC_VER_27 },{ 0x7cf00000, 0x28a00000,	RTL_GIGA_MAC_VER_28 },{ 0x7cf00000, 0x28b00000,	RTL_GIGA_MAC_VER_31 },/* 8168C family. */{ 0x7cf00000, 0x3cb00000,	RTL_GIGA_MAC_VER_24 },{ 0x7cf00000, 0x3c900000,	RTL_GIGA_MAC_VER_23 },{ 0x7cf00000, 0x3c800000,	RTL_GIGA_MAC_VER_18 },{ 0x7c800000, 0x3c800000,	RTL_GIGA_MAC_VER_24 },{ 0x7cf00000, 0x3c000000,	RTL_GIGA_MAC_VER_19 },{ 0x7cf00000, 0x3c200000,	RTL_GIGA_MAC_VER_20 },{ 0x7cf00000, 0x3c300000,	RTL_GIGA_MAC_VER_21 },{ 0x7cf00000, 0x3c400000,	RTL_GIGA_MAC_VER_22 },{ 0x7c800000, 0x3c000000,	RTL_GIGA_MAC_VER_22 },/* 8168B family. */{ 0x7cf00000, 0x38000000,	RTL_GIGA_MAC_VER_12 },{ 0x7cf00000, 0x38500000,	RTL_GIGA_MAC_VER_17 },{ 0x7c800000, 0x38000000,	RTL_GIGA_MAC_VER_17 },{ 0x7c800000, 0x30000000,	RTL_GIGA_MAC_VER_11 },/* 8101 family. */{ 0x7cf00000, 0x44900000,	RTL_GIGA_MAC_VER_39 },{ 0x7c800000, 0x44800000,	RTL_GIGA_MAC_VER_39 },{ 0x7c800000, 0x44000000,	RTL_GIGA_MAC_VER_37 },{ 0x7cf00000, 0x40b00000,	RTL_GIGA_MAC_VER_30 },{ 0x7cf00000, 0x40a00000,	RTL_GIGA_MAC_VER_30 },{ 0x7cf00000, 0x40900000,	RTL_GIGA_MAC_VER_29 },{ 0x7c800000, 0x40800000,	RTL_GIGA_MAC_VER_30 },{ 0x7cf00000, 0x34a00000,	RTL_GIGA_MAC_VER_09 },{ 0x7cf00000, 0x24a00000,	RTL_GIGA_MAC_VER_09 },{ 0x7cf00000, 0x34900000,	RTL_GIGA_MAC_VER_08 },{ 0x7cf00000, 0x24900000,	RTL_GIGA_MAC_VER_08 },{ 0x7cf00000, 0x34800000,	RTL_GIGA_MAC_VER_07 },{ 0x7cf00000, 0x24800000,	RTL_GIGA_MAC_VER_07 },{ 0x7cf00000, 0x34000000,	RTL_GIGA_MAC_VER_13 },{ 0x7cf00000, 0x34300000,	RTL_GIGA_MAC_VER_10 },{ 0x7cf00000, 0x34200000,	RTL_GIGA_MAC_VER_16 },{ 0x7c800000, 0x34800000,	RTL_GIGA_MAC_VER_09 },{ 0x7c800000, 0x24800000,	RTL_GIGA_MAC_VER_09 },{ 0x7c800000, 0x34000000,	RTL_GIGA_MAC_VER_16 },/* FIXME: where did these entries come from ? -- FR */{ 0xfc800000, 0x38800000,	RTL_GIGA_MAC_VER_15 },{ 0xfc800000, 0x30800000,	RTL_GIGA_MAC_VER_14 },/* 8110 family. */{ 0xfc800000, 0x98000000,	RTL_GIGA_MAC_VER_06 },{ 0xfc800000, 0x18000000,	RTL_GIGA_MAC_VER_05 },{ 0xfc800000, 0x10000000,	RTL_GIGA_MAC_VER_04 },{ 0xfc800000, 0x04000000,	RTL_GIGA_MAC_VER_03 },{ 0xfc800000, 0x00800000,	RTL_GIGA_MAC_VER_02 },{ 0xfc800000, 0x00000000,	RTL_GIGA_MAC_VER_01 },/* Catch-all */{ 0x00000000, 0x00000000,	RTL_GIGA_MAC_NONE   }};const struct rtl_mac_info *p = mac_info;u32 reg;reg = RTL_R32(TxConfig);while ((reg & p->mask) != p->val)p++;tp->mac_version = p->mac_version;if (tp->mac_version == RTL_GIGA_MAC_NONE) {netif_notice(tp, probe, dev,"unknown MAC, using family default\n");tp->mac_version = default_version;} else if (tp->mac_version == RTL_GIGA_MAC_VER_42) {tp->mac_version = tp->mii.supports_gmii ?RTL_GIGA_MAC_VER_42 :RTL_GIGA_MAC_VER_43;}
}static void rtl8169_print_mac_version(struct rtl8169_private *tp)
{dprintk("mac_version = 0x%02x\n", tp->mac_version);
}struct phy_reg {u16 reg;u16 val;
};static void rtl_writephy_batch(struct rtl8169_private *tp,const struct phy_reg *regs, int len)
{while (len-- > 0) {rtl_writephy(tp, regs->reg, regs->val);regs++;}
}#define PHY_READ		0x00000000
#define PHY_DATA_OR		0x10000000
#define PHY_DATA_AND		0x20000000
#define PHY_BJMPN		0x30000000
#define PHY_MDIO_CHG		0x40000000
#define PHY_CLEAR_READCOUNT	0x70000000
#define PHY_WRITE		0x80000000
#define PHY_READCOUNT_EQ_SKIP	0x90000000
#define PHY_COMP_EQ_SKIPN	0xa0000000
#define PHY_COMP_NEQ_SKIPN	0xb0000000
#define PHY_WRITE_PREVIOUS	0xc0000000
#define PHY_SKIPN		0xd0000000
#define PHY_DELAY_MS		0xe0000000struct fw_info {u32	magic;char	version[RTL_VER_SIZE];__le32	fw_start;__le32	fw_len;u8	chksum;
} __packed;#define FW_OPCODE_SIZE	sizeof(typeof(*((struct rtl_fw_phy_action *)0)->code))static bool rtl_fw_format_ok(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{const struct firmware *fw = rtl_fw->fw;struct fw_info *fw_info = (struct fw_info *)fw->data;struct rtl_fw_phy_action *pa = &rtl_fw->phy_action;char *version = rtl_fw->version;bool rc = false;if (fw->size < FW_OPCODE_SIZE)goto out;if (!fw_info->magic) {size_t i, size, start;u8 checksum = 0;if (fw->size < sizeof(*fw_info))goto out;for (i = 0; i < fw->size; i++)checksum += fw->data[i];if (checksum != 0)goto out;start = le32_to_cpu(fw_info->fw_start);if (start > fw->size)goto out;size = le32_to_cpu(fw_info->fw_len);if (size > (fw->size - start) / FW_OPCODE_SIZE)goto out;memcpy(version, fw_info->version, RTL_VER_SIZE);pa->code = (__le32 *)(fw->data + start);pa->size = size;} else {if (fw->size % FW_OPCODE_SIZE)goto out;strlcpy(version, rtl_lookup_firmware_name(tp), RTL_VER_SIZE);pa->code = (__le32 *)fw->data;pa->size = fw->size / FW_OPCODE_SIZE;}version[RTL_VER_SIZE - 1] = 0;rc = true;
out:return rc;
}static bool rtl_fw_data_ok(struct rtl8169_private *tp, struct net_device *dev,struct rtl_fw_phy_action *pa)
{bool rc = false;size_t index;for (index = 0; index < pa->size; index++) {u32 action = le32_to_cpu(pa->code[index]);u32 regno = (action & 0x0fff0000) >> 16;switch(action & 0xf0000000) {case PHY_READ:case PHY_DATA_OR:case PHY_DATA_AND:case PHY_MDIO_CHG:case PHY_CLEAR_READCOUNT:case PHY_WRITE:case PHY_WRITE_PREVIOUS:case PHY_DELAY_MS:break;case PHY_BJMPN:if (regno > index) {netif_err(tp, ifup, tp->dev,"Out of range of firmware\n");goto out;}break;case PHY_READCOUNT_EQ_SKIP:if (index + 2 >= pa->size) {netif_err(tp, ifup, tp->dev,"Out of range of firmware\n");goto out;}break;case PHY_COMP_EQ_SKIPN:case PHY_COMP_NEQ_SKIPN:case PHY_SKIPN:if (index + 1 + regno >= pa->size) {netif_err(tp, ifup, tp->dev,"Out of range of firmware\n");goto out;}break;default:netif_err(tp, ifup, tp->dev,"Invalid action 0x%08x\n", action);goto out;}}rc = true;
out:return rc;
}static int rtl_check_firmware(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{struct net_device *dev = tp->dev;int rc = -EINVAL;if (!rtl_fw_format_ok(tp, rtl_fw)) {netif_err(tp, ifup, dev, "invalid firwmare\n");goto out;}if (rtl_fw_data_ok(tp, dev, &rtl_fw->phy_action))rc = 0;
out:return rc;
}static void rtl_phy_write_fw(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{struct rtl_fw_phy_action *pa = &rtl_fw->phy_action;struct mdio_ops org, *ops = &tp->mdio_ops;u32 predata, count;size_t index;predata = count = 0;org.write = ops->write;org.read = ops->read;for (index = 0; index < pa->size; ) {u32 action = le32_to_cpu(pa->code[index]);u32 data = action & 0x0000ffff;u32 regno = (action & 0x0fff0000) >> 16;if (!action)break;switch(action & 0xf0000000) {case PHY_READ:predata = rtl_readphy(tp, regno);count++;index++;break;case PHY_DATA_OR:predata |= data;index++;break;case PHY_DATA_AND:predata &= data;index++;break;case PHY_BJMPN:index -= regno;break;case PHY_MDIO_CHG:if (data == 0) {ops->write = org.write;ops->read = org.read;} else if (data == 1) {ops->write = mac_mcu_write;ops->read = mac_mcu_read;}index++;break;case PHY_CLEAR_READCOUNT:count = 0;index++;break;case PHY_WRITE:rtl_writephy(tp, regno, data);index++;break;case PHY_READCOUNT_EQ_SKIP:index += (count == data) ? 2 : 1;break;case PHY_COMP_EQ_SKIPN:if (predata == data)index += regno;index++;break;case PHY_COMP_NEQ_SKIPN:if (predata != data)index += regno;index++;break;case PHY_WRITE_PREVIOUS:rtl_writephy(tp, regno, predata);index++;break;case PHY_SKIPN:index += regno + 1;break;case PHY_DELAY_MS:mdelay(data);index++;break;default:BUG();}}ops->write = org.write;ops->read = org.read;
}static void rtl_release_firmware(struct rtl8169_private *tp)
{if (!IS_ERR_OR_NULL(tp->rtl_fw)) {release_firmware(tp->rtl_fw->fw);kfree(tp->rtl_fw);}tp->rtl_fw = RTL_FIRMWARE_UNKNOWN;
}static void rtl_apply_firmware(struct rtl8169_private *tp)
{struct rtl_fw *rtl_fw = tp->rtl_fw;/* TODO: release firmware once rtl_phy_write_fw signals failures. */if (!IS_ERR_OR_NULL(rtl_fw))rtl_phy_write_fw(tp, rtl_fw);
}static void rtl_apply_firmware_cond(struct rtl8169_private *tp, u8 reg, u16 val)
{if (rtl_readphy(tp, reg) != val)netif_warn(tp, hw, tp->dev, "chipset not ready for firmware\n");elsertl_apply_firmware(tp);
}static void rtl8169s_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x06, 0x006e },{ 0x08, 0x0708 },{ 0x15, 0x4000 },{ 0x18, 0x65c7 },{ 0x1f, 0x0001 },{ 0x03, 0x00a1 },{ 0x02, 0x0008 },{ 0x01, 0x0120 },{ 0x00, 0x1000 },{ 0x04, 0x0800 },{ 0x04, 0x0000 },{ 0x03, 0xff41 },{ 0x02, 0xdf60 },{ 0x01, 0x0140 },{ 0x00, 0x0077 },{ 0x04, 0x7800 },{ 0x04, 0x7000 },{ 0x03, 0x802f },{ 0x02, 0x4f02 },{ 0x01, 0x0409 },{ 0x00, 0xf0f9 },{ 0x04, 0x9800 },{ 0x04, 0x9000 },{ 0x03, 0xdf01 },{ 0x02, 0xdf20 },{ 0x01, 0xff95 },{ 0x00, 0xba00 },{ 0x04, 0xa800 },{ 0x04, 0xa000 },{ 0x03, 0xff41 },{ 0x02, 0xdf20 },{ 0x01, 0x0140 },{ 0x00, 0x00bb },{ 0x04, 0xb800 },{ 0x04, 0xb000 },{ 0x03, 0xdf41 },{ 0x02, 0xdc60 },{ 0x01, 0x6340 },{ 0x00, 0x007d },{ 0x04, 0xd800 },{ 0x04, 0xd000 },{ 0x03, 0xdf01 },{ 0x02, 0xdf20 },{ 0x01, 0x100a },{ 0x00, 0xa0ff },{ 0x04, 0xf800 },{ 0x04, 0xf000 },{ 0x1f, 0x0000 },{ 0x0b, 0x0000 },{ 0x00, 0x9200 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8169sb_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0002 },{ 0x01, 0x90d0 },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp)
{struct pci_dev *pdev = tp->pci_dev;if ((pdev->subsystem_vendor != PCI_VENDOR_ID_GIGABYTE) ||(pdev->subsystem_device != 0xe000))return;rtl_writephy(tp, 0x1f, 0x0001);rtl_writephy(tp, 0x10, 0xf01b);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x04, 0x0000 },{ 0x03, 0x00a1 },{ 0x02, 0x0008 },{ 0x01, 0x0120 },{ 0x00, 0x1000 },{ 0x04, 0x0800 },{ 0x04, 0x9000 },{ 0x03, 0x802f },{ 0x02, 0x4f02 },{ 0x01, 0x0409 },{ 0x00, 0xf099 },{ 0x04, 0x9800 },{ 0x04, 0xa000 },{ 0x03, 0xdf01 },{ 0x02, 0xdf20 },{ 0x01, 0xff95 },{ 0x00, 0xba00 },{ 0x04, 0xa800 },{ 0x04, 0xf000 },{ 0x03, 0xdf01 },{ 0x02, 0xdf20 },{ 0x01, 0x101a },{ 0x00, 0xa0ff },{ 0x04, 0xf800 },{ 0x04, 0x0000 },{ 0x1f, 0x0000 },{ 0x1f, 0x0001 },{ 0x10, 0xf41b },{ 0x14, 0xfb54 },{ 0x18, 0xf5c7 },{ 0x1f, 0x0000 },{ 0x1f, 0x0001 },{ 0x17, 0x0cc0 },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));rtl8169scd_hw_phy_config_quirk(tp);
}static void rtl8169sce_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x04, 0x0000 },{ 0x03, 0x00a1 },{ 0x02, 0x0008 },{ 0x01, 0x0120 },{ 0x00, 0x1000 },{ 0x04, 0x0800 },{ 0x04, 0x9000 },{ 0x03, 0x802f },{ 0x02, 0x4f02 },{ 0x01, 0x0409 },{ 0x00, 0xf099 },{ 0x04, 0x9800 },{ 0x04, 0xa000 },{ 0x03, 0xdf01 },{ 0x02, 0xdf20 },{ 0x01, 0xff95 },{ 0x00, 0xba00 },{ 0x04, 0xa800 },{ 0x04, 0xf000 },{ 0x03, 0xdf01 },{ 0x02, 0xdf20 },{ 0x01, 0x101a },{ 0x00, 0xa0ff },{ 0x04, 0xf800 },{ 0x04, 0x0000 },{ 0x1f, 0x0000 },{ 0x1f, 0x0001 },{ 0x0b, 0x8480 },{ 0x1f, 0x0000 },{ 0x1f, 0x0001 },{ 0x18, 0x67c7 },{ 0x04, 0x2000 },{ 0x03, 0x002f },{ 0x02, 0x4360 },{ 0x01, 0x0109 },{ 0x00, 0x3022 },{ 0x04, 0x2800 },{ 0x1f, 0x0000 },{ 0x1f, 0x0001 },{ 0x17, 0x0cc0 },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8168bb_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x10, 0xf41b },{ 0x1f, 0x0000 }};rtl_writephy(tp, 0x1f, 0x0001);rtl_patchphy(tp, 0x16, 1 << 0);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8168bef_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x10, 0xf41b },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8168cp_1_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0000 },{ 0x1d, 0x0f00 },{ 0x1f, 0x0002 },{ 0x0c, 0x1ec8 },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8168cp_2_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x1d, 0x3d98 },{ 0x1f, 0x0000 }};rtl_writephy(tp, 0x1f, 0x0000);rtl_patchphy(tp, 0x14, 1 << 5);rtl_patchphy(tp, 0x0d, 1 << 5);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8168c_1_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x12, 0x2300 },{ 0x1f, 0x0002 },{ 0x00, 0x88d4 },{ 0x01, 0x82b1 },{ 0x03, 0x7002 },{ 0x08, 0x9e30 },{ 0x09, 0x01f0 },{ 0x0a, 0x5500 },{ 0x0c, 0x00c8 },{ 0x1f, 0x0003 },{ 0x12, 0xc096 },{ 0x16, 0x000a },{ 0x1f, 0x0000 },{ 0x1f, 0x0000 },{ 0x09, 0x2000 },{ 0x09, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));rtl_patchphy(tp, 0x14, 1 << 5);rtl_patchphy(tp, 0x0d, 1 << 5);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168c_2_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x12, 0x2300 },{ 0x03, 0x802f },{ 0x02, 0x4f02 },{ 0x01, 0x0409 },{ 0x00, 0xf099 },{ 0x04, 0x9800 },{ 0x04, 0x9000 },{ 0x1d, 0x3d98 },{ 0x1f, 0x0002 },{ 0x0c, 0x7eb8 },{ 0x06, 0x0761 },{ 0x1f, 0x0003 },{ 0x16, 0x0f0a },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));rtl_patchphy(tp, 0x16, 1 << 0);rtl_patchphy(tp, 0x14, 1 << 5);rtl_patchphy(tp, 0x0d, 1 << 5);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168c_3_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x12, 0x2300 },{ 0x1d, 0x3d98 },{ 0x1f, 0x0002 },{ 0x0c, 0x7eb8 },{ 0x06, 0x5461 },{ 0x1f, 0x0003 },{ 0x16, 0x0f0a },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));rtl_patchphy(tp, 0x16, 1 << 0);rtl_patchphy(tp, 0x14, 1 << 5);rtl_patchphy(tp, 0x0d, 1 << 5);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168c_4_hw_phy_config(struct rtl8169_private *tp)
{rtl8168c_3_hw_phy_config(tp);
}static void rtl8168d_1_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init_0[] = {/* Channel Estimation */{ 0x1f, 0x0001 },{ 0x06, 0x4064 },{ 0x07, 0x2863 },{ 0x08, 0x059c },{ 0x09, 0x26b4 },{ 0x0a, 0x6a19 },{ 0x0b, 0xdcc8 },{ 0x10, 0xf06d },{ 0x14, 0x7f68 },{ 0x18, 0x7fd9 },{ 0x1c, 0xf0ff },{ 0x1d, 0x3d9c },{ 0x1f, 0x0003 },{ 0x12, 0xf49f },{ 0x13, 0x070b },{ 0x1a, 0x05ad },{ 0x14, 0x94c0 },/** Tx Error Issue* Enhance line driver power*/{ 0x1f, 0x0002 },{ 0x06, 0x5561 },{ 0x1f, 0x0005 },{ 0x05, 0x8332 },{ 0x06, 0x5561 },/** Can not link to 1Gbps with bad cable* Decrease SNR threshold form 21.07dB to 19.04dB*/{ 0x1f, 0x0001 },{ 0x17, 0x0cc0 },{ 0x1f, 0x0000 },{ 0x0d, 0xf880 }};rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));/** Rx Error Issue* Fine Tune Switching regulator parameter*/rtl_writephy(tp, 0x1f, 0x0002);rtl_w1w0_phy(tp, 0x0b, 0x0010, 0x00ef);rtl_w1w0_phy(tp, 0x0c, 0xa200, 0x5d00);if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) {static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0002 },{ 0x05, 0x669a },{ 0x1f, 0x0005 },{ 0x05, 0x8330 },{ 0x06, 0x669a },{ 0x1f, 0x0002 }};int val;rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));val = rtl_readphy(tp, 0x0d);if ((val & 0x00ff) != 0x006c) {static const u32 set[] = {0x0065, 0x0066, 0x0067, 0x0068,0x0069, 0x006a, 0x006b, 0x006c};int i;rtl_writephy(tp, 0x1f, 0x0002);val &= 0xff00;for (i = 0; i < ARRAY_SIZE(set); i++)rtl_writephy(tp, 0x0d, val | set[i]);}} else {static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0002 },{ 0x05, 0x6662 },{ 0x1f, 0x0005 },{ 0x05, 0x8330 },{ 0x06, 0x6662 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));}/* RSET couple improve */rtl_writephy(tp, 0x1f, 0x0002);rtl_patchphy(tp, 0x0d, 0x0300);rtl_patchphy(tp, 0x0f, 0x0010);/* Fine tune PLL performance */rtl_writephy(tp, 0x1f, 0x0002);rtl_w1w0_phy(tp, 0x02, 0x0100, 0x0600);rtl_w1w0_phy(tp, 0x03, 0x0000, 0xe000);rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x001b);rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xbf00);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168d_2_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init_0[] = {/* Channel Estimation */{ 0x1f, 0x0001 },{ 0x06, 0x4064 },{ 0x07, 0x2863 },{ 0x08, 0x059c },{ 0x09, 0x26b4 },{ 0x0a, 0x6a19 },{ 0x0b, 0xdcc8 },{ 0x10, 0xf06d },{ 0x14, 0x7f68 },{ 0x18, 0x7fd9 },{ 0x1c, 0xf0ff },{ 0x1d, 0x3d9c },{ 0x1f, 0x0003 },{ 0x12, 0xf49f },{ 0x13, 0x070b },{ 0x1a, 0x05ad },{ 0x14, 0x94c0 },/** Tx Error Issue* Enhance line driver power*/{ 0x1f, 0x0002 },{ 0x06, 0x5561 },{ 0x1f, 0x0005 },{ 0x05, 0x8332 },{ 0x06, 0x5561 },/** Can not link