Python实现FA萤火虫优化算法优化循环神经网络回归模型(LSTM回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法寻找最优的参数值来优化LSTM回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

  

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建FA萤火虫优化算法优化LSTM回归模型

主要使用FA萤火虫优化算法优化LSTM回归算法,用于目标回归。

6.1 FA萤火虫优化算法寻找的最优参数   

最优参数:

   

6.2 最优参数值构建模型

编号

模型名称

参数

1

LSTM回归模型

units=best_units

2

epochs=best_epochs

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

  

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

LSTM回归模型

  R方

0.9714

均方误差

1530.1298

可解释方差值

0.972

平均绝对误差

28.1525

从上表可以看出,R方0.9714,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。  

8.结论与展望

综上所述,本文采用了FA萤火虫优化算法寻找LSTM回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。  

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/1KsCYlUucE1P3HrGEUMSQrQ 
提取码:2kgw

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187228.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[操作系统] 文件管理

文章目录 5.1 磁盘调度算法1. 先来先服务算法( First Come First Served, FCFS) 算法2. 最短寻道时间优先算法( Shortest Seek Time First, SSTF) 算法3. 扫描算法( SCAN ) 算法4. 循环扫描算法( Circular Scan, CSCAN ) 算法5. LOOK 与 CLOOK 算法 5.2 进程写文件时&#xff0…

禁奥义·SQL秘籍

sql secret scripts sql 语法顺序、执行顺序、执行过程、要点解析、优化技巧。 1、语法顺序 如上图所示,为 sql 语法顺序与执行顺序对照图。其具体含义如下: 0、select: 用于从数据库中选取数据,即表示从数据库中查询到的数据的…

[架构之路-255]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 架构设计 - 软件架构风格

目录 前言: 一、建筑风格 1.1 什么是建筑风格 1.2 常见的建筑风格 1.3 如何区分不同的建筑风格 二、软件架构风格概述 2.1 什么是软件架构风格 2.2 如何区分不同的软件架构风格 2.3 软件架构风格的发展阶段 2.4 软件架构风格与软件架构的区别 2.5 常见的…

数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波

目录 一 Numpy 实现傅里叶变换 1 涉及的函数 2 实践 二 OpenCV 实现傅里叶变换 1 涉及的函数 2 实践 为了有效地和快速地对图像进行处理和分析,常常需要将原定义在图像空间的图像以某种形式转换(正变换)到另外一些空间,并利…

使用gparted进行ubuntu虚拟机的磁盘扩容(解决gparted无法拖动分区的问题)

在学习内核编译下载linux内核源码的时候,由于源码非常大,下载的时候提示磁盘空间不足,我才意识到刚开始创建虚拟机的时候分配了20GB的空间现在已经快用光了。在VM的设置里可以进行扩容,我扩展到了30GB重启却发现空间并没有加到我使…

数据库应用:MongoDB 文档与索引管理

目录 一、理论 1.MongoDB文档管理 2.MongoDB索引管理 二、实验 1.MongoDB文档管理 2.MongoDB索引管理(索引添加与删除) 3.MongoDB索引管理(全文索引) 4.MongoDB索引管理(多列索引) 5.MongoDB索引管…

虚拟数字人有什么用?有哪些应用场景?

​​过去三年,元宇宙概念进入到大众视野,虚拟数字人备受关注。抖音达人柳夜熙、洛天依、网红虚拟偶像AYAYI等,随着元宇宙的流行,数字人也逐渐成为一种趋势。据行业预测,到2030年,中国的数字人总市场规模将达…

APITable免费开源的多维表格与可视化数据库本地部署公网远程访问

APITable免费开源的多维表格与可视化数据库公网远程访问 文章目录 APITable免费开源的多维表格与可视化数据库公网远程访问前言1. 部署APITable2. cpolar的安装和注册3. 配置APITable公网访问地址4. 固定APITable公网地址 前言 vika维格表作为新一代数据生产力平台&#xff0c…