to 1Gbps with bad cable* Decrease SNR threshold form 21.07dB to 19.04dB*/{ 0x1f, 0x0001 },{ 0x17, 0x0cc0 },{ 0x1f, 0x0000 },{ 0x0d, 0xf880 }};rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) {static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0002 },{ 0x05, 0x669a },{ 0x1f, 0x0005 },{ 0x05, 0x8330 },{ 0x06, 0x669a },{ 0x1f, 0x0002 }};int val;rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));val = rtl_readphy(tp, 0x0d);if ((val & 0x00ff) != 0x006c) {static const u32 set[] = {0x0065, 0x0066, 0x0067, 0x0068,0x0069, 0x006a, 0x006b, 0x006c};int i;rtl_writephy(tp, 0x1f, 0x0002);val &= 0xff00;for (i = 0; i < ARRAY_SIZE(set); i++)rtl_writephy(tp, 0x0d, val | set[i]);}} else {static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0002 },{ 0x05, 0x2642 },{ 0x1f, 0x0005 },{ 0x05, 0x8330 },{ 0x06, 0x2642 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));}/* Fine tune PLL performance */rtl_writephy(tp, 0x1f, 0x0002);rtl_w1w0_phy(tp, 0x02, 0x0100, 0x0600);rtl_w1w0_phy(tp, 0x03, 0x0000, 0xe000);/* Switching regulator Slew rate */rtl_writephy(tp, 0x1f, 0x0002);rtl_patchphy(tp, 0x0f, 0x0017);rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x001b);rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xb300);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168d_3_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0002 },{ 0x10, 0x0008 },{ 0x0d, 0x006c },{ 0x1f, 0x0000 },{ 0x0d, 0xf880 },{ 0x1f, 0x0001 },{ 0x17, 0x0cc0 },{ 0x1f, 0x0001 },{ 0x0b, 0xa4d8 },{ 0x09, 0x281c },{ 0x07, 0x2883 },{ 0x0a, 0x6b35 },{ 0x1d, 0x3da4 },{ 0x1c, 0xeffd },{ 0x14, 0x7f52 },{ 0x18, 0x7fc6 },{ 0x08, 0x0601 },{ 0x06, 0x4063 },{ 0x10, 0xf074 },{ 0x1f, 0x0003 },{ 0x13, 0x0789 },{ 0x12, 0xf4bd },{ 0x1a, 0x04fd },{ 0x14, 0x84b0 },{ 0x1f, 0x0000 },{ 0x00, 0x9200 },{ 0x1f, 0x0005 },{ 0x01, 0x0340 },{ 0x1f, 0x0001 },{ 0x04, 0x4000 },{ 0x03, 0x1d21 },{ 0x02, 0x0c32 },{ 0x01, 0x0200 },{ 0x00, 0x5554 },{ 0x04, 0x4800 },{ 0x04, 0x4000 },{ 0x04, 0xf000 },{ 0x03, 0xdf01 },{ 0x02, 0xdf20 },{ 0x01, 0x101a },{ 0x00, 0xa0ff },{ 0x04, 0xf800 },{ 0x04, 0xf000 },{ 0x1f, 0x0000 },{ 0x1f, 0x0007 },{ 0x1e, 0x0023 },{ 0x16, 0x0000 },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8168d_4_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0001 },{ 0x17, 0x0cc0 },{ 0x1f, 0x0007 },{ 0x1e, 0x002d },{ 0x18, 0x0040 },{ 0x1f, 0x0000 }};rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));rtl_patchphy(tp, 0x0d, 1 << 5);
}static void rtl8168e_1_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {/* Enable Delay cap */{ 0x1f, 0x0005 },{ 0x05, 0x8b80 },{ 0x06, 0xc896 },{ 0x1f, 0x0000 },/* Channel estimation fine tune */{ 0x1f, 0x0001 },{ 0x0b, 0x6c20 },{ 0x07, 0x2872 },{ 0x1c, 0xefff },{ 0x1f, 0x0003 },{ 0x14, 0x6420 },{ 0x1f, 0x0000 },/* Update PFM & 10M TX idle timer */{ 0x1f, 0x0007 },{ 0x1e, 0x002f },{ 0x15, 0x1919 },{ 0x1f, 0x0000 },{ 0x1f, 0x0007 },{ 0x1e, 0x00ac },{ 0x18, 0x0006 },{ 0x1f, 0x0000 }};rtl_apply_firmware(tp);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));/* DCO enable for 10M IDLE Power */rtl_writephy(tp, 0x1f, 0x0007);rtl_writephy(tp, 0x1e, 0x0023);rtl_w1w0_phy(tp, 0x17, 0x0006, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);/* For impedance matching */rtl_writephy(tp, 0x1f, 0x0002);rtl_w1w0_phy(tp, 0x08, 0x8000, 0x7f00);rtl_writephy(tp, 0x1f, 0x0000);/* PHY auto speed down */rtl_writephy(tp, 0x1f, 0x0007);rtl_writephy(tp, 0x1e, 0x002d);rtl_w1w0_phy(tp, 0x18, 0x0050, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);rtl_w1w0_phy(tp, 0x14, 0x8000, 0x0000);rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b86);rtl_w1w0_phy(tp, 0x06, 0x0001, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b85);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x2000);rtl_writephy(tp, 0x1f, 0x0007);rtl_writephy(tp, 0x1e, 0x0020);rtl_w1w0_phy(tp, 0x15, 0x0000, 0x1100);rtl_writephy(tp, 0x1f, 0x0006);rtl_writephy(tp, 0x00, 0x5a00);rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, 0x0d, 0x0007);rtl_writephy(tp, 0x0e, 0x003c);rtl_writephy(tp, 0x0d, 0x4007);rtl_writephy(tp, 0x0e, 0x0000);rtl_writephy(tp, 0x0d, 0x0000);
}static void rtl_rar_exgmac_set(struct rtl8169_private *tp, u8 *addr)
{const u16 w[] = {addr[0] | (addr[1] << 8),addr[2] | (addr[3] << 8),addr[4] | (addr[5] << 8)};const struct exgmac_reg e[] = {{ .addr = 0xe0, ERIAR_MASK_1111, .val = w[0] | (w[1] << 16) },{ .addr = 0xe4, ERIAR_MASK_1111, .val = w[2] },{ .addr = 0xf0, ERIAR_MASK_1111, .val = w[0] << 16 },{ .addr = 0xf4, ERIAR_MASK_1111, .val = w[1] | (w[2] << 16) }};rtl_write_exgmac_batch(tp, e, ARRAY_SIZE(e));
}static void rtl8168e_2_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {/* Enable Delay cap */{ 0x1f, 0x0004 },{ 0x1f, 0x0007 },{ 0x1e, 0x00ac },{ 0x18, 0x0006 },{ 0x1f, 0x0002 },{ 0x1f, 0x0000 },{ 0x1f, 0x0000 },/* Channel estimation fine tune */{ 0x1f, 0x0003 },{ 0x09, 0xa20f },{ 0x1f, 0x0000 },{ 0x1f, 0x0000 },/* Green Setting */{ 0x1f, 0x0005 },{ 0x05, 0x8b5b },{ 0x06, 0x9222 },{ 0x05, 0x8b6d },{ 0x06, 0x8000 },{ 0x05, 0x8b76 },{ 0x06, 0x8000 },{ 0x1f, 0x0000 }};rtl_apply_firmware(tp);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));/* For 4-corner performance improve */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b80);rtl_w1w0_phy(tp, 0x17, 0x0006, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);/* PHY auto speed down */rtl_writephy(tp, 0x1f, 0x0004);rtl_writephy(tp, 0x1f, 0x0007);rtl_writephy(tp, 0x1e, 0x002d);rtl_w1w0_phy(tp, 0x18, 0x0010, 0x0000);rtl_writephy(tp, 0x1f, 0x0002);rtl_writephy(tp, 0x1f, 0x0000);rtl_w1w0_phy(tp, 0x14, 0x8000, 0x0000);/* improve 10M EEE waveform */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b86);rtl_w1w0_phy(tp, 0x06, 0x0001, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);/* Improve 2-pair detection performance */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b85);rtl_w1w0_phy(tp, 0x06, 0x4000, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);/* EEE setting */rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_1111, 0x0000, 0x0003, ERIAR_EXGMAC);rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b85);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x2000);rtl_writephy(tp, 0x1f, 0x0004);rtl_writephy(tp, 0x1f, 0x0007);rtl_writephy(tp, 0x1e, 0x0020);rtl_w1w0_phy(tp, 0x15, 0x0000, 0x0100);rtl_writephy(tp, 0x1f, 0x0002);rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, 0x0d, 0x0007);rtl_writephy(tp, 0x0e, 0x003c);rtl_writephy(tp, 0x0d, 0x4007);rtl_writephy(tp, 0x0e, 0x0000);rtl_writephy(tp, 0x0d, 0x0000);/* Green feature */rtl_writephy(tp, 0x1f, 0x0003);rtl_w1w0_phy(tp, 0x19, 0x0000, 0x0001);rtl_w1w0_phy(tp, 0x10, 0x0000, 0x0400);rtl_writephy(tp, 0x1f, 0x0000);/* Broken BIOS workaround: feed GigaMAC registers with MAC address. */rtl_rar_exgmac_set(tp, tp->dev->dev_addr);
}static void rtl8168f_hw_phy_config(struct rtl8169_private *tp)
{/* For 4-corner performance improve */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b80);rtl_w1w0_phy(tp, 0x06, 0x0006, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);/* PHY auto speed down */rtl_writephy(tp, 0x1f, 0x0007);rtl_writephy(tp, 0x1e, 0x002d);rtl_w1w0_phy(tp, 0x18, 0x0010, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);rtl_w1w0_phy(tp, 0x14, 0x8000, 0x0000);/* Improve 10M EEE waveform */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b86);rtl_w1w0_phy(tp, 0x06, 0x0001, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168f_1_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {/* Channel estimation fine tune */{ 0x1f, 0x0003 },{ 0x09, 0xa20f },{ 0x1f, 0x0000 },/* Modify green table for giga & fnet */{ 0x1f, 0x0005 },{ 0x05, 0x8b55 },{ 0x06, 0x0000 },{ 0x05, 0x8b5e },{ 0x06, 0x0000 },{ 0x05, 0x8b67 },{ 0x06, 0x0000 },{ 0x05, 0x8b70 },{ 0x06, 0x0000 },{ 0x1f, 0x0000 },{ 0x1f, 0x0007 },{ 0x1e, 0x0078 },{ 0x17, 0x0000 },{ 0x19, 0x00fb },{ 0x1f, 0x0000 },/* Modify green table for 10M */{ 0x1f, 0x0005 },{ 0x05, 0x8b79 },{ 0x06, 0xaa00 },{ 0x1f, 0x0000 },/* Disable hiimpedance detection (RTCT) */{ 0x1f, 0x0003 },{ 0x01, 0x328a },{ 0x1f, 0x0000 }};rtl_apply_firmware(tp);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));rtl8168f_hw_phy_config(tp);/* Improve 2-pair detection performance */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b85);rtl_w1w0_phy(tp, 0x06, 0x4000, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168f_2_hw_phy_config(struct rtl8169_private *tp)
{rtl_apply_firmware(tp);rtl8168f_hw_phy_config(tp);
}static void rtl8411_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {/* Channel estimation fine tune */{ 0x1f, 0x0003 },{ 0x09, 0xa20f },{ 0x1f, 0x0000 },/* Modify green table for giga & fnet */{ 0x1f, 0x0005 },{ 0x05, 0x8b55 },{ 0x06, 0x0000 },{ 0x05, 0x8b5e },{ 0x06, 0x0000 },{ 0x05, 0x8b67 },{ 0x06, 0x0000 },{ 0x05, 0x8b70 },{ 0x06, 0x0000 },{ 0x1f, 0x0000 },{ 0x1f, 0x0007 },{ 0x1e, 0x0078 },{ 0x17, 0x0000 },{ 0x19, 0x00aa },{ 0x1f, 0x0000 },/* Modify green table for 10M */{ 0x1f, 0x0005 },{ 0x05, 0x8b79 },{ 0x06, 0xaa00 },{ 0x1f, 0x0000 },/* Disable hiimpedance detection (RTCT) */{ 0x1f, 0x0003 },{ 0x01, 0x328a },{ 0x1f, 0x0000 }};rtl_apply_firmware(tp);rtl8168f_hw_phy_config(tp);/* Improve 2-pair detection performance */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b85);rtl_w1w0_phy(tp, 0x06, 0x4000, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));/* Modify green table for giga */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b54);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0800);rtl_writephy(tp, 0x05, 0x8b5d);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0800);rtl_writephy(tp, 0x05, 0x8a7c);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0100);rtl_writephy(tp, 0x05, 0x8a7f);rtl_w1w0_phy(tp, 0x06, 0x0100, 0x0000);rtl_writephy(tp, 0x05, 0x8a82);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0100);rtl_writephy(tp, 0x05, 0x8a85);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0100);rtl_writephy(tp, 0x05, 0x8a88);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0100);rtl_writephy(tp, 0x1f, 0x0000);/* uc same-seed solution */rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b85);rtl_w1w0_phy(tp, 0x06, 0x8000, 0x0000);rtl_writephy(tp, 0x1f, 0x0000);/* eee setting */rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x00, 0x03, ERIAR_EXGMAC);rtl_writephy(tp, 0x1f, 0x0005);rtl_writephy(tp, 0x05, 0x8b85);rtl_w1w0_phy(tp, 0x06, 0x0000, 0x2000);rtl_writephy(tp, 0x1f, 0x0004);rtl_writephy(tp, 0x1f, 0x0007);rtl_writephy(tp, 0x1e, 0x0020);rtl_w1w0_phy(tp, 0x15, 0x0000, 0x0100);rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, 0x0d, 0x0007);rtl_writephy(tp, 0x0e, 0x003c);rtl_writephy(tp, 0x0d, 0x4007);rtl_writephy(tp, 0x0e, 0x0000);rtl_writephy(tp, 0x0d, 0x0000);/* Green feature */rtl_writephy(tp, 0x1f, 0x0003);rtl_w1w0_phy(tp, 0x19, 0x0000, 0x0001);rtl_w1w0_phy(tp, 0x10, 0x0000, 0x0400);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168g_1_hw_phy_config(struct rtl8169_private *tp)
{rtl_apply_firmware(tp);rtl_writephy(tp, 0x1f, 0x0a46);if (rtl_readphy(tp, 0x10) & 0x0100) {rtl_writephy(tp, 0x1f, 0x0bcc);rtl_w1w0_phy(tp, 0x12, 0x0000, 0x8000);} else {rtl_writephy(tp, 0x1f, 0x0bcc);rtl_w1w0_phy(tp, 0x12, 0x8000, 0x0000);}rtl_writephy(tp, 0x1f, 0x0a46);if (rtl_readphy(tp, 0x13) & 0x0100) {rtl_writephy(tp, 0x1f, 0x0c41);rtl_w1w0_phy(tp, 0x15, 0x0002, 0x0000);} else {rtl_writephy(tp, 0x1f, 0x0c41);rtl_w1w0_phy(tp, 0x15, 0x0000, 0x0002);}/* Enable PHY auto speed down */rtl_writephy(tp, 0x1f, 0x0a44);rtl_w1w0_phy(tp, 0x11, 0x000c, 0x0000);rtl_writephy(tp, 0x1f, 0x0bcc);rtl_w1w0_phy(tp, 0x14, 0x0100, 0x0000);rtl_writephy(tp, 0x1f, 0x0a44);rtl_w1w0_phy(tp, 0x11, 0x00c0, 0x0000);rtl_writephy(tp, 0x1f, 0x0a43);rtl_writephy(tp, 0x13, 0x8084);rtl_w1w0_phy(tp, 0x14, 0x0000, 0x6000);rtl_w1w0_phy(tp, 0x10, 0x1003, 0x0000);/* EEE auto-fallback function */rtl_writephy(tp, 0x1f, 0x0a4b);rtl_w1w0_phy(tp, 0x11, 0x0004, 0x0000);/* Enable UC LPF tune function */rtl_writephy(tp, 0x1f, 0x0a43);rtl_writephy(tp, 0x13, 0x8012);rtl_w1w0_phy(tp, 0x14, 0x8000, 0x0000);rtl_writephy(tp, 0x1f, 0x0c42);rtl_w1w0_phy(tp, 0x11, 0x4000, 0x2000);/* Improve SWR Efficiency */rtl_writephy(tp, 0x1f, 0x0bcd);rtl_writephy(tp, 0x14, 0x5065);rtl_writephy(tp, 0x14, 0xd065);rtl_writephy(tp, 0x1f, 0x0bc8);rtl_writephy(tp, 0x11, 0x5655);rtl_writephy(tp, 0x1f, 0x0bcd);rtl_writephy(tp, 0x14, 0x1065);rtl_writephy(tp, 0x14, 0x9065);rtl_writephy(tp, 0x14, 0x1065);/* Check ALDPS bit, disable it if enabled */rtl_writephy(tp, 0x1f, 0x0a43);if (rtl_readphy(tp, 0x10) & 0x0004)rtl_w1w0_phy(tp, 0x10, 0x0000, 0x0004);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8168g_2_hw_phy_config(struct rtl8169_private *tp)
{rtl_apply_firmware(tp);
}static void rtl8102e_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0003 },{ 0x08, 0x441d },{ 0x01, 0x9100 },{ 0x1f, 0x0000 }};rtl_writephy(tp, 0x1f, 0x0000);rtl_patchphy(tp, 0x11, 1 << 12);rtl_patchphy(tp, 0x19, 1 << 13);rtl_patchphy(tp, 0x10, 1 << 15);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8105e_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0005 },{ 0x1a, 0x0000 },{ 0x1f, 0x0000 },{ 0x1f, 0x0004 },{ 0x1c, 0x0000 },{ 0x1f, 0x0000 },{ 0x1f, 0x0001 },{ 0x15, 0x7701 },{ 0x1f, 0x0000 }};/* Disable ALDPS before ram code */rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, 0x18, 0x0310);msleep(100);rtl_apply_firmware(tp);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}static void rtl8402_hw_phy_config(struct rtl8169_private *tp)
{/* Disable ALDPS before setting firmware */rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, 0x18, 0x0310);msleep(20);rtl_apply_firmware(tp);/* EEE setting */rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_writephy(tp, 0x1f, 0x0004);rtl_writephy(tp, 0x10, 0x401f);rtl_writephy(tp, 0x19, 0x7030);rtl_writephy(tp, 0x1f, 0x0000);
}static void rtl8106e_hw_phy_config(struct rtl8169_private *tp)
{static const struct phy_reg phy_reg_init[] = {{ 0x1f, 0x0004 },{ 0x10, 0xc07f },{ 0x19, 0x7030 },{ 0x1f, 0x0000 }};/* Disable ALDPS before ram code */rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, 0x18, 0x0310);msleep(100);rtl_apply_firmware(tp);rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
}static void rtl_hw_phy_config(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);rtl8169_print_mac_version(tp);switch (tp->mac_version) {case RTL_GIGA_MAC_VER_01:break;case RTL_GIGA_MAC_VER_02:case RTL_GIGA_MAC_VER_03:rtl8169s_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_04:rtl8169sb_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_05:rtl8169scd_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_06:rtl8169sce_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_07:case RTL_GIGA_MAC_VER_08:case RTL_GIGA_MAC_VER_09:rtl8102e_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_11:rtl8168bb_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_12:rtl8168bef_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_17:rtl8168bef_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_18:rtl8168cp_1_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_19:rtl8168c_1_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_20:rtl8168c_2_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_21:rtl8168c_3_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_22:rtl8168c_4_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_23:case RTL_GIGA_MAC_VER_24:rtl8168cp_2_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_25:rtl8168d_1_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_26:rtl8168d_2_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_27:rtl8168d_3_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_28:rtl8168d_4_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_29:case RTL_GIGA_MAC_VER_30:rtl8105e_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_31:/* None. */break;case RTL_GIGA_MAC_VER_32:case RTL_GIGA_MAC_VER_33:rtl8168e_1_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_34:rtl8168e_2_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_35:rtl8168f_1_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_36:rtl8168f_2_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_37:rtl8402_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_38:rtl8411_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_39:rtl8106e_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_40:rtl8168g_1_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_42:case RTL_GIGA_MAC_VER_43:case RTL_GIGA_MAC_VER_44:rtl8168g_2_hw_phy_config(tp);break;case RTL_GIGA_MAC_VER_41:default:break;}
}static void rtl_phy_work(struct rtl8169_private *tp)
{struct timer_list *timer = &tp->timer;void __iomem *ioaddr = tp->mmio_addr;unsigned long timeout = RTL8169_PHY_TIMEOUT;assert(tp->mac_version > RTL_GIGA_MAC_VER_01);if (tp->phy_reset_pending(tp)) {/** A busy loop could burn quite a few cycles on nowadays CPU.* Let's delay the execution of the timer for a few ticks.*/timeout = HZ/10;goto out_mod_timer;}if (tp->link_ok(ioaddr))return;netif_dbg(tp, link, tp->dev, "PHY reset until link up\n");tp->phy_reset_enable(tp);out_mod_timer:mod_timer(timer, jiffies + timeout);
}static void rtl_schedule_task(struct rtl8169_private *tp, enum rtl_flag flag)
{if (!test_and_set_bit(flag, tp->wk.flags))schedule_work(&tp->wk.work);
}static void rtl8169_phy_timer(unsigned long __opaque)
{struct net_device *dev = (struct net_device *)__opaque;struct rtl8169_private *tp = netdev_priv(dev);rtl_schedule_task(tp, RTL_FLAG_TASK_PHY_PENDING);
}static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev,void __iomem *ioaddr)
{iounmap(ioaddr);pci_release_regions(pdev);pci_clear_mwi(pdev);pci_disable_device(pdev);free_netdev(dev);
}DECLARE_RTL_COND(rtl_phy_reset_cond)
{return tp->phy_reset_pending(tp);
}static void rtl8169_phy_reset(struct net_device *dev,struct rtl8169_private *tp)
{tp->phy_reset_enable(tp);rtl_msleep_loop_wait_low(tp, &rtl_phy_reset_cond, 1, 100);
}static bool rtl_tbi_enabled(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;return (tp->mac_version == RTL_GIGA_MAC_VER_01) &&(RTL_R8(PHYstatus) & TBI_Enable);
}static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;rtl_hw_phy_config(dev);if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");RTL_W8(0x82, 0x01);}pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40);if (tp->mac_version <= RTL_GIGA_MAC_VER_06)pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);if (tp->mac_version == RTL_GIGA_MAC_VER_02) {dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");RTL_W8(0x82, 0x01);dprintk("Set PHY Reg 0x0bh = 0x00h\n");rtl_writephy(tp, 0x0b, 0x0000); //w 0x0b 15 0 0}rtl8169_phy_reset(dev, tp);rtl8169_set_speed(dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL,ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |(tp->mii.supports_gmii ?ADVERTISED_1000baseT_Half |ADVERTISED_1000baseT_Full : 0));if (rtl_tbi_enabled(tp))netif_info(tp, link, dev, "TBI auto-negotiating\n");
}static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr)
{void __iomem *ioaddr = tp->mmio_addr;rtl_lock_work(tp);RTL_W8(Cfg9346, Cfg9346_Unlock);RTL_W32(MAC4, addr[4] | addr[5] << 8);RTL_R32(MAC4);RTL_W32(MAC0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);RTL_R32(MAC0);if (tp->mac_version == RTL_GIGA_MAC_VER_34)rtl_rar_exgmac_set(tp, addr);RTL_W8(Cfg9346, Cfg9346_Lock);rtl_unlock_work(tp);
}static int rtl_set_mac_address(struct net_device *dev, void *p)
{struct rtl8169_private *tp = netdev_priv(dev);struct sockaddr *addr = p;if (!is_valid_ether_addr(addr->sa_data))return -EADDRNOTAVAIL;memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);rtl_rar_set(tp, dev->dev_addr);return 0;
}static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{struct rtl8169_private *tp = netdev_priv(dev);struct mii_ioctl_data *data = if_mii(ifr);return netif_running(dev) ? tp->do_ioctl(tp, data, cmd) : -ENODEV;
}static int rtl_xmii_ioctl(struct rtl8169_private *tp,struct mii_ioctl_data *data, int cmd)
{switch (cmd) {case SIOCGMIIPHY:data->phy_id = 32; /* Internal PHY */return 0;case SIOCGMIIREG:data->val_out = rtl_readphy(tp, data->reg_num & 0x1f);return 0;case SIOCSMIIREG:rtl_writephy(tp, data->reg_num & 0x1f, data->val_in);return 0;}return -EOPNOTSUPP;
}static int rtl_tbi_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd)
{return -EOPNOTSUPP;
}static void rtl_disable_msi(struct pci_dev *pdev, struct rtl8169_private *tp)
{if (tp->features & RTL_FEATURE_MSI) {pci_disable_msi(pdev);tp->features &= ~RTL_FEATURE_MSI;}
}static void rtl_init_mdio_ops(struct rtl8169_private *tp)
{struct mdio_ops *ops = &tp->mdio_ops;switch (tp->mac_version) {case RTL_GIGA_MAC_VER_27:ops->write	= r8168dp_1_mdio_write;ops->read	= r8168dp_1_mdio_read;break;case RTL_GIGA_MAC_VER_28:case RTL_GIGA_MAC_VER_31:ops->write	= r8168dp_2_mdio_write;ops->read	= r8168dp_2_mdio_read;break;case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:case RTL_GIGA_MAC_VER_42:case RTL_GIGA_MAC_VER_43:case RTL_GIGA_MAC_VER_44:ops->write	= r8168g_mdio_write;ops->read	= r8168g_mdio_read;break;default:ops->write	= r8169_mdio_write;ops->read	= r8169_mdio_read;break;}
}static void rtl_speed_down(struct rtl8169_private *tp)
{u32 adv;int lpa;rtl_writephy(tp, 0x1f, 0x0000);lpa = rtl_readphy(tp, MII_LPA);if (lpa & (LPA_10HALF | LPA_10FULL))adv = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full;else if (lpa & (LPA_100HALF | LPA_100FULL))adv = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;elseadv = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |(tp->mii.supports_gmii ?ADVERTISED_1000baseT_Half |ADVERTISED_1000baseT_Full : 0);rtl8169_set_speed(tp->dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL,adv);
}static void rtl_wol_suspend_quirk(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;switch (tp->mac_version) {case RTL_GIGA_MAC_VER_25:case RTL_GIGA_MAC_VER_26:case RTL_GIGA_MAC_VER_29:case RTL_GIGA_MAC_VER_30:case RTL_GIGA_MAC_VER_32:case RTL_GIGA_MAC_VER_33:case RTL_GIGA_MAC_VER_34:case RTL_GIGA_MAC_VER_37:case RTL_GIGA_MAC_VER_38:case RTL_GIGA_MAC_VER_39:case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:case RTL_GIGA_MAC_VER_42:case RTL_GIGA_MAC_VER_43:case RTL_GIGA_MAC_VER_44:RTL_W32(RxConfig, RTL_R32(RxConfig) |AcceptBroadcast | AcceptMulticast | AcceptMyPhys);break;default:break;}
}static bool rtl_wol_pll_power_down(struct rtl8169_private *tp)
{if (!(__rtl8169_get_wol(tp) & WAKE_ANY))return false;rtl_speed_down(tp);rtl_wol_suspend_quirk(tp);return true;
}static void r810x_phy_power_down(struct rtl8169_private *tp)
{rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, MII_BMCR, BMCR_PDOWN);
}static void r810x_phy_power_up(struct rtl8169_private *tp)
{rtl_writephy(tp, 0x1f, 0x0000);rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE);
}static void r810x_pll_power_down(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;if (rtl_wol_pll_power_down(tp))return;r810x_phy_power_down(tp);switch (tp->mac_version) {case RTL_GIGA_MAC_VER_07:case RTL_GIGA_MAC_VER_08:case RTL_GIGA_MAC_VER_09:case RTL_GIGA_MAC_VER_10:case RTL_GIGA_MAC_VER_13:case RTL_GIGA_MAC_VER_16:break;default:RTL_W8(PMCH, RTL_R8(PMCH) & ~0x80);break;}
}static void r810x_pll_power_up(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;r810x_phy_power_up(tp);switch (tp->mac_version) {case RTL_GIGA_MAC_VER_07:case RTL_GIGA_MAC_VER_08:case RTL_GIGA_MAC_VER_09:case RTL_GIGA_MAC_VER_10:case RTL_GIGA_MAC_VER_13:case RTL_GIGA_MAC_VER_16:break;default:RTL_W8(PMCH, RTL_R8(PMCH) | 0x80);break;}
}static void r8168_phy_power_up(struct rtl8169_private *tp)
{rtl_writephy(tp, 0x1f, 0x0000);switch (tp->mac_version) {case RTL_GIGA_MAC_VER_11:case RTL_GIGA_MAC_VER_12:case RTL_GIGA_MAC_VER_17:case RTL_GIGA_MAC_VER_18:case RTL_GIGA_MAC_VER_19:case RTL_GIGA_MAC_VER_20:case RTL_GIGA_MAC_VER_21:case RTL_GIGA_MAC_VER_22:case RTL_GIGA_MAC_VER_23:case RTL_GIGA_MAC_VER_24:case RTL_GIGA_MAC_VER_25:case RTL_GIGA_MAC_VER_26:case RTL_GIGA_MAC_VER_27:case RTL_GIGA_MAC_VER_28:case RTL_GIGA_MAC_VER_31:rtl_writephy(tp, 0x0e, 0x0000);break;default:break;}rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE);
}static void r8168_phy_power_down(struct rtl8169_private *tp)
{rtl_writephy(tp, 0x1f, 0x0000);switch (tp->mac_version) {case RTL_GIGA_MAC_VER_32:case RTL_GIGA_MAC_VER_33:case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE | BMCR_PDOWN);break;case RTL_GIGA_MAC_VER_11:case RTL_GIGA_MAC_VER_12:case RTL_GIGA_MAC_VER_17:case RTL_GIGA_MAC_VER_18:case RTL_GIGA_MAC_VER_19:case RTL_GIGA_MAC_VER_20:case RTL_GIGA_MAC_VER_21:case RTL_GIGA_MAC_VER_22:case RTL_GIGA_MAC_VER_23:case RTL_GIGA_MAC_VER_24:case RTL_GIGA_MAC_VER_25:case RTL_GIGA_MAC_VER_26:case RTL_GIGA_MAC_VER_27:case RTL_GIGA_MAC_VER_28:case RTL_GIGA_MAC_VER_31:rtl_writephy(tp, 0x0e, 0x0200);default:rtl_writephy(tp, MII_BMCR, BMCR_PDOWN);break;}
}static void r8168_pll_power_down(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;if ((tp->mac_version == RTL_GIGA_MAC_VER_27 ||tp->mac_version == RTL_GIGA_MAC_VER_28 ||tp->mac_version == RTL_GIGA_MAC_VER_31) &&r8168dp_check_dash(tp)) {return;}if ((tp->mac_version == RTL_GIGA_MAC_VER_23 ||tp->mac_version == RTL_GIGA_MAC_VER_24) &&(RTL_R16(CPlusCmd) & ASF)) {return;}if (tp->mac_version == RTL_GIGA_MAC_VER_32 ||tp->mac_version == RTL_GIGA_MAC_VER_33)rtl_ephy_write(tp, 0x19, 0xff64);if (rtl_wol_pll_power_down(tp))return;r8168_phy_power_down(tp);switch (tp->mac_version) {case RTL_GIGA_MAC_VER_25:case RTL_GIGA_MAC_VER_26:case RTL_GIGA_MAC_VER_27:case RTL_GIGA_MAC_VER_28:case RTL_GIGA_MAC_VER_31:case RTL_GIGA_MAC_VER_32:case RTL_GIGA_MAC_VER_33:RTL_W8(PMCH, RTL_R8(PMCH) & ~0x80);break;case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:rtl_w1w0_eri(tp, 0x1a8, ERIAR_MASK_1111, 0x00000000,0xfc000000, ERIAR_EXGMAC);break;}
}static void r8168_pll_power_up(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;switch (tp->mac_version) {case RTL_GIGA_MAC_VER_25:case RTL_GIGA_MAC_VER_26:case RTL_GIGA_MAC_VER_27:case RTL_GIGA_MAC_VER_28:case RTL_GIGA_MAC_VER_31:case RTL_GIGA_MAC_VER_32:case RTL_GIGA_MAC_VER_33:RTL_W8(PMCH, RTL_R8(PMCH) | 0x80);break;case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:rtl_w1w0_eri(tp, 0x1a8, ERIAR_MASK_1111, 0xfc000000,0x00000000, ERIAR_EXGMAC);break;}r8168_phy_power_up(tp);
}static void rtl_generic_op(struct rtl8169_private *tp,void (*op)(struct rtl8169_private *))
{if (op)op(tp);
}static void rtl_pll_power_down(struct rtl8169_private *tp)
{rtl_generic_op(tp, tp->pll_power_ops.down);
}static void rtl_pll_power_up(struct rtl8169_private *tp)
{rtl_generic_op(tp, tp->pll_power_ops.up);
}static void rtl_init_pll_power_ops(struct rtl8169_private *tp)
{struct pll_power_ops *ops = &tp->pll_power_ops;switch (tp->mac_version) {case RTL_GIGA_MAC_VER_07:case RTL_GIGA_MAC_VER_08:case RTL_GIGA_MAC_VER_09:case RTL_GIGA_MAC_VER_10:case RTL_GIGA_MAC_VER_16:case RTL_GIGA_MAC_VER_29:case RTL_GIGA_MAC_VER_30:case RTL_GIGA_MAC_VER_37:case RTL_GIGA_MAC_VER_39:case RTL_GIGA_MAC_VER_43:ops->down	= r810x_pll_power_down;ops->up		= r810x_pll_power_up;break;case RTL_GIGA_MAC_VER_11:case RTL_GIGA_MAC_VER_12:case RTL_GIGA_MAC_VER_17:case RTL_GIGA_MAC_VER_18:case RTL_GIGA_MAC_VER_19:case RTL_GIGA_MAC_VER_20:case RTL_GIGA_MAC_VER_21:case RTL_GIGA_MAC_VER_22:case RTL_GIGA_MAC_VER_23:case RTL_GIGA_MAC_VER_24:case RTL_GIGA_MAC_VER_25:case RTL_GIGA_MAC_VER_26:case RTL_GIGA_MAC_VER_27:case RTL_GIGA_MAC_VER_28:case RTL_GIGA_MAC_VER_31:case RTL_GIGA_MAC_VER_32:case RTL_GIGA_MAC_VER_33:case RTL_GIGA_MAC_VER_34:case RTL_GIGA_MAC_VER_35:case RTL_GIGA_MAC_VER_36:case RTL_GIGA_MAC_VER_38:case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:case RTL_GIGA_MAC_VER_42:case RTL_GIGA_MAC_VER_44:ops->down	= r8168_pll_power_down;ops->up		= r8168_pll_power_up;break;default:ops->down	= NULL;ops->up		= NULL;break;}
}static void rtl_init_rxcfg(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;switch (tp->mac_version) {case RTL_GIGA_MAC_VER_01:case RTL_GIGA_MAC_VER_02:case RTL_GIGA_MAC_VER_03:case RTL_GIGA_MAC_VER_04:case RTL_GIGA_MAC_VER_05:case RTL_GIGA_MAC_VER_06:case RTL_GIGA_MAC_VER_10:case RTL_GIGA_MAC_VER_11:case RTL_GIGA_MAC_VER_12:case RTL_GIGA_MAC_VER_13:case RTL_GIGA_MAC_VER_14:case RTL_GIGA_MAC_VER_15:case RTL_GIGA_MAC_VER_16:case RTL_GIGA_MAC_VER_17:RTL_W32(RxConfig, RX_FIFO_THRESH | RX_DMA_BURST);break;case RTL_GIGA_MAC_VER_18:case RTL_GIGA_MAC_VER_19:case RTL_GIGA_MAC_VER_20:case RTL_GIGA_MAC_VER_21:case RTL_GIGA_MAC_VER_22:case RTL_GIGA_MAC_VER_23:case RTL_GIGA_MAC_VER_24:case RTL_GIGA_MAC_VER_34:case RTL_GIGA_MAC_VER_35:RTL_W32(RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST);break;case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:case RTL_GIGA_MAC_VER_42:case RTL_GIGA_MAC_VER_43:case RTL_GIGA_MAC_VER_44:RTL_W32(RxConfig, RX128_INT_EN | RX_DMA_BURST | RX_EARLY_OFF);break;default:RTL_W32(RxConfig, RX128_INT_EN | RX_DMA_BURST);break;}
}static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
{tp->dirty_tx = tp->cur_tx = tp->cur_rx = 0;
}static void rtl_hw_jumbo_enable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(Cfg9346, Cfg9346_Unlock);rtl_generic_op(tp, tp->jumbo_ops.enable);RTL_W8(Cfg9346, Cfg9346_Lock);
}static void rtl_hw_jumbo_disable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(Cfg9346, Cfg9346_Unlock);rtl_generic_op(tp, tp->jumbo_ops.disable);RTL_W8(Cfg9346, Cfg9346_Lock);
}static void r8168c_hw_jumbo_enable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0);RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1);rtl_tx_performance_tweak(tp->pci_dev, 0x2 << MAX_READ_REQUEST_SHIFT);
}static void r8168c_hw_jumbo_disable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0);RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1);rtl_tx_performance_tweak(tp->pci_dev, 0x5 << MAX_READ_REQUEST_SHIFT);
}static void r8168dp_hw_jumbo_enable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0);
}static void r8168dp_hw_jumbo_disable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0);
}static void r8168e_hw_jumbo_enable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(MaxTxPacketSize, 0x3f);RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0);RTL_W8(Config4, RTL_R8(Config4) | 0x01);rtl_tx_performance_tweak(tp->pci_dev, 0x2 << MAX_READ_REQUEST_SHIFT);
}static void r8168e_hw_jumbo_disable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(MaxTxPacketSize, 0x0c);RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0);RTL_W8(Config4, RTL_R8(Config4) & ~0x01);rtl_tx_performance_tweak(tp->pci_dev, 0x5 << MAX_READ_REQUEST_SHIFT);
}static void r8168b_0_hw_jumbo_enable(struct rtl8169_private *tp)
{rtl_tx_performance_tweak(tp->pci_dev,(0x2 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN);
}static void r8168b_0_hw_jumbo_disable(struct rtl8169_private *tp)
{rtl_tx_performance_tweak(tp->pci_dev,(0x5 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN);
}static void r8168b_1_hw_jumbo_enable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;r8168b_0_hw_jumbo_enable(tp);RTL_W8(Config4, RTL_R8(Config4) | (1 << 0));