我与开源的历程

我在2000年开始接触开源,当时在松下航空电子美国总部工作。我负责将 IFE 系统从 Win31 迁移到 Linux。作为一个完全不懂 Linux 的小白,我不得不找到一台笔记本电脑安装并自学 Redhat Linux 6.1。2003年回到新加坡后,我发现没有一个凝聚 Linux…

最新AI创作系统ChatGPT系统运营源码+DALL-E3文生图+支持OpenAI-GPT全模型+国内AI全模型

一、AI创作系统 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI…

centos7下执行yum命令报错

前言 在Linux系统中,安装nginx时候,需要先安装环境。 Nginx是使用C语言开发,安装nginx需要先从官网上将源码下载,然后编译,编译需要gcc环境,但是在安装gcc环境的时候,执行命令报错。 yum install –y gcc-…

Java零基础——Redis篇

1.【熟悉】NoSQL的简介 1.1 什么是NoSQL NoSQL 是 Not Only SQL 的缩写,意即"不仅仅是SQL"的意思,泛指非关系型的数据库。强调Key-Value Stores和文档数据库的优点。 NoSQL产品是传统关系型数据库的功能阉割版本,通过减少用不到或…

易宝OA ExecuteSqlForSingle SQL注入漏洞复现

0x01 产品简介 易宝OA系统是一种专门为企业和机构的日常办公工作提供服务的综合性软件平台,具有信息管理、 流程管理 、知识管理(档案和业务管理)、协同办公等多种功能。 0x02 漏洞概述 易宝OA ExecuteSqlForSingle接口处存在SQL注入漏洞&a…

qt 5.15.2压缩和解压缩功能

qt 5.15.2压缩和解压缩功能 主要是添加qt项目文件.pro内容: 这里要先下载quazip的c项目先编译后引入到本项目中/zip目录下 INCLUDEPATH ./zip CONFIG(debug, debug|release) {win32:win32-g: PRE_TARGETDEPS $$PWD/zip/libquazipd.awin32:win32-g: LIBS -L$$PWD…

基于Netty的网络调用实现

作为一个分布式消息队列,通信的质量至关重要。基于TCP协议和Socket实现一个高效、稳定的通信程序并不容易,有很多大大小小的“坑”等待着经验不足的开发者。RocketMQ选择不重复发明轮子,基于Netty库来实现底层的通信功能。 1 Netty介绍 Net…

【pytorch】深度学习入门一:pytorch的安装与配置(Windows版)

请支持原创,认准DannisTang(tangweixuan1995foxmail.com) 文章目录 第〇章 阅读前提示第一章 准备工作第一节 Python下载第二节 Python安装第三节 Python配置第四节 Pycharm下载第五节 Pycharm安装第六节 CUDA的安装 第二章 Anaconda安装与配…

Gitee 之初体验(上)

我们在项目开发或者自己学习的时候,总会存在这样的问题: 在一台电脑上编写完代码,想要再另外一台电脑上再去写,再或者和其他人一起协作等等场合,代码传来传去很麻烦。 这个时候,我们就可以去使用代码管理工…

LeetCode刷题---打家劫舍问题

顾得泉:个人主页 个人专栏:《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、打家劫舍 题目链接:打家劫舍 题目描述 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定…

Spring Security 6.x 系列(7)—— 源码分析之建造者模式

一、建造者模式 WebSecurity、HttpSecurity、AuthenticationManagerBuilder 都是框架中的构建者,把他们放到一起看看他们的共同特点: 查看AuthenticationManagerBuilder的继承结构图: 查看HttpSecurity的继承结构图: 查看WebSec…

数据结构(超详细讲解!!)第二十六节 图(上)

1.基本概念 图(Graph)是一种较线性表和树更为复杂的非线性结构。是对结点的前趋和后继个数不加限制的数据结构,用来描述元素之间“多对多”的关系(即结点之间的关系是任意的)。 一个图G (V,E)由顶点&…