}static void r8168b_1_hw_jumbo_disable(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;r8168b_0_hw_jumbo_disable(tp);RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0));
}static void rtl_init_jumbo_ops(struct rtl8169_private *tp)
{struct jumbo_ops *ops = &tp->jumbo_ops;switch (tp->mac_version) {case RTL_GIGA_MAC_VER_11:ops->disable	= r8168b_0_hw_jumbo_disable;ops->enable	= r8168b_0_hw_jumbo_enable;break;case RTL_GIGA_MAC_VER_12:case RTL_GIGA_MAC_VER_17:ops->disable	= r8168b_1_hw_jumbo_disable;ops->enable	= r8168b_1_hw_jumbo_enable;break;case RTL_GIGA_MAC_VER_18: /* Wild guess. Needs info from Realtek. */case RTL_GIGA_MAC_VER_19:case RTL_GIGA_MAC_VER_20:case RTL_GIGA_MAC_VER_21: /* Wild guess. Needs info from Realtek. */case RTL_GIGA_MAC_VER_22:case RTL_GIGA_MAC_VER_23:case RTL_GIGA_MAC_VER_24:case RTL_GIGA_MAC_VER_25:case RTL_GIGA_MAC_VER_26:ops->disable	= r8168c_hw_jumbo_disable;ops->enable	= r8168c_hw_jumbo_enable;break;case RTL_GIGA_MAC_VER_27:case RTL_GIGA_MAC_VER_28:ops->disable	= r8168dp_hw_jumbo_disable;ops->enable	= r8168dp_hw_jumbo_enable;break;case RTL_GIGA_MAC_VER_31: /* Wild guess. Needs info from Realtek. */case RTL_GIGA_MAC_VER_32:case RTL_GIGA_MAC_VER_33:case RTL_GIGA_MAC_VER_34:ops->disable	= r8168e_hw_jumbo_disable;ops->enable	= r8168e_hw_jumbo_enable;break;/** No action needed for jumbo frames with 8169.* No jumbo for 810x at all.*/case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:case RTL_GIGA_MAC_VER_42:case RTL_GIGA_MAC_VER_43:case RTL_GIGA_MAC_VER_44:default:ops->disable	= NULL;ops->enable	= NULL;break;}
}DECLARE_RTL_COND(rtl_chipcmd_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R8(ChipCmd) & CmdReset;
}static void rtl_hw_reset(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W8(ChipCmd, CmdReset);rtl_udelay_loop_wait_low(tp, &rtl_chipcmd_cond, 100, 100);
}static void rtl_request_uncached_firmware(struct rtl8169_private *tp)
{struct rtl_fw *rtl_fw;const char *name;int rc = -ENOMEM;name = rtl_lookup_firmware_name(tp);if (!name)goto out_no_firmware;rtl_fw = kzalloc(sizeof(*rtl_fw), GFP_KERNEL);if (!rtl_fw)goto err_warn;rc = request_firmware(&rtl_fw->fw, name, &tp->pci_dev->dev);if (rc < 0)goto err_free;rc = rtl_check_firmware(tp, rtl_fw);if (rc < 0)goto err_release_firmware;tp->rtl_fw = rtl_fw;
out:return;err_release_firmware:release_firmware(rtl_fw->fw);
err_free:kfree(rtl_fw);
err_warn:netif_warn(tp, ifup, tp->dev, "unable to load firmware patch %s (%d)\n",name, rc);
out_no_firmware:tp->rtl_fw = NULL;goto out;
}static void rtl_request_firmware(struct rtl8169_private *tp)
{if (IS_ERR(tp->rtl_fw))rtl_request_uncached_firmware(tp);
}static void rtl_rx_close(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(RxConfig, RTL_R32(RxConfig) & ~RX_CONFIG_ACCEPT_MASK);
}DECLARE_RTL_COND(rtl_npq_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R8(TxPoll) & NPQ;
}DECLARE_RTL_COND(rtl_txcfg_empty_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(TxConfig) & TXCFG_EMPTY;
}static void rtl8169_hw_reset(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;/* Disable interrupts */rtl8169_irq_mask_and_ack(tp);rtl_rx_close(tp);if (tp->mac_version == RTL_GIGA_MAC_VER_27 ||tp->mac_version == RTL_GIGA_MAC_VER_28 ||tp->mac_version == RTL_GIGA_MAC_VER_31) {rtl_udelay_loop_wait_low(tp, &rtl_npq_cond, 20, 42*42);} else if (tp->mac_version == RTL_GIGA_MAC_VER_34 ||tp->mac_version == RTL_GIGA_MAC_VER_35 ||tp->mac_version == RTL_GIGA_MAC_VER_36 ||tp->mac_version == RTL_GIGA_MAC_VER_37 ||tp->mac_version == RTL_GIGA_MAC_VER_40 ||tp->mac_version == RTL_GIGA_MAC_VER_41 ||tp->mac_version == RTL_GIGA_MAC_VER_42 ||tp->mac_version == RTL_GIGA_MAC_VER_43 ||tp->mac_version == RTL_GIGA_MAC_VER_44 ||tp->mac_version == RTL_GIGA_MAC_VER_38) {RTL_W8(ChipCmd, RTL_R8(ChipCmd) | StopReq);rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 666);} else {RTL_W8(ChipCmd, RTL_R8(ChipCmd) | StopReq);udelay(100);}rtl_hw_reset(tp);
}static void rtl_set_rx_tx_config_registers(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;/* Set DMA burst size and Interframe Gap Time */RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |(InterFrameGap << TxInterFrameGapShift));
}static void rtl_hw_start(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);tp->hw_start(dev);rtl_irq_enable_all(tp);
}static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp,void __iomem *ioaddr)
{/** Magic spell: some iop3xx ARM board needs the TxDescAddrHigh* register to be written before TxDescAddrLow to work.* Switching from MMIO to I/O access fixes the issue as well.*/RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32);RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32));RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32);RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32));
}static u16 rtl_rw_cpluscmd(void __iomem *ioaddr)
{u16 cmd;cmd = RTL_R16(CPlusCmd);RTL_W16(CPlusCmd, cmd);return cmd;
}static void rtl_set_rx_max_size(void __iomem *ioaddr, unsigned int rx_buf_sz)
{/* Low hurts. Let's disable the filtering. */RTL_W16(RxMaxSize, rx_buf_sz + 1);
}static void rtl8169_set_magic_reg(void __iomem *ioaddr, unsigned mac_version)
{static const struct rtl_cfg2_info {u32 mac_version;u32 clk;u32 val;} cfg2_info [] = {{ RTL_GIGA_MAC_VER_05, PCI_Clock_33MHz, 0x000fff00 }, // 8110SCd{ RTL_GIGA_MAC_VER_05, PCI_Clock_66MHz, 0x000fffff },{ RTL_GIGA_MAC_VER_06, PCI_Clock_33MHz, 0x00ffff00 }, // 8110SCe{ RTL_GIGA_MAC_VER_06, PCI_Clock_66MHz, 0x00ffffff }};const struct rtl_cfg2_info *p = cfg2_info;unsigned int i;u32 clk;clk = RTL_R8(Config2) & PCI_Clock_66MHz;for (i = 0; i < ARRAY_SIZE(cfg2_info); i++, p++) {if ((p->mac_version == mac_version) && (p->clk == clk)) {RTL_W32(0x7c, p->val);break;}}
}static void rtl_set_rx_mode(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;u32 mc_filter[2];	/* Multicast hash filter */int rx_mode;u32 tmp = 0;if (dev->flags & IFF_PROMISC) {/* Unconditionally log net taps. */netif_notice(tp, link, dev, "Promiscuous mode enabled\n");rx_mode =AcceptBroadcast | AcceptMulticast | AcceptMyPhys |AcceptAllPhys;mc_filter[1] = mc_filter[0] = 0xffffffff;} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||(dev->flags & IFF_ALLMULTI)) {/* Too many to filter perfectly -- accept all multicasts. */rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;mc_filter[1] = mc_filter[0] = 0xffffffff;} else {struct netdev_hw_addr *ha;rx_mode = AcceptBroadcast | AcceptMyPhys;mc_filter[1] = mc_filter[0] = 0;netdev_for_each_mc_addr(ha, dev) {int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);rx_mode |= AcceptMulticast;}}if (dev->features & NETIF_F_RXALL)rx_mode |= (AcceptErr | AcceptRunt);tmp = (RTL_R32(RxConfig) & ~RX_CONFIG_ACCEPT_MASK) | rx_mode;if (tp->mac_version > RTL_GIGA_MAC_VER_06) {u32 data = mc_filter[0];mc_filter[0] = swab32(mc_filter[1]);mc_filter[1] = swab32(data);}if (tp->mac_version == RTL_GIGA_MAC_VER_35)mc_filter[1] = mc_filter[0] = 0xffffffff;RTL_W32(MAR0 + 4, mc_filter[1]);RTL_W32(MAR0 + 0, mc_filter[0]);RTL_W32(RxConfig, tmp);
}static void rtl_hw_start_8169(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;if (tp->mac_version == RTL_GIGA_MAC_VER_05) {RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | PCIMulRW);pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);}RTL_W8(Cfg9346, Cfg9346_Unlock);if (tp->mac_version == RTL_GIGA_MAC_VER_01 ||tp->mac_version == RTL_GIGA_MAC_VER_02 ||tp->mac_version == RTL_GIGA_MAC_VER_03 ||tp->mac_version == RTL_GIGA_MAC_VER_04)RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);rtl_init_rxcfg(tp);RTL_W8(EarlyTxThres, NoEarlyTx);rtl_set_rx_max_size(ioaddr, rx_buf_sz);if (tp->mac_version == RTL_GIGA_MAC_VER_01 ||tp->mac_version == RTL_GIGA_MAC_VER_02 ||tp->mac_version == RTL_GIGA_MAC_VER_03 ||tp->mac_version == RTL_GIGA_MAC_VER_04)rtl_set_rx_tx_config_registers(tp);tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW;if (tp->mac_version == RTL_GIGA_MAC_VER_02 ||tp->mac_version == RTL_GIGA_MAC_VER_03) {dprintk("Set MAC Reg C+CR Offset 0xE0. ""Bit-3 and bit-14 MUST be 1\n");tp->cp_cmd |= (1 << 14);}RTL_W16(CPlusCmd, tp->cp_cmd);rtl8169_set_magic_reg(ioaddr, tp->mac_version);/** Undocumented corner. Supposedly:* (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets*/RTL_W16(IntrMitigate, 0x0000);rtl_set_rx_tx_desc_registers(tp, ioaddr);if (tp->mac_version != RTL_GIGA_MAC_VER_01 &&tp->mac_version != RTL_GIGA_MAC_VER_02 &&tp->mac_version != RTL_GIGA_MAC_VER_03 &&tp->mac_version != RTL_GIGA_MAC_VER_04) {RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);rtl_set_rx_tx_config_registers(tp);}RTL_W8(Cfg9346, Cfg9346_Lock);/* Initially a 10 us delay. Turned it into a PCI commit. - FR */RTL_R8(IntrMask);RTL_W32(RxMissed, 0);rtl_set_rx_mode(dev);/* no early-rx interrupts */RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
}static void rtl_csi_write(struct rtl8169_private *tp, int addr, int value)
{if (tp->csi_ops.write)tp->csi_ops.write(tp, addr, value);
}static u32 rtl_csi_read(struct rtl8169_private *tp, int addr)
{return tp->csi_ops.read ? tp->csi_ops.read(tp, addr) : ~0;
}static void rtl_csi_access_enable(struct rtl8169_private *tp, u32 bits)
{u32 csi;csi = rtl_csi_read(tp, 0x070c) & 0x00ffffff;rtl_csi_write(tp, 0x070c, csi | bits);
}static void rtl_csi_access_enable_1(struct rtl8169_private *tp)
{rtl_csi_access_enable(tp, 0x17000000);
}static void rtl_csi_access_enable_2(struct rtl8169_private *tp)
{rtl_csi_access_enable(tp, 0x27000000);
}DECLARE_RTL_COND(rtl_csiar_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R32(CSIAR) & CSIAR_FLAG;
}static void r8169_csi_write(struct rtl8169_private *tp, int addr, int value)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(CSIDR, value);RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100);
}static u32 r8169_csi_read(struct rtl8169_private *tp, int addr)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) |CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ?RTL_R32(CSIDR) : ~0;
}static void r8402_csi_write(struct rtl8169_private *tp, int addr, int value)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(CSIDR, value);RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT |CSIAR_FUNC_NIC);rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100);
}static u32 r8402_csi_read(struct rtl8169_private *tp, int addr)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) | CSIAR_FUNC_NIC |CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ?RTL_R32(CSIDR) : ~0;
}static void r8411_csi_write(struct rtl8169_private *tp, int addr, int value)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(CSIDR, value);RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT |CSIAR_FUNC_NIC2);rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100);
}static u32 r8411_csi_read(struct rtl8169_private *tp, int addr)
{void __iomem *ioaddr = tp->mmio_addr;RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) | CSIAR_FUNC_NIC2 |CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ?RTL_R32(CSIDR) : ~0;
}static void rtl_init_csi_ops(struct rtl8169_private *tp)
{struct csi_ops *ops = &tp->csi_ops;switch (tp->mac_version) {case RTL_GIGA_MAC_VER_01:case RTL_GIGA_MAC_VER_02:case RTL_GIGA_MAC_VER_03:case RTL_GIGA_MAC_VER_04:case RTL_GIGA_MAC_VER_05:case RTL_GIGA_MAC_VER_06:case RTL_GIGA_MAC_VER_10:case RTL_GIGA_MAC_VER_11:case RTL_GIGA_MAC_VER_12:case RTL_GIGA_MAC_VER_13:case RTL_GIGA_MAC_VER_14:case RTL_GIGA_MAC_VER_15:case RTL_GIGA_MAC_VER_16:case RTL_GIGA_MAC_VER_17:ops->write	= NULL;ops->read	= NULL;break;case RTL_GIGA_MAC_VER_37:case RTL_GIGA_MAC_VER_38:ops->write	= r8402_csi_write;ops->read	= r8402_csi_read;break;case RTL_GIGA_MAC_VER_44:ops->write	= r8411_csi_write;ops->read	= r8411_csi_read;break;default:ops->write	= r8169_csi_write;ops->read	= r8169_csi_read;break;}
}struct ephy_info {unsigned int offset;u16 mask;u16 bits;
};static void rtl_ephy_init(struct rtl8169_private *tp, const struct ephy_info *e,int len)
{u16 w;while (len-- > 0) {w = (rtl_ephy_read(tp, e->offset) & ~e->mask) | e->bits;rtl_ephy_write(tp, e->offset, w);e++;}
}static void rtl_disable_clock_request(struct pci_dev *pdev)
{pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL,PCI_EXP_LNKCTL_CLKREQ_EN);
}static void rtl_enable_clock_request(struct pci_dev *pdev)
{pcie_capability_set_word(pdev, PCI_EXP_LNKCTL,PCI_EXP_LNKCTL_CLKREQ_EN);
}#define R8168_CPCMD_QUIRK_MASK (\EnableBist | \Mac_dbgo_oe | \Force_half_dup | \Force_rxflow_en | \Force_txflow_en | \Cxpl_dbg_sel | \ASF | \PktCntrDisable | \Mac_dbgo_sel)static void rtl_hw_start_8168bb(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);if (tp->dev->mtu <= ETH_DATA_LEN) {rtl_tx_performance_tweak(pdev, (0x5 << MAX_READ_REQUEST_SHIFT) |PCI_EXP_DEVCTL_NOSNOOP_EN);}
}static void rtl_hw_start_8168bef(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;rtl_hw_start_8168bb(tp);RTL_W8(MaxTxPacketSize, TxPacketMax);RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0));
}static void __rtl_hw_start_8168cp(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;RTL_W8(Config1, RTL_R8(Config1) | Speed_down);RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);if (tp->dev->mtu <= ETH_DATA_LEN)rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);rtl_disable_clock_request(pdev);RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}static void rtl_hw_start_8168cp_1(struct rtl8169_private *tp)
{static const struct ephy_info e_info_8168cp[] = {{ 0x01, 0,	0x0001 },{ 0x02, 0x0800,	0x1000 },{ 0x03, 0,	0x0042 },{ 0x06, 0x0080,	0x0000 },{ 0x07, 0,	0x2000 }};rtl_csi_access_enable_2(tp);rtl_ephy_init(tp, e_info_8168cp, ARRAY_SIZE(e_info_8168cp));__rtl_hw_start_8168cp(tp);
}static void rtl_hw_start_8168cp_2(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;rtl_csi_access_enable_2(tp);RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);if (tp->dev->mtu <= ETH_DATA_LEN)rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}static void rtl_hw_start_8168cp_3(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;rtl_csi_access_enable_2(tp);RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);/* Magic. */RTL_W8(DBG_REG, 0x20);RTL_W8(MaxTxPacketSize, TxPacketMax);if (tp->dev->mtu <= ETH_DATA_LEN)rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}static void rtl_hw_start_8168c_1(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;static const struct ephy_info e_info_8168c_1[] = {{ 0x02, 0x0800,	0x1000 },{ 0x03, 0,	0x0002 },{ 0x06, 0x0080,	0x0000 }};rtl_csi_access_enable_2(tp);RTL_W8(DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2);rtl_ephy_init(tp, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1));__rtl_hw_start_8168cp(tp);
}static void rtl_hw_start_8168c_2(struct rtl8169_private *tp)
{static const struct ephy_info e_info_8168c_2[] = {{ 0x01, 0,	0x0001 },{ 0x03, 0x0400,	0x0220 }};rtl_csi_access_enable_2(tp);rtl_ephy_init(tp, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2));__rtl_hw_start_8168cp(tp);
}static void rtl_hw_start_8168c_3(struct rtl8169_private *tp)
{rtl_hw_start_8168c_2(tp);
}static void rtl_hw_start_8168c_4(struct rtl8169_private *tp)
{rtl_csi_access_enable_2(tp);__rtl_hw_start_8168cp(tp);
}static void rtl_hw_start_8168d(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;rtl_csi_access_enable_2(tp);rtl_disable_clock_request(pdev);RTL_W8(MaxTxPacketSize, TxPacketMax);if (tp->dev->mtu <= ETH_DATA_LEN)rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}static void rtl_hw_start_8168dp(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;rtl_csi_access_enable_1(tp);if (tp->dev->mtu <= ETH_DATA_LEN)rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);RTL_W8(MaxTxPacketSize, TxPacketMax);rtl_disable_clock_request(pdev);
}static void rtl_hw_start_8168d_4(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;static const struct ephy_info e_info_8168d_4[] = {{ 0x0b, ~0,	0x48 },{ 0x19, 0x20,	0x50 },{ 0x0c, ~0,	0x20 }};int i;rtl_csi_access_enable_1(tp);rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);RTL_W8(MaxTxPacketSize, TxPacketMax);for (i = 0; i < ARRAY_SIZE(e_info_8168d_4); i++) {const struct ephy_info *e = e_info_8168d_4 + i;u16 w;w = rtl_ephy_read(tp, e->offset);rtl_ephy_write(tp, 0x03, (w & e->mask) | e->bits);}rtl_enable_clock_request(pdev);
}static void rtl_hw_start_8168e_1(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;static const struct ephy_info e_info_8168e_1[] = {{ 0x00, 0x0200,	0x0100 },{ 0x00, 0x0000,	0x0004 },{ 0x06, 0x0002,	0x0001 },{ 0x06, 0x0000,	0x0030 },{ 0x07, 0x0000,	0x2000 },{ 0x00, 0x0000,	0x0020 },{ 0x03, 0x5800,	0x2000 },{ 0x03, 0x0000,	0x0001 },{ 0x01, 0x0800,	0x1000 },{ 0x07, 0x0000,	0x4000 },{ 0x1e, 0x0000,	0x2000 },{ 0x19, 0xffff,	0xfe6c },{ 0x0a, 0x0000,	0x0040 }};rtl_csi_access_enable_2(tp);rtl_ephy_init(tp, e_info_8168e_1, ARRAY_SIZE(e_info_8168e_1));if (tp->dev->mtu <= ETH_DATA_LEN)rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);RTL_W8(MaxTxPacketSize, TxPacketMax);rtl_disable_clock_request(pdev);/* Reset tx FIFO pointer */RTL_W32(MISC, RTL_R32(MISC) | TXPLA_RST);RTL_W32(MISC, RTL_R32(MISC) & ~TXPLA_RST);RTL_W8(Config5, RTL_R8(Config5) & ~Spi_en);
}static void rtl_hw_start_8168e_2(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;static const struct ephy_info e_info_8168e_2[] = {{ 0x09, 0x0000,	0x0080 },{ 0x19, 0x0000,	0x0224 }};rtl_csi_access_enable_1(tp);rtl_ephy_init(tp, e_info_8168e_2, ARRAY_SIZE(e_info_8168e_2));if (tp->dev->mtu <= ETH_DATA_LEN)rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00100002, ERIAR_EXGMAC);rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050, ERIAR_EXGMAC);rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x07ff0060, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00, ERIAR_EXGMAC);RTL_W8(MaxTxPacketSize, EarlySize);rtl_disable_clock_request(pdev);RTL_W32(TxConfig, RTL_R32(TxConfig) | TXCFG_AUTO_FIFO);RTL_W8(MCU, RTL_R8(MCU) & ~NOW_IS_OOB);/* Adjust EEE LED frequency */RTL_W8(EEE_LED, RTL_R8(EEE_LED) & ~0x07);RTL_W8(DLLPR, RTL_R8(DLLPR) | PFM_EN);RTL_W32(MISC, RTL_R32(MISC) | PWM_EN);RTL_W8(Config5, RTL_R8(Config5) & ~Spi_en);
}static void rtl_hw_start_8168f(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;rtl_csi_access_enable_2(tp);rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00100002, ERIAR_EXGMAC);rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0x1d0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050, ERIAR_EXGMAC);rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x00000060, ERIAR_EXGMAC);RTL_W8(MaxTxPacketSize, EarlySize);rtl_disable_clock_request(pdev);RTL_W32(TxConfig, RTL_R32(TxConfig) | TXCFG_AUTO_FIFO);RTL_W8(MCU, RTL_R8(MCU) & ~NOW_IS_OOB);RTL_W8(DLLPR, RTL_R8(DLLPR) | PFM_EN);RTL_W32(MISC, RTL_R32(MISC) | PWM_EN);RTL_W8(Config5, RTL_R8(Config5) & ~Spi_en);
}static void rtl_hw_start_8168f_1(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;static const struct ephy_info e_info_8168f_1[] = {{ 0x06, 0x00c0,	0x0020 },{ 0x08, 0x0001,	0x0002 },{ 0x09, 0x0000,	0x0080 },{ 0x19, 0x0000,	0x0224 }};rtl_hw_start_8168f(tp);rtl_ephy_init(tp, e_info_8168f_1, ARRAY_SIZE(e_info_8168f_1));rtl_w1w0_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00, ERIAR_EXGMAC);/* Adjust EEE LED frequency */RTL_W8(EEE_LED, RTL_R8(EEE_LED) & ~0x07);
}static void rtl_hw_start_8411(struct rtl8169_private *tp)
{static const struct ephy_info e_info_8168f_1[] = {{ 0x06, 0x00c0,	0x0020 },{ 0x0f, 0xffff,	0x5200 },{ 0x1e, 0x0000,	0x4000 },{ 0x19, 0x0000,	0x0224 }};rtl_hw_start_8168f(tp);rtl_ephy_init(tp, e_info_8168f_1, ARRAY_SIZE(e_info_8168f_1));rtl_w1w0_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0x0000, ERIAR_EXGMAC);
}static void rtl_hw_start_8168g_1(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;RTL_W32(TxConfig, RTL_R32(TxConfig) | TXCFG_AUTO_FIFO);rtl_eri_write(tp, 0xc8, ERIAR_MASK_0101, 0x080002, ERIAR_EXGMAC);rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, 0x38, ERIAR_EXGMAC);rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, 0x48, ERIAR_EXGMAC);rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);rtl_csi_access_enable_1(tp);rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);rtl_eri_write(tp, 0x2f8, ERIAR_MASK_0011, 0x1d8f, ERIAR_EXGMAC);RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);RTL_W32(MISC, RTL_R32(MISC) & ~RXDV_GATED_EN);RTL_W8(MaxTxPacketSize, EarlySize);rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);/* Adjust EEE LED frequency */RTL_W8(EEE_LED, RTL_R8(EEE_LED) & ~0x07);rtl_w1w0_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x06, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, 0x1000, ERIAR_EXGMAC);
}static void rtl_hw_start_8168g_2(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;static const struct ephy_info e_info_8168g_2[] = {{ 0x00, 0x0000,	0x0008 },{ 0x0c, 0x3df0,	0x0200 },{ 0x19, 0xffff,	0xfc00 },{ 0x1e, 0xffff,	0x20eb }};rtl_hw_start_8168g_1(tp);/* disable aspm and clock request before access ephy */RTL_W8(Config2, RTL_R8(Config2) & ~ClkReqEn);RTL_W8(Config5, RTL_R8(Config5) & ~ASPM_en);rtl_ephy_init(tp, e_info_8168g_2, ARRAY_SIZE(e_info_8168g_2));
}static void rtl_hw_start_8411_2(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;static const struct ephy_info e_info_8411_2[] = {{ 0x00, 0x0000,	0x0008 },{ 0x0c, 0x3df0,	0x0200 },{ 0x0f, 0xffff,	0x5200 },{ 0x19, 0x0020,	0x0000 },{ 0x1e, 0x0000,	0x2000 }};rtl_hw_start_8168g_1(tp);/* disable aspm and clock request before access ephy */RTL_W8(Config2, RTL_R8(Config2) & ~ClkReqEn);RTL_W8(Config5, RTL_R8(Config5) & ~ASPM_en);rtl_ephy_init(tp, e_info_8411_2, ARRAY_SIZE(e_info_8411_2));
}static void rtl_hw_start_8168(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;RTL_W8(Cfg9346, Cfg9346_Unlock);RTL_W8(MaxTxPacketSize, TxPacketMax);rtl_set_rx_max_size(ioaddr, rx_buf_sz);tp->cp_cmd |= RTL_R16(CPlusCmd) | PktCntrDisable | INTT_1;RTL_W16(CPlusCmd, tp->cp_cmd);RTL_W16(IntrMitigate, 0x5151);/* Work around for RxFIFO overflow. */if (tp->mac_version == RTL_GIGA_MAC_VER_11) {tp->event_slow |= RxFIFOOver | PCSTimeout;tp->event_slow &= ~RxOverflow;}rtl_set_rx_tx_desc_registers(tp, ioaddr);rtl_set_rx_tx_config_registers(tp);RTL_R8(IntrMask);switch (tp->mac_version) {case RTL_GIGA_MAC_VER_11:rtl_hw_start_8168bb(tp);break;case RTL_GIGA_MAC_VER_12:case RTL_GIGA_MAC_VER_17:rtl_hw_start_8168bef(tp);break;case RTL_GIGA_MAC_VER_18:rtl_hw_start_8168cp_1(tp);break;case RTL_GIGA_MAC_VER_19:rtl_hw_start_8168c_1(tp);break;case RTL_GIGA_MAC_VER_20:rtl_hw_start_8168c_2(tp);break;case RTL_GIGA_MAC_VER_21:rtl_hw_start_8168c_3(tp);break;case RTL_GIGA_MAC_VER_22:rtl_hw_start_8168c_4(tp);break;case RTL_GIGA_MAC_VER_23:rtl_hw_start_8168cp_2(tp);break;case RTL_GIGA_MAC_VER_24:rtl_hw_start_8168cp_3(tp);break;case RTL_GIGA_MAC_VER_25:case RTL_GIGA_MAC_VER_26:case RTL_GIGA_MAC_VER_27:rtl_hw_start_8168d(tp);break;case RTL_GIGA_MAC_VER_28:rtl_hw_start_8168d_4(tp);break;case RTL_GIGA_MAC_VER_31:rtl_hw_start_8168dp(tp);break;case RTL_GIGA_MAC_VER_32:case RTL_GIGA_MAC_VER_33:rtl_hw_start_8168e_1(tp);break;case RTL_GIGA_MAC_VER_34:rtl_hw_start_8168e_2(tp);break;case RTL_GIGA_MAC_VER_35:case RTL_GIGA_MAC_VER_36:rtl_hw_start_8168f_1(tp);break;case RTL_GIGA_MAC_VER_38:rtl_hw_start_8411(tp);break;case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:rtl_hw_start_8168g_1(tp);break;case RTL_GIGA_MAC_VER_42:rtl_hw_start_8168g_2(tp);break;case RTL_GIGA_MAC_VER_44:rtl_hw_start_8411_2(tp);break;default:printk(KERN_ERR PFX "%s: unknown chipset (mac_version = %d).\n",dev->name, tp->mac_version);break;}RTL_W8(Cfg9346, Cfg9346_Lock);RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);rtl_set_rx_mode(dev);RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
}#define R810X_CPCMD_QUIRK_MASK (\EnableBist | \Mac_dbgo_oe | \Force_half_dup | \Force_rxflow_en | \Force_txflow_en | \Cxpl_dbg_sel | \ASF | \PktCntrDisable | \Mac_dbgo_sel)static void rtl_hw_start_8102e_1(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;static const struct ephy_info e_info_8102e_1[] = {{ 0x01,	0, 0x6e65 },{ 0x02,	0, 0x091f },{ 0x03,	0, 0xc2f9 },{ 0x06,	0, 0xafb5 },{ 0x07,	0, 0x0e00 },{ 0x19,	0, 0xec80 },{ 0x01,	0, 0x2e65 },{ 0x01,	0, 0x6e65 }};u8 cfg1;rtl_csi_access_enable_2(tp);RTL_W8(DBG_REG, FIX_NAK_1);rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);RTL_W8(Config1,LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable);RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);cfg1 = RTL_R8(Config1);if ((cfg1 & LEDS0) && (cfg1 & LEDS1))RTL_W8(Config1, cfg1 & ~LEDS0);rtl_ephy_init(tp, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1));
}static void rtl_hw_start_8102e_2(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;rtl_csi_access_enable_2(tp);rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);RTL_W8(Config1, MEMMAP | IOMAP | VPD | PMEnable);RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
}static void rtl_hw_start_8102e_3(struct rtl8169_private *tp)
{rtl_hw_start_8102e_2(tp);rtl_ephy_write(tp, 0x03, 0xc2f9);
}static void rtl_hw_start_8105e_1(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;static const struct ephy_info e_info_8105e_1[] = {{ 0x07,	0, 0x4000 },{ 0x19,	0, 0x0200 },{ 0x19,	0, 0x0020 },{ 0x1e,	0, 0x2000 },{ 0x03,	0, 0x0001 },{ 0x19,	0, 0x0100 },{ 0x19,	0, 0x0004 },{ 0x0a,	0, 0x0020 }};/* Force LAN exit from ASPM if Rx/Tx are not idle */RTL_W32(FuncEvent, RTL_R32(FuncEvent) | 0x002800);/* Disable Early Tally Counter */RTL_W32(FuncEvent, RTL_R32(FuncEvent) & ~0x010000);RTL_W8(MCU, RTL_R8(MCU) | EN_NDP | EN_OOB_RESET);RTL_W8(DLLPR, RTL_R8(DLLPR) | PFM_EN);rtl_ephy_init(tp, e_info_8105e_1, ARRAY_SIZE(e_info_8105e_1));
}static void rtl_hw_start_8105e_2(struct rtl8169_private *tp)
{rtl_hw_start_8105e_1(tp);rtl_ephy_write(tp, 0x1e, rtl_ephy_read(tp, 0x1e) | 0x8000);
}static void rtl_hw_start_8402(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;static const struct ephy_info e_info_8402[] = {{ 0x19,	0xffff, 0xff64 },{ 0x1e,	0, 0x4000 }};rtl_csi_access_enable_2(tp);/* Force LAN exit from ASPM if Rx/Tx are not idle */RTL_W32(FuncEvent, RTL_R32(FuncEvent) | 0x002800);RTL_W32(TxConfig, RTL_R32(TxConfig) | TXCFG_AUTO_FIFO);RTL_W8(MCU, RTL_R8(MCU) & ~NOW_IS_OOB);rtl_ephy_init(tp, e_info_8402, ARRAY_SIZE(e_info_8402));rtl_tx_performance_tweak(tp->pci_dev, 0x5 << MAX_READ_REQUEST_SHIFT);rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00000002, ERIAR_EXGMAC);rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00000006, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);rtl_w1w0_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0e00, 0xff00, ERIAR_EXGMAC);
}static void rtl_hw_start_8106(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;/* Force LAN exit from ASPM if Rx/Tx are not idle */RTL_W32(FuncEvent, RTL_R32(FuncEvent) | 0x002800);RTL_W32(MISC, (RTL_R32(MISC) | DISABLE_LAN_EN) & ~EARLY_TALLY_EN);RTL_W8(MCU, RTL_R8(MCU) | EN_NDP | EN_OOB_RESET);RTL_W8(DLLPR, RTL_R8(DLLPR) & ~PFM_EN);
}static void rtl_hw_start_8101(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;if (tp->mac_version >= RTL_GIGA_MAC_VER_30)tp->event_slow &= ~RxFIFOOver;if (tp->mac_version == RTL_GIGA_MAC_VER_13 ||tp->mac_version == RTL_GIGA_MAC_VER_16)pcie_capability_set_word(pdev, PCI_EXP_DEVCTL,PCI_EXP_DEVCTL_NOSNOOP_EN);RTL_W8(Cfg9346, Cfg9346_Unlock);RTL_W8(MaxTxPacketSize, TxPacketMax);rtl_set_rx_max_size(ioaddr, rx_buf_sz);tp->cp_cmd &= ~R810X_CPCMD_QUIRK_MASK;RTL_W16(CPlusCmd, tp->cp_cmd);rtl_set_rx_tx_desc_registers(tp, ioaddr);rtl_set_rx_tx_config_registers(tp);switch (tp->mac_version) {case RTL_GIGA_MAC_VER_07:rtl_hw_start_8102e_1(tp);break;case RTL_GIGA_MAC_VER_08:rtl_hw_start_8102e_3(tp);break;case RTL_GIGA_MAC_VER_09:rtl_hw_start_8102e_2(tp);break;case RTL_GIGA_MAC_VER_29:rtl_hw_start_8105e_1(tp);break;case RTL_GIGA_MAC_VER_30:rtl_hw_start_8105e_2(tp);break;case RTL_GIGA_MAC_VER_37:rtl_hw_start_8402(tp);break;case RTL_GIGA_MAC_VER_39:rtl_hw_start_8106(tp);break;case RTL_GIGA_MAC_VER_43:rtl_hw_start_8168g_2(tp);break;}RTL_W8(Cfg9346, Cfg9346_Lock);RTL_W16(IntrMitigate, 0x0000);RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);rtl_set_rx_mode(dev);RTL_R8(IntrMask);RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xf000);
}static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
{struct rtl8169_private *tp = netdev_priv(dev);if (new_mtu < ETH_ZLEN ||new_mtu > rtl_chip_infos[tp->mac_version].jumbo_max)return -EINVAL;if (new_mtu > ETH_DATA_LEN)rtl_hw_jumbo_enable(tp);elsertl_hw_jumbo_disable(tp);dev->mtu = new_mtu;netdev_update_features(dev);return 0;
}static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc)
{desc->addr = cpu_to_le64(0x0badbadbadbadbadull);desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask);
}static void rtl8169_free_rx_databuff(struct rtl8169_private *tp,void **data_buff, struct RxDesc *desc)
{dma_unmap_single(&tp->pci_dev->dev, le64_to_cpu(desc->addr), rx_buf_sz,DMA_FROM_DEVICE);kfree(*data_buff);*data_buff = NULL;rtl8169_make_unusable_by_asic(desc);
}static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz)
{u32 eor = le32_to_cpu(desc->opts1) & RingEnd;desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz);
}static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping,u32 rx_buf_sz)
{desc->addr = cpu_to_le64(mapping);wmb();rtl8169_mark_to_asic(desc, rx_buf_sz);
}static inline void *rtl8169_align(void *data)
{return (void *)ALIGN((long)data, 16);
}static struct sk_buff *rtl8169_alloc_rx_data(struct rtl8169_private *tp,struct RxDesc *desc)
{void *data;dma_addr_t mapping;struct device *d = &tp->pci_dev->dev;struct net_device *dev = tp->dev;int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;data = kmalloc_node(rx_buf_sz, GFP_KERNEL, node);if (!data)return NULL;if (rtl8169_align(data) != data) {kfree(data);data = kmalloc_node(rx_buf_sz + 15, GFP_KERNEL, node);if (!data)return NULL;}mapping = dma_map_single(d, rtl8169_align(data), rx_buf_sz,DMA_FROM_DEVICE);if (unlikely(dma_mapping_error(d, mapping))) {if (net_ratelimit())netif_err(tp, drv, tp->dev, "Failed to map RX DMA!\n");goto err_out;}rtl8169_map_to_asic(desc, mapping, rx_buf_sz);return data;err_out:kfree(data);return NULL;
}static void rtl8169_rx_clear(struct rtl8169_private *tp)
{unsigned int i;for (i = 0; i < NUM_RX_DESC; i++) {if (tp->Rx_databuff[i]) {rtl8169_free_rx_databuff(tp, tp->Rx_databuff + i,tp->RxDescArray + i);}}
}static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc)
{desc->opts1 |= cpu_to_le32(RingEnd);
}static int rtl8169_rx_fill(struct rtl8169_private *tp)
{unsigned int i;for (i = 0; i < NUM_RX_DESC; i++) {void *data;if (tp->Rx_databuff[i])continue;data = rtl8169_alloc_rx_data(tp, tp->RxDescArray + i);if (!data) {rtl8169_make_unusable_by_asic(tp->RxDescArray + i);goto err_out;}tp->Rx_databuff[i] = data;}rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1);return 0;err_out:rtl8169_rx_clear(tp);return -ENOMEM;
}static int rtl8169_init_ring(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);rtl8169_init_ring_indexes(tp);memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info));memset(tp->Rx_databuff, 0x0, NUM_RX_DESC * sizeof(void *));return rtl8169_rx_fill(tp);
}static void rtl8169_unmap_tx_skb(struct device *d, struct ring_info *tx_skb,struct TxDesc *desc)
{unsigned int len = tx_skb->len;dma_unmap_single(d, le64_to_cpu(desc->addr), len, DMA_TO_DEVICE);desc->opts1 = 0x00;desc->opts2 = 0x00;desc->addr = 0x00;tx_skb->len = 0;
}static void rtl8169_tx_clear_range(struct rtl8169_private *tp, u32 start,unsigned int n)
{unsigned int i;for (i = 0; i < n; i++) {unsigned int entry = (start + i) % NUM_TX_DESC;struct ring_info *tx_skb = tp->tx_skb + entry;unsigned int len = tx_skb->len;if (len) {struct sk_buff *skb = tx_skb->skb;rtl8169_unmap_tx_skb(&tp->pci_dev->dev, tx_skb,tp->TxDescArray + entry);if (skb) {tp->dev->stats.tx_dropped++;dev_kfree_skb(skb);tx_skb->skb = NULL;}}}
}static void rtl8169_tx_clear(struct rtl8169_private *tp)
{rtl8169_tx_clear_range(tp, tp->dirty_tx, NUM_TX_DESC);tp->cur_tx = tp->dirty_tx = 0;
}static void rtl_reset_work(struct rtl8169_private *tp)
{struct net_device *dev = tp->dev;int i;napi_disable(&tp->napi);netif_stop_queue(dev);synchronize_sched();rtl8169_hw_reset(tp);for (i = 0; i < NUM_RX_DESC; i++)rtl8169_mark_to_asic(tp->RxDescArray + i, rx_buf_sz);rtl8169_tx_clear(tp);rtl8169_init_ring_indexes(tp);napi_enable(&tp->napi);rtl_hw_start(dev);netif_wake_queue(dev);rtl8169_check_link_status(dev, tp, tp->mmio_addr);
}static void rtl8169_tx_timeout(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,u32 *opts)
{struct skb_shared_info *info = skb_shinfo(skb);unsigned int cur_frag, entry;struct TxDesc * uninitialized_var(txd);struct device *d = &tp->pci_dev->dev;entry = tp->cur_tx;for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {const skb_frag_t *frag = info->frags + cur_frag;dma_addr_t mapping;u32 status, len;void *addr;entry = (entry + 1) % NUM_TX_DESC;txd = tp->TxDescArray + entry;len = skb_frag_size(frag);addr = skb_frag_address(frag);mapping = dma_map_single(d, addr, len, DMA_TO_DEVICE);if (unlikely(dma_mapping_error(d, mapping))) {if (net_ratelimit())netif_err(tp, drv, tp->dev,"Failed to map TX fragments DMA!\n");goto err_out;}/* Anti gcc 2.95.3 bugware (sic) */status = opts[0] | len |(RingEnd * !((entry + 1) % NUM_TX_DESC));txd->opts1 = cpu_to_le32(status);txd->opts2 = cpu_to_le32(opts[1]);txd->addr = cpu_to_le64(mapping);tp->tx_skb[entry].len = len;}if (cur_frag) {tp->tx_skb[entry].skb = skb;txd->opts1 |= cpu_to_le32(LastFrag);}return cur_frag;err_out:rtl8169_tx_clear_range(tp, tp->cur_tx + 1, cur_frag);return -EIO;
}static bool rtl_skb_pad(struct sk_buff *skb)
{if (skb_padto(skb, ETH_ZLEN))return false;skb_put(skb, ETH_ZLEN - skb->len);return true;
}static bool rtl_test_hw_pad_bug(struct rtl8169_private *tp, struct sk_buff *skb)
{return skb->len < ETH_ZLEN && tp->mac_version == RTL_GIGA_MAC_VER_34;
}static inline bool rtl8169_tso_csum(struct rtl8169_private *tp,struct sk_buff *skb, u32 *opts)
{const struct rtl_tx_desc_info *info = tx_desc_info + tp->txd_version;u32 mss = skb_shinfo(skb)->gso_size;int offset = info->opts_offset;if (mss) {opts[0] |= TD_LSO;opts[offset] |= min(mss, TD_MSS_MAX) << info->mss_shift;} else if (skb->ip_summed == CHECKSUM_PARTIAL) {const struct iphdr *ip = ip_hdr(skb);if (unlikely(rtl_test_hw_pad_bug(tp, skb)))return skb_checksum_help(skb) == 0 && rtl_skb_pad(skb);if (ip->protocol == IPPROTO_TCP)opts[offset] |= info->checksum.tcp;else if (ip->protocol == IPPROTO_UDP)opts[offset] |= info->checksum.udp;elseWARN_ON_ONCE(1);} else {if (unlikely(rtl_test_hw_pad_bug(tp, skb)))return rtl_skb_pad(skb);}return true;
}static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);unsigned int entry = tp->cur_tx % NUM_TX_DESC;struct TxDesc *txd = tp->TxDescArray + entry;void __iomem *ioaddr = tp->mmio_addr;struct device *d = &tp->pci_dev->dev;dma_addr_t mapping;u32 status, len;u32 opts[2];int frags;if (unlikely(!TX_FRAGS_READY_FOR(tp, skb_shinfo(skb)->nr_frags))) {netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n");goto err_stop_0;}if (unlikely(le32_to_cpu(txd->opts1) & DescOwn))goto err_stop_0;opts[1] = cpu_to_le32(rtl8169_tx_vlan_tag(skb));opts[0] = DescOwn;if (!rtl8169_tso_csum(tp, skb, opts))goto err_update_stats;len = skb_headlen(skb);mapping = dma_map_single(d, skb->data, len, DMA_TO_DEVICE);if (unlikely(dma_mapping_error(d, mapping))) {if (net_ratelimit())netif_err(tp, drv, dev, "Failed to map TX DMA!\n");goto err_dma_0;}tp->tx_skb[entry].len = len;txd->addr = cpu_to_le64(mapping);frags = rtl8169_xmit_frags(tp, skb, opts);if (frags < 0)goto err_dma_1;else if (frags)opts[0] |= FirstFrag;else {opts[0] |= FirstFrag | LastFrag;tp->tx_skb[entry].skb = skb;}txd->opts2 = cpu_to_le32(opts[1]);skb_tx_timestamp(skb);wmb();/* Anti gcc 2.95.3 bugware (sic) */status = opts[0] | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));txd->opts1 = cpu_to_le32(status);tp->cur_tx += frags + 1;wmb();RTL_W8(TxPoll, NPQ);mmiowb();if (!TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS)) {/* Avoid wrongly optimistic queue wake-up: rtl_tx thread must* not miss a ring update when it notices a stopped queue.*/smp_wmb();netif_stop_queue(dev);/* Sync with rtl_tx:* - publish queue status and cur_tx ring index (write barrier)* - refresh dirty_tx ring index (read barrier).* May the current thread have a pessimistic view of the ring* status and forget to wake up queue, a racing rtl_tx thread* can't.*/smp_mb();if (TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS))netif_wake_queue(dev);}return NETDEV_TX_OK;err_dma_1:rtl8169_unmap_tx_skb(d, tp->tx_skb + entry, txd);
err_dma_0:dev_kfree_skb(skb);
err_update_stats:dev->stats.tx_dropped++;return NETDEV_TX_OK;err_stop_0:netif_stop_queue(dev);dev->stats.tx_dropped++;return NETDEV_TX_BUSY;
}static void rtl8169_pcierr_interrupt(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);struct pci_dev *pdev = tp->pci_dev;u16 pci_status, pci_cmd;pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);pci_read_config_word(pdev, PCI_STATUS, &pci_status);netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n",pci_cmd, pci_status);/** The recovery sequence below admits a very elaborated explanation:* - it seems to work;* - I did not see what else could be done;* - it makes iop3xx happy.** Feel free to adjust to your needs.*/if (pdev->broken_parity_status)pci_cmd &= ~PCI_COMMAND_PARITY;elsepci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY;pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);pci_write_config_word(pdev, PCI_STATUS,pci_status & (PCI_STATUS_DETECTED_PARITY |PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT |PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT));/* The infamous DAC f*ckup only happens at boot time */if ((tp->cp_cmd & PCIDAC) && !tp->cur_rx) {void __iomem *ioaddr = tp->mmio_addr;netif_info(tp, intr, dev, "disabling PCI DAC\n");tp->cp_cmd &= ~PCIDAC;RTL_W16(CPlusCmd, tp->cp_cmd);dev->features &= ~NETIF_F_HIGHDMA;}rtl8169_hw_reset(tp);rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}static void rtl_tx(struct net_device *dev, struct rtl8169_private *tp)
{unsigned int dirty_tx, tx_left;dirty_tx = tp->dirty_tx;smp_rmb();tx_left = tp->cur_tx - dirty_tx;while (tx_left > 0) {unsigned int entry = dirty_tx % NUM_TX_DESC;struct ring_info *tx_skb = tp->tx_skb + entry;u32 status;rmb();status = le32_to_cpu(tp->TxDescArray[entry].opts1);if (status & DescOwn)break;rtl8169_unmap_tx_skb(&tp->pci_dev->dev, tx_skb,tp->TxDescArray + entry);if (status & LastFrag) {u64_stats_update_begin(&tp->tx_stats.syncp);tp->tx_stats.packets++;tp->tx_stats.bytes += tx_skb->skb->len;u64_stats_update_end(&tp->tx_stats.syncp);dev_kfree_skb(tx_skb->skb);tx_skb->skb = NULL;}dirty_tx++;tx_left--;}if (tp->dirty_tx != dirty_tx) {tp->dirty_tx = dirty_tx;/* Sync with rtl8169_start_xmit:* - publish dirty_tx ring index (write barrier)* - refresh cur_tx ring index and queue status (read barrier)* May the current thread miss the stopped queue condition,* a racing xmit thread can only have a right view of the* ring status.*/smp_mb();if (netif_queue_stopped(dev) &&TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS)) {netif_wake_queue(dev);}/** 8168 hack: TxPoll requests are lost when the Tx packets are* too close. Let's kick an extra TxPoll request when a burst* of start_xmit activity is detected (if it is not detected,* it is slow enough). -- FR*/if (tp->cur_tx != dirty_tx) {void __iomem *ioaddr = tp->mmio_addr;RTL_W8(TxPoll, NPQ);}}
}static inline int rtl8169_fragmented_frame(u32 status)
{return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
}static inline void rtl8169_rx_csum(struct sk_buff *skb, u32 opts1)
{u32 status = opts1 & RxProtoMask;if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||((status == RxProtoUDP) && !(opts1 & UDPFail)))skb->ip_summed = CHECKSUM_UNNECESSARY;elseskb_checksum_none_assert(skb);
}static struct sk_buff *rtl8169_try_rx_copy(void *data,struct rtl8169_private *tp,int pkt_size,dma_addr_t addr)
{struct sk_buff *skb;struct device *d = &tp->pci_dev->dev;data = rtl8169_align(data);dma_sync_single_for_cpu(d, addr, pkt_size, DMA_FROM_DEVICE);prefetch(data);skb = netdev_alloc_skb_ip_align(tp->dev, pkt_size);if (skb)memcpy(skb->data, data, pkt_size);dma_sync_single_for_device(d, addr, pkt_size, DMA_FROM_DEVICE);return skb;
}static int rtl_rx(struct net_device *dev, struct rtl8169_private *tp, u32 budget)
{unsigned int cur_rx, rx_left;unsigned int count;cur_rx = tp->cur_rx;for (rx_left = min(budget, NUM_RX_DESC); rx_left > 0; rx_left--, cur_rx++) {unsigned int entry = cur_rx % NUM_RX_DESC;struct RxDesc *desc = tp->RxDescArray + entry;u32 status;rmb();status = le32_to_cpu(desc->opts1) & tp->opts1_mask;if (status & DescOwn)break;if (unlikely(status & RxRES)) {netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n",status);dev->stats.rx_errors++;if (status & (RxRWT | RxRUNT))dev->stats.rx_length_errors++;if (status & RxCRC)dev->stats.rx_crc_errors++;if (status & RxFOVF) {rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);dev->stats.rx_fifo_errors++;}if ((status & (RxRUNT | RxCRC)) &&!(status & (RxRWT | RxFOVF)) &&(dev->features & NETIF_F_RXALL))goto process_pkt;} else {struct sk_buff *skb;dma_addr_t addr;int pkt_size;process_pkt:addr = le64_to_cpu(desc->addr);if (likely(!(dev->features & NETIF_F_RXFCS)))pkt_size = (status & 0x00003fff) - 4;elsepkt_size = status & 0x00003fff;/** The driver does not support incoming fragmented* frames. They are seen as a symptom of over-mtu* sized frames.*/if (unlikely(rtl8169_fragmented_frame(status))) {dev->stats.rx_dropped++;dev->stats.rx_length_errors++;goto release_descriptor;}skb = rtl8169_try_rx_copy(tp->Rx_databuff[entry],tp, pkt_size, addr);if (!skb) {dev->stats.rx_dropped++;goto release_descriptor;}rtl8169_rx_csum(skb, status);skb_put(skb, pkt_size);skb->protocol = eth_type_trans(skb, dev);rtl8169_rx_vlan_tag(desc, skb);napi_gro_receive(&tp->napi, skb);u64_stats_update_begin(&tp->rx_stats.syncp);tp->rx_stats.packets++;tp->rx_stats.bytes += pkt_size;u64_stats_update_end(&tp->rx_stats.syncp);}
release_descriptor:desc->opts2 = 0;wmb();rtl8169_mark_to_asic(desc, rx_buf_sz);}count = cur_rx - tp->cur_rx;tp->cur_rx = cur_rx;return count;
}static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)
{struct net_device *dev = dev_instance;struct rtl8169_private *tp = netdev_priv(dev);int handled = 0;u16 status;status = rtl_get_events(tp);if (status && status != 0xffff) {status &= RTL_EVENT_NAPI | tp->event_slow;if (status) {handled = 1;rtl_irq_disable(tp);napi_schedule(&tp->napi);}}return IRQ_RETVAL(handled);
}/** Workqueue context.*/
static void rtl_slow_event_work(struct rtl8169_private *tp)
{struct net_device *dev = tp->dev;u16 status;status = rtl_get_events(tp) & tp->event_slow;rtl_ack_events(tp, status);if (unlikely(status & RxFIFOOver)) {switch (tp->mac_version) {/* Work around for rx fifo overflow */case RTL_GIGA_MAC_VER_11:netif_stop_queue(dev);/* XXX - Hack alert. See rtl_task(). */set_bit(RTL_FLAG_TASK_RESET_PENDING, tp->wk.flags);default:break;}}if (unlikely(status & SYSErr))rtl8169_pcierr_interrupt(dev);if (status & LinkChg)__rtl8169_check_link_status(dev, tp, tp->mmio_addr, true);rtl_irq_enable_all(tp);
}static void rtl_task(struct work_struct *work)
{static const struct {int bitnr;void (*action)(struct rtl8169_private *);} rtl_work[] = {/* XXX - keep rtl_slow_event_work() as first element. */{ RTL_FLAG_TASK_SLOW_PENDING,	rtl_slow_event_work },{ RTL_FLAG_TASK_RESET_PENDING,	rtl_reset_work },{ RTL_FLAG_TASK_PHY_PENDING,	rtl_phy_work }};struct rtl8169_private *tp =container_of(work, struct rtl8169_private, wk.work);struct net_device *dev = tp->dev;int i;rtl_lock_work(tp);if (!netif_running(dev) ||!test_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags))goto out_unlock;for (i = 0; i < ARRAY_SIZE(rtl_work); i++) {bool pending;pending = test_and_clear_bit(rtl_work[i].bitnr, tp->wk.flags);if (pending)rtl_work[i].action(tp);}out_unlock:rtl_unlock_work(tp);
}static int rtl8169_poll(struct napi_struct *napi, int budget)
{struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi);struct net_device *dev = tp->dev;u16 enable_mask = RTL_EVENT_NAPI | tp->event_slow;int work_done= 0;u16 status;status = rtl_get_events(tp);rtl_ack_events(tp, status & ~tp->event_slow);if (status & RTL_EVENT_NAPI_RX)work_done = rtl_rx(dev, tp, (u32) budget);if (status & RTL_EVENT_NAPI_TX)rtl_tx(dev, tp);if (status & tp->event_slow) {enable_mask &= ~tp->event_slow;rtl_schedule_task(tp, RTL_FLAG_TASK_SLOW_PENDING);}if (work_done < budget) {napi_complete(napi);rtl_irq_enable(tp, enable_mask);mmiowb();}return work_done;
}static void rtl8169_rx_missed(struct net_device *dev, void __iomem *ioaddr)
{struct rtl8169_private *tp = netdev_priv(dev);if (tp->mac_version > RTL_GIGA_MAC_VER_06)return;dev->stats.rx_missed_errors += (RTL_R32(RxMissed) & 0xffffff);RTL_W32(RxMissed, 0);
}static void rtl8169_down(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;del_timer_sync(&tp->timer);napi_disable(&tp->napi);netif_stop_queue(dev);rtl8169_hw_reset(tp);/** At this point device interrupts can not be enabled in any function,* as netif_running is not true (rtl8169_interrupt, rtl8169_reset_task)* and napi is disabled (rtl8169_poll).*/rtl8169_rx_missed(dev, ioaddr);/* Give a racing hard_start_xmit a few cycles to complete. */synchronize_sched();rtl8169_tx_clear(tp);rtl8169_rx_clear(tp);rtl_pll_power_down(tp);
}static int rtl8169_close(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);struct pci_dev *pdev = tp->pci_dev;pm_runtime_get_sync(&pdev->dev);/* Update counters before going down */rtl8169_update_counters(dev);rtl_lock_work(tp);clear_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);rtl8169_down(dev);rtl_unlock_work(tp);cancel_work_sync(&tp->wk.work);free_irq(pdev->irq, dev);dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,tp->RxPhyAddr);dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,tp->TxPhyAddr);tp->TxDescArray = NULL;tp->RxDescArray = NULL;pm_runtime_put_sync(&pdev->dev);return 0;
}#ifdef CONFIG_NET_POLL_CONTROLLER
static void rtl8169_netpoll(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);rtl8169_interrupt(tp->pci_dev->irq, dev);
}
#endifstatic int rtl_open(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;struct pci_dev *pdev = tp->pci_dev;int retval = -ENOMEM;pm_runtime_get_sync(&pdev->dev);/** Rx and Tx descriptors needs 256 bytes alignment.* dma_alloc_coherent provides more.*/tp->TxDescArray = dma_alloc_coherent(&pdev->dev, R8169_TX_RING_BYTES,&tp->TxPhyAddr, GFP_KERNEL);if (!tp->TxDescArray)goto err_pm_runtime_put;tp->RxDescArray = dma_alloc_coherent(&pdev->dev, R8169_RX_RING_BYTES,&tp->RxPhyAddr, GFP_KERNEL);if (!tp->RxDescArray)goto err_free_tx_0;retval = rtl8169_init_ring(dev);if (retval < 0)goto err_free_rx_1;INIT_WORK(&tp->wk.work, rtl_task);smp_mb();rtl_request_firmware(tp);retval = request_irq(pdev->irq, rtl8169_interrupt,(tp->features & RTL_FEATURE_MSI) ? 0 : IRQF_SHARED,dev->name, dev);if (retval < 0)goto err_release_fw_2;rtl_lock_work(tp);set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);napi_enable(&tp->napi);rtl8169_init_phy(dev, tp);__rtl8169_set_features(dev, dev->features);rtl_pll_power_up(tp);rtl_hw_start(dev);netif_start_queue(dev);rtl_unlock_work(tp);tp->saved_wolopts = 0;pm_runtime_put_noidle(&pdev->dev);rtl8169_check_link_status(dev, tp, ioaddr);
out:return retval;err_release_fw_2:rtl_release_firmware(tp);rtl8169_rx_clear(tp);
err_free_rx_1:dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,tp->RxPhyAddr);tp->RxDescArray = NULL;
err_free_tx_0:dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,tp->TxPhyAddr);tp->TxDescArray = NULL;
err_pm_runtime_put:pm_runtime_put_noidle(&pdev->dev);goto out;
}static struct rtnl_link_stats64 *
rtl8169_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{struct rtl8169_private *tp = netdev_priv(dev);void __iomem *ioaddr = tp->mmio_addr;unsigned int start;if (netif_running(dev))rtl8169_rx_missed(dev, ioaddr);do {start = u64_stats_fetch_begin_bh(&tp->rx_stats.syncp);stats->rx_packets = tp->rx_stats.packets;stats->rx_bytes	= tp->rx_stats.bytes;} while (u64_stats_fetch_retry_bh(&tp->rx_stats.syncp, start));do {start = u64_stats_fetch_begin_bh(&tp->tx_stats.syncp);stats->tx_packets = tp->tx_stats.packets;stats->tx_bytes	= tp->tx_stats.bytes;} while (u64_stats_fetch_retry_bh(&tp->tx_stats.syncp, start));stats->rx_dropped	= dev->stats.rx_dropped;stats->tx_dropped	= dev->stats.tx_dropped;stats->rx_length_errors = dev->stats.rx_length_errors;stats->rx_errors	= dev->stats.rx_errors;stats->rx_crc_errors	= dev->stats.rx_crc_errors;stats->rx_fifo_errors	= dev->stats.rx_fifo_errors;stats->rx_missed_errors = dev->stats.rx_missed_errors;return stats;
}static void rtl8169_net_suspend(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);if (!netif_running(dev))return;netif_device_detach(dev);netif_stop_queue(dev);rtl_lock_work(tp);napi_disable(&tp->napi);clear_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);rtl_unlock_work(tp);rtl_pll_power_down(tp);
}#ifdef CONFIG_PMstatic int rtl8169_suspend(struct device *device)
{struct pci_dev *pdev = to_pci_dev(device);struct net_device *dev = pci_get_drvdata(pdev);rtl8169_net_suspend(dev);return 0;
}static void __rtl8169_resume(struct net_device *dev)
{struct rtl8169_private *tp = netdev_priv(dev);netif_device_attach(dev);rtl_pll_power_up(tp);rtl_lock_work(tp);napi_enable(&tp->napi);set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);rtl_unlock_work(tp);rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}static int rtl8169_resume(struct device *device)
{struct pci_dev *pdev = to_pci_dev(device);struct net_device *dev = pci_get_drvdata(pdev);struct rtl8169_private *tp = netdev_priv(dev);rtl8169_init_phy(dev, tp);if (netif_running(dev))__rtl8169_resume(dev);return 0;
}static int rtl8169_runtime_suspend(struct device *device)
{struct pci_dev *pdev = to_pci_dev(device);struct net_device *dev = pci_get_drvdata(pdev);struct rtl8169_private *tp = netdev_priv(dev);if (!tp->TxDescArray)return 0;rtl_lock_work(tp);tp->saved_wolopts = __rtl8169_get_wol(tp);__rtl8169_set_wol(tp, WAKE_ANY);rtl_unlock_work(tp);rtl8169_net_suspend(dev);return 0;
}static int rtl8169_runtime_resume(struct device *device)
{struct pci_dev *pdev = to_pci_dev(device);struct net_device *dev = pci_get_drvdata(pdev);struct rtl8169_private *tp = netdev_priv(dev);if (!tp->TxDescArray)return 0;rtl_lock_work(tp);__rtl8169_set_wol(tp, tp->saved_wolopts);tp->saved_wolopts = 0;rtl_unlock_work(tp);rtl8169_init_phy(dev, tp);__rtl8169_resume(dev);return 0;
}static int rtl8169_runtime_idle(struct device *device)
{struct pci_dev *pdev = to_pci_dev(device);struct net_device *dev = pci_get_drvdata(pdev);struct rtl8169_private *tp = netdev_priv(dev);return tp->TxDescArray ? -EBUSY : 0;
}static const struct dev_pm_ops rtl8169_pm_ops = {.suspend		= rtl8169_suspend,.resume			= rtl8169_resume,.freeze			= rtl8169_suspend,.thaw			= rtl8169_resume,.poweroff		= rtl8169_suspend,.restore		= rtl8169_resume,.runtime_suspend	= rtl8169_runtime_suspend,.runtime_resume		= rtl8169_runtime_resume,.runtime_idle		= rtl8169_runtime_idle,
};#define RTL8169_PM_OPS	(&rtl8169_pm_ops)#else /* !CONFIG_PM */#define RTL8169_PM_OPS	NULL#endif /* !CONFIG_PM */static void rtl_wol_shutdown_quirk(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;/* WoL fails with 8168b when the receiver is disabled. */switch (tp->mac_version) {case RTL_GIGA_MAC_VER_11:case RTL_GIGA_MAC_VER_12:case RTL_GIGA_MAC_VER_17:pci_clear_master(tp->pci_dev);RTL_W8(ChipCmd, CmdRxEnb);/* PCI commit */RTL_R8(ChipCmd);break;default:break;}
}static void rtl_shutdown(struct pci_dev *pdev)
{struct net_device *dev = pci_get_drvdata(pdev);struct rtl8169_private *tp = netdev_priv(dev);struct device *d = &pdev->dev;pm_runtime_get_sync(d);rtl8169_net_suspend(dev);/* Restore original MAC address */rtl_rar_set(tp, dev->perm_addr);rtl8169_hw_reset(tp);if (system_state == SYSTEM_POWER_OFF) {if (__rtl8169_get_wol(tp) & WAKE_ANY) {rtl_wol_suspend_quirk(tp);rtl_wol_shutdown_quirk(tp);}pci_wake_from_d3(pdev, true);pci_set_power_state(pdev, PCI_D3hot);}pm_runtime_put_noidle(d);
}static void rtl_remove_one(struct pci_dev *pdev)
{struct net_device *dev = pci_get_drvdata(pdev);struct rtl8169_private *tp = netdev_priv(dev);if (tp->mac_version == RTL_GIGA_MAC_VER_27 ||tp->mac_version == RTL_GIGA_MAC_VER_28 ||tp->mac_version == RTL_GIGA_MAC_VER_31) {rtl8168_driver_stop(tp);}netif_napi_del(&tp->napi);unregister_netdev(dev);rtl_release_firmware(tp);if (pci_dev_run_wake(pdev))pm_runtime_get_noresume(&pdev->dev);/* restore original MAC address */rtl_rar_set(tp, dev->perm_addr);rtl_disable_msi(pdev, tp);rtl8169_release_board(pdev, dev, tp->mmio_addr);
}static const struct net_device_ops rtl_netdev_ops = {.ndo_open		= rtl_open,.ndo_stop		= rtl8169_close,.ndo_get_stats64	= rtl8169_get_stats64,.ndo_start_xmit		= rtl8169_start_xmit,.ndo_tx_timeout		= rtl8169_tx_timeout,.ndo_validate_addr	= eth_validate_addr,.ndo_change_mtu		= rtl8169_change_mtu,.ndo_fix_features	= rtl8169_fix_features,.ndo_set_features	= rtl8169_set_features,.ndo_set_mac_address	= rtl_set_mac_address,.ndo_do_ioctl		= rtl8169_ioctl,.ndo_set_rx_mode	= rtl_set_rx_mode,
#ifdef CONFIG_NET_POLL_CONTROLLER.ndo_poll_controller	= rtl8169_netpoll,
#endif};static const struct rtl_cfg_info {void (*hw_start)(struct net_device *);unsigned int region;unsigned int align;u16 event_slow;unsigned features;u8 default_ver;
} rtl_cfg_infos [] = {[RTL_CFG_0] = {.hw_start	= rtl_hw_start_8169,.region		= 1,.align		= 0,.event_slow	= SYSErr | LinkChg | RxOverflow | RxFIFOOver,.features	= RTL_FEATURE_GMII,.default_ver	= RTL_GIGA_MAC_VER_01,},[RTL_CFG_1] = {.hw_start	= rtl_hw_start_8168,.region		= 2,.align		= 8,.event_slow	= SYSErr | LinkChg | RxOverflow,.features	= RTL_FEATURE_GMII | RTL_FEATURE_MSI,.default_ver	= RTL_GIGA_MAC_VER_11,},[RTL_CFG_2] = {.hw_start	= rtl_hw_start_8101,.region		= 2,.align		= 8,.event_slow	= SYSErr | LinkChg | RxOverflow | RxFIFOOver |PCSTimeout,.features	= RTL_FEATURE_MSI,.default_ver	= RTL_GIGA_MAC_VER_13,}
};/* Cfg9346_Unlock assumed. */
static unsigned rtl_try_msi(struct rtl8169_private *tp,const struct rtl_cfg_info *cfg)
{void __iomem *ioaddr = tp->mmio_addr;unsigned msi = 0;u8 cfg2;cfg2 = RTL_R8(Config2) & ~MSIEnable;if (cfg->features & RTL_FEATURE_MSI) {if (pci_enable_msi(tp->pci_dev)) {netif_info(tp, hw, tp->dev, "no MSI. Back to INTx.\n");} else {cfg2 |= MSIEnable;msi = RTL_FEATURE_MSI;}}if (tp->mac_version <= RTL_GIGA_MAC_VER_06)RTL_W8(Config2, cfg2);return msi;
}DECLARE_RTL_COND(rtl_link_list_ready_cond)
{void __iomem *ioaddr = tp->mmio_addr;return RTL_R8(MCU) & LINK_LIST_RDY;
}DECLARE_RTL_COND(rtl_rxtx_empty_cond)
{void __iomem *ioaddr = tp->mmio_addr;return (RTL_R8(MCU) & RXTX_EMPTY) == RXTX_EMPTY;
}static void rtl_hw_init_8168g(struct rtl8169_private *tp)
{void __iomem *ioaddr = tp->mmio_addr;u32 data;tp->ocp_base = OCP_STD_PHY_BASE;RTL_W32(MISC, RTL_R32(MISC) | RXDV_GATED_EN);if (!rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 42))return;if (!rtl_udelay_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42))return;RTL_W8(ChipCmd, RTL_R8(ChipCmd) & ~(CmdTxEnb | CmdRxEnb));msleep(1);RTL_W8(MCU, RTL_R8(MCU) & ~NOW_IS_OOB);data = r8168_mac_ocp_read(tp, 0xe8de);data &= ~(1 << 14);r8168_mac_ocp_write(tp, 0xe8de, data);if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42))return;data = r8168_mac_ocp_read(tp, 0xe8de);data |= (1 << 15);r8168_mac_ocp_write(tp, 0xe8de, data);if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42))return;
}static void rtl_hw_initialize(struct rtl8169_private *tp)
{switch (tp->mac_version) {case RTL_GIGA_MAC_VER_40:case RTL_GIGA_MAC_VER_41:case RTL_GIGA_MAC_VER_42:case RTL_GIGA_MAC_VER_43:case RTL_GIGA_MAC_VER_44:rtl_hw_init_8168g(tp);break;default:break;}
}static int
rtl_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data;const unsigned int region = cfg->region;struct rtl8169_private *tp;struct mii_if_info *mii;struct net_device *dev;void __iomem *ioaddr;int chipset, i;int rc;if (netif_msg_drv(&debug)) {printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n",MODULENAME, RTL8169_VERSION);}dev = alloc_etherdev(sizeof (*tp));if (!dev) {rc = -ENOMEM;goto out;}SET_NETDEV_DEV(dev, &pdev->dev);dev->netdev_ops = &rtl_netdev_ops;tp = netdev_priv(dev);tp->dev = dev;tp->pci_dev = pdev;tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT);mii = &tp->mii;mii->dev = dev;mii->mdio_read = rtl_mdio_read;mii->mdio_write = rtl_mdio_write;mii->phy_id_mask = 0x1f;mii->reg_num_mask = 0x1f;mii->supports_gmii = !!(cfg->features & RTL_FEATURE_GMII);/* disable ASPM completely as that cause random device stop working* problems as well as full system hangs for some PCIe devices users */pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |PCIE_LINK_STATE_CLKPM);/* enable device (incl. PCI PM wakeup and hotplug setup) */rc = pci_enable_device(pdev);if (rc < 0) {netif_err(tp, probe, dev, "enable failure\n");goto err_out_free_dev_1;}if (pci_set_mwi(pdev) < 0)netif_info(tp, probe, dev, "Mem-Wr-Inval unavailable\n");/* make sure PCI base addr 1 is MMIO */if (!(pci_resource_flags(pdev, region) & IORESOURCE_MEM)) {netif_err(tp, probe, dev,"region #%d not an MMIO resource, aborting\n",region);rc = -ENODEV;goto err_out_mwi_2;}/* check for weird/broken PCI region reporting */if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) {netif_err(tp, probe, dev,"Invalid PCI region size(s), aborting\n");rc = -ENODEV;goto err_out_mwi_2;}rc = pci_request_regions(pdev, MODULENAME);if (rc < 0) {netif_err(tp, probe, dev, "could not request regions\n");goto err_out_mwi_2;}tp->cp_cmd = RxChkSum;if ((sizeof(dma_addr_t) > 4) &&!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && use_dac) {tp->cp_cmd |= PCIDAC;dev->features |= NETIF_F_HIGHDMA;} else {rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));if (rc < 0) {netif_err(tp, probe, dev, "DMA configuration failed\n");goto err_out_free_res_3;}}/* ioremap MMIO region */ioaddr = ioremap(pci_resource_start(pdev, region), R8169_REGS_SIZE);if (!ioaddr) {netif_err(tp, probe, dev, "cannot remap MMIO, aborting\n");rc = -EIO;goto err_out_free_res_3;}tp->mmio_addr = ioaddr;if (!pci_is_pcie(pdev))netif_info(tp, probe, dev, "not PCI Express\n");/* Identify chip attached to board */rtl8169_get_mac_version(tp, dev, cfg->default_ver);rtl_init_rxcfg(tp);rtl_irq_disable(tp);rtl_hw_initialize(tp);rtl_hw_reset(tp);rtl_ack_events(tp, 0xffff);pci_set_master(pdev);/** Pretend we are using VLANs; This bypasses a nasty bug where* Interrupts stop flowing on high load on 8110SCd controllers.*/if (tp->mac_version == RTL_GIGA_MAC_VER_05)tp->cp_cmd |= RxVlan;rtl_init_mdio_ops(tp);rtl_init_pll_power_ops(tp);rtl_init_jumbo_ops(tp);rtl_init_csi_ops(tp);rtl8169_print_mac_version(tp);chipset = tp->mac_version;tp->txd_version = rtl_chip_infos[chipset].txd_version;RTL_W8(Cfg9346, Cfg9346_Unlock);RTL_W8(Config1, RTL_R8(Config1) | PMEnable);RTL_W8(Config5, RTL_R8(Config5) & (BWF | MWF | UWF | LanWake | PMEStatus));if ((RTL_R8(Config3) & (LinkUp | MagicPacket)) != 0)tp->features |= RTL_FEATURE_WOL;if ((RTL_R8(Config5) & (UWF | BWF | MWF)) != 0)tp->features |= RTL_FEATURE_WOL;tp->features |= rtl_try_msi(tp, cfg);RTL_W8(Cfg9346, Cfg9346_Lock);if (rtl_tbi_enabled(tp)) {tp->set_speed = rtl8169_set_speed_tbi;tp->get_settings = rtl8169_gset_tbi;tp->phy_reset_enable = rtl8169_tbi_reset_enable;tp->phy_reset_pending = rtl8169_tbi_reset_pending;tp->link_ok = rtl8169_tbi_link_ok;tp->do_ioctl = rtl_tbi_ioctl;} else {tp->set_speed = rtl8169_set_speed_xmii;tp->get_settings = rtl8169_gset_xmii;tp->phy_reset_enable = rtl8169_xmii_reset_enable;tp->phy_reset_pending = rtl8169_xmii_reset_pending;tp->link_ok = rtl8169_xmii_link_ok;tp->do_ioctl = rtl_xmii_ioctl;}mutex_init(&tp->wk.mutex);u64_stats_init(&tp->rx_stats.syncp);u64_stats_init(&tp->tx_stats.syncp);/* Get MAC address */for (i = 0; i < ETH_ALEN; i++)dev->dev_addr[i] = RTL_R8(MAC0 + i);SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops);dev->watchdog_timeo = RTL8169_TX_TIMEOUT;netif_napi_add(dev, &tp->napi, rtl8169_poll, R8169_NAPI_WEIGHT);/* don't enable SG, IP_CSUM and TSO by default - it might not work* properly for all devices */dev->features |= NETIF_F_RXCSUM |NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_TX |NETIF_F_HW_VLAN_CTAG_RX;dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |NETIF_F_HIGHDMA;if (tp->mac_version == RTL_GIGA_MAC_VER_05)/* 8110SCd requires hardware Rx VLAN - disallow toggling */dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_RX;dev->hw_features |= NETIF_F_RXALL;dev->hw_features |= NETIF_F_RXFCS;tp->hw_start = cfg->hw_start;tp->event_slow = cfg->event_slow;tp->opts1_mask = (tp->mac_version != RTL_GIGA_MAC_VER_01) ?~(RxBOVF | RxFOVF) : ~0;init_timer(&tp->timer);tp->timer.data = (unsigned long) dev;tp->timer.function = rtl8169_phy_timer;tp->rtl_fw = RTL_FIRMWARE_UNKNOWN;rc = register_netdev(dev);if (rc < 0)goto err_out_msi_4;pci_set_drvdata(pdev, dev);netif_info(tp, probe, dev, "%s at 0x%p, %pM, XID %08x IRQ %d\n",rtl_chip_infos[chipset].name, ioaddr, dev->dev_addr,(u32)(RTL_R32(TxConfig) & 0x9cf0f8ff), pdev->irq);if (rtl_chip_infos[chipset].jumbo_max != JUMBO_1K) {netif_info(tp, probe, dev, "jumbo features [frames: %d bytes, ""tx checksumming: %s]\n",rtl_chip_infos[chipset].jumbo_max,rtl_chip_infos[chipset].jumbo_tx_csum ? "ok" : "ko");}if (tp->mac_version == RTL_GIGA_MAC_VER_27 ||tp->mac_version == RTL_GIGA_MAC_VER_28 ||tp->mac_version == RTL_GIGA_MAC_VER_31) {rtl8168_driver_start(tp);}device_set_wakeup_enable(&pdev->dev, tp->features & RTL_FEATURE_WOL);if (pci_dev_run_wake(pdev))pm_runtime_put_noidle(&pdev->dev);netif_carrier_off(dev);out:return rc;err_out_msi_4:netif_napi_del(&tp->napi);rtl_disable_msi(pdev, tp);iounmap(ioaddr);
err_out_free_res_3:pci_release_regions(pdev);
err_out_mwi_2:pci_clear_mwi(pdev);pci_disable_device(pdev);
err_out_free_dev_1:free_netdev(dev);goto out;
}static struct pci_driver rtl8169_pci_driver = {.name		= MODULENAME,.id_table	= rtl8169_pci_tbl,.probe		= rtl_init_one,.remove		= rtl_remove_one,.shutdown	= rtl_shutdown,.driver.pm	= RTL8169_PM_OPS,
};module_pci_driver(rtl8169_pci_driver);

(1)定义一个 struct napi struct 结构对象。(734~738)
(2)使用 netif_napi_add 函数初始化并注册 struct napi_struct 结构对象。(6960~7131)

        其中,参数 dev 是网络设备对象指针,&tp->napi 是要初始化的 struct napi_struct 结构为对象地址,rtI8169_poll 是驱动中实现的轮询函数,R8169_NAPI_WEIGHT是多个设备间轮询的权重。
(3)在 open 函数中使用 napi_enable 因数使能 NAPI机制。(6502~6545)
(4) 在中断处理函数中禁止中断,然后调度 NAPI。(6303~6317)
(5)注册的轮询函数被调用,在轮询函数中处理数据包。(6389~6420)
        其中,参数 budget 是内核允许设备接收的数据包的个数,当接收到足够的数据包后,使用 napi_complete 退出轮询,并重新使能中断。

(6)在 stop 函数中使用 napi_disable 禁止轮询。(6433~6441)

(7)在注销的相关函数中使用 netif_napi_del 注销 NAPI.(6793~6806)

七、习题


1.( )函数是将 skb 的 data 和 tail 同时 end 方向偏 len 个字节
[A] skb_reserve
[B] skb_put
(C] skb_push
[D] skb_pull
2.( )函数是将 tail 向 end 方向偏 len 个字节
[A] skb_reserve
[B] skb_put
[C] skb_push
[D] skb_pull
3.()函数是将 data 向 head 方向偏移 len 个字节
[A] skb_reserve
[B] skb_put
[D] skb_pull
[C] skb_push
4.( )函数是将 data 向 end 方向偏移 len 个字节
[B] skb_put
[A] skb_reserve
[D] skb_pull
[C] skb_push
5. 以太网的硬件头长度为 ( ) 个字节。
[D] 1500
[C] 64
[B]48
[A] 14

6.NAPI 是否是完全使用轮询的机制来实现数据包的接收的( )
[B] 否
[A] 是

答案:    A        B        C        D         A        B

        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187717.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode 136. 只出现一次的数字

class Solution {//任何数与0异或结果都是原来的数//任何数和自身异或结果都是0//异或满足交换律和结合律//a ^ b ^ a (a ^ a) ^ b 0 ^ b bpublic int singleNumber(int[] nums) {int res nums[0];for(int i 1; i < nums.length; i){res ^ nums[i];}return res;} }

OpenCvSharp从入门到实践-(04)色彩空间

目录 1、GRAY色彩空间 2、从BGR色彩空间转换到GRAY色彩空间 2.1色彩空间转换码 2.2实例 BGR色彩空间转换到GRAY色彩空间 3、HSV色彩空间 4、从BGR色彩空间转换到HSV色彩空间 4.1色彩空间转换码 4.2实例 BGR色彩空间转换到HSV色彩空间 1、GRAY色彩空间 GRAY色彩空间通常…

Spring简单的存储和读取

前言 前面讲了spring的创建&#xff0c;现在说说关于Bean和五大类注解 一、Bean是什么&#xff1f; 在 Java 语⾔中对象也叫做 Bean&#xff0c;所以后⾯咱们再遇到对象就以 Bean 著称。这篇文章还是以spring创建为主。 二、存储对象 2.1 俩种存储方式 需要在 spring-conf…

使用Jmeter进行http接口性能测试

在进行网页或应用程序后台接口开发时&#xff0c;一般要及时测试开发的接口能否正确接收和返回数据&#xff0c;对于单次测试&#xff0c;Postman插件是个不错的Http请求模拟工具。 但是Postman只能模拟单客户端的单次请求&#xff0c;而对于模拟多用户并发等性能测试&#xf…

[Verilog语法]:===和!==运算符使用注意事项

[Verilog语法]&#xff1a;和!运算符使用注意事项 1&#xff0c; 和 !运算符使用注意事项2&#xff0c;3&#xff0c; 1&#xff0c; 和 !运算符使用注意事项 参考文献&#xff1a; 1&#xff0c;[SystemVerilog语法拾遗] 和!运算符使用注意事项 2&#xff0c; 3&#xff0c;

机器学习入门(第五天)——决策树(每次选一边)

Decision tree 知识树 Knowledge tree 一个小故事 A story 挑苹果&#xff1a; 根据这些特征&#xff0c;如颜色是否是红色、硬度是否是硬、香味是否是香&#xff0c;如果全部满足绝对是好苹果&#xff0c;或者红色硬但是无味也是好苹果&#xff0c;从上图可以看出来&#…

数据可视化:用图表和图形展示数据

写在开头 在当今信息爆炸的时代,海量的数据如同一座沉默的宝库,等待着我们挖掘和理解。然而,这些庞大的数据集本身可能令人望而生畏。在这个时候,数据可视化成为了解数据、发现模式和传达信息的强大工具。本篇博客将带领你探索数据可视化的奇妙世界,学习如何在python中使…

91基于matlab的以GUI实现指纹的识别和匹配百分比

基于matlab的以GUI实现指纹的识别和匹配百分比,中间有对指纹的二值化&#xff0c;M连接&#xff0c;特征提取等处理功能。数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。 91M连接 特征提取 (xiaohongshu.com)

Windows 安装redis,设置开机自启动

Windows 安装redis,设置开机自启动 文章目录 Windows 安装redis,设置开机自启动下载, 解压到指定目录设置redis密码启动redis服务端停止redis服务端设置自启动 下载, 解压到指定目录 官网地址: https://redis.io/ 安装包下载地址: https://github.com/tporadowski/redis/relea…

NB-IoT BC260Y Open CPU SDK⑥ADC的应用

NB-IoT BC260Y Open CPU SDK⑥ADC的应用 1、BC260Y_CN_AA模块 ADC的介绍2、ADC相关API的介绍3、软件设计4、实例分析5、以下是调试的结果:1、BC260Y_CN_AA模块 ADC的介绍 BC260Y-CN QuecOpen 模块提供 2 个专用于 ADC(ADC0、ADC1)功能的 I/O 引脚。通过相应的 API函数可以直…

GPLT(有空就写)

L2 - 047 锦标赛 思路&#xff1a; 将其放入一颗满二叉树上去考虑&#xff1a;从二叉树的最底层开始&#xff0c;每一轮比赛&#xff0c;为同一个祖先的左右两个儿子进行比较&#xff0c;而你需要将败者的能力值填到左右两个儿子其中一个上面&#xff0c;另一个就向上传递表示胜…

2023 IoTDB 用户大会倒计时 3 天 | 1 分钟让你了解 IoTDB!

叮叮&#xff01;距离 2023 IoTDB 用户大会在北京与大家见面还有 3 天&#xff01; 这场筹备已久的盛会&#xff0c;汇集了超 20 位大咖嘉宾带来的精彩议题&#xff0c;届时来自美国国家工程院、清华大学软件学院的产业大拿&#xff0c;与能源电力、钢铁冶炼、城轨运输、智能制…

【shell】正则表达式和AWK

一.正则表达式 通配符匹配文件&#xff08;而且是已存在的文件&#xff09; 基本正则表达式扩展正则表达式 可以使用 man 手册帮助 正则表达式&#xff1a;匹配的是文章中的字符 通配符&#xff1a;匹配的是文件名 任意单个字符 1.元字符&#xff08;字符匹配&…

NOIP2007提高组第二轮T3:矩阵取数游戏

题目链接 [NOIP2007 提高组] 矩阵取数游戏 题目描述 帅帅经常跟同学玩一个矩阵取数游戏&#xff1a;对于一个给定的 n m n \times m nm 的矩阵&#xff0c;矩阵中的每个元素 a i , j a_{i,j} ai,j​ 均为非负整数。游戏规则如下&#xff1a; 每次取数时须从每行各取走一…

恒驰服务 | 华为云云上运维服务offering

恒驰运维服务主要针对运维要求高或自身运维能力有限的客户&#xff0c;通过服务增购的形式&#xff0c;提供运维服务以协助客户做好云上资源运维管理&#xff0c;规避业务风险&#xff0c;降低运维开销&#xff0c;提升客户业务稳定性。 适用场景&#xff1a; 如何保障业务稳定…

内衣洗衣机哪个牌子好用?性价比高的迷你洗衣机推荐

洗衣机是现代家庭中必备的一种家用电器&#xff0c;它的使用简便、省时、省力&#xff0c;是我们生活中不可缺少的一部分&#xff0c;差不多家家户户都有一台&#xff0c;甚至两台以上。由于内衣内裤并不能够直接扔进洗衣机里进行清洗&#xff0c;因此一种内衣专业的洗衣机就出…

单机zk安装与zk四字命令

一、下载 Apache ZooKeeper可以在 Linux 系统中使用 wget 命令直接下载&#xff0c;官网地址 Apache ZooKeeper 二、解压 tar -zxvf apache-zookeeper-3.8.3-bin.tar.gz 进去解压的目录中&#xff0c; 进入到 zk 解压目录的 conf 目录&#xff0c;复制 zoo_sample.cfg 文件&a…

简单实用:isPalindrome方法在密码验证中的应用

在信息安全领域中&#xff0c;密码验证是非常重要的一部分。一个好的密码应该有足够的复杂度&#xff0c;以防止被破解。而回文密码由于正读和反读都一样这样特殊的性质&#xff0c;具有很高的安全性&#xff0c;可以发挥很大的作用。在实际的密码策略中&#xff0c;我们可能会…

2023认证杯B题:金属表面缺陷检测|数学中国数学建模国际赛(小美赛) |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时&#xff0c;你是否曾经感到茫然无措&#xff1f;作为2022年美国大学生数学建模比赛的O奖得主&#xff0c;我为大家提供了一套优秀的解题思路&#xff0c;让你轻松应对各种难题。 让我们来看看认证杯的B题&#xff01; 完整内容可以在文章末…

你对SPA单页面的理解,它的优缺点分别是什么?

面试官&#xff1a;你对SPA单页面的理解&#xff0c;它的优缺点分别是什么&#xff1f;如何实现SPA应用呢 一、什么是SPA SPA&#xff08;single-page application&#xff09;&#xff0c;翻译过来就是单页应用SPA是一种网络应用程序或网站的模型&#xff0c;它通过动态重写当…