faac内存开销较大,为方便嵌入式设备使用进行优化(valgrind使用)

faac内存开销较大,为方便嵌入式设备使用进行优化,在github上提了issues但是没人理我,所以就搞一份代码自己玩吧。 基于faac_1_30版本,原工程https://github.com/knik0/faac

faac内存优化: faac内存开销较大,为方便嵌入式设备使用进行优化,在github上提了issues但是没人理我,所以就搞一份代码自己玩吧。基于faac_1_30版本,原工程https://github.com/knik0/faac

https://gitee.com/dma/faac-memory-optimization?_from=gitee_search

说明

faac内存开销较大,为方便嵌入式设备使用进行优化,在github上提了issues但是没人理我,所以就搞一份代码自己玩吧。
基于faac_1_30版本,原工程 https://github.com/knik0/faac

文件说明

  • faac-1_30.zip 为 faac 源码
  • 为了方便我个人使用,删除了 faac 源码中我用不到的文件,只保留 libfaac 目录下的必要文件和 inlcude 目录
  • 增加 CMakeLists.txt 编译脚本

内存优化的内容

内存优化测试文件的格式为 PCM int16 小端 双声道 44100Hz

1.1 优化前

使用 valgrind 检查内存,结果如下,可以看到默认配置的内存开销约为 11.5 MB

1.2 修改默认最大声道数

修改 libfaac\coder.h
一般来说,双声道就够用了,如果有5.1声道之类的特殊需求可以自行修改

修改前
#define MAX_CHANNELS 64
修改后
#define MAX_CHANNELS 2

内存统计如下,约 560 KB

1.3 删除 bwpInfo

修改 libfaac\coder.h
faacEncOpen() 中会创建 faacEncStruct* hEncoder; 这个句柄
faacEncStruct.coderInfo 中的 bwpInfo 代码中没有用到,不知道作者为什么没有删除,意义不明。

修改前
BwpInfo bwpInfo;
修改后
// BwpInfo bwpInfo;

内存统计如下,约 240 KB

1.4 删除无效代码

修改 libfaac\frame.c faacEncEncode() 的代码中有这样一段

hEncoder->sampleBuff[channel]		= hEncoder->nextSampleBuff[channel];
hEncoder->nextSampleBuff[channel]	= hEncoder->next2SampleBuff[channel];
hEncoder->next2SampleBuff[channel]	= hEncoder->next3SampleBuff[channel];
hEncoder->next3SampleBuff[channel]	= tmp;

申请了4个 sampleBuff,这个函数每调用一次会依次交换这4个 buffer,实际代码中只用到了 sampleBuffnext3SampleBuff,不明白作者为什么这样写,也可能是忘了删,这里可以修改为

hEncoder->sampleBuff[channel]		= hEncoder->next3SampleBuff[channel];
hEncoder->next3SampleBuff[channel]	= tmp;

以下几处记得也要一起修改

faacEncOpen() 中修改为

// hEncoder->nextSampleBuff[channel] = NULL;
// hEncoder->next2SampleBuff[channel] = NULL;

faacEncClose() 中修改为

// if (hEncoder->nextSampleBuff[channel])
//   FreeMemory(hEncoder->nextSampleBuff[channel]);
// if (hEncoder->next2SampleBuff[channel])
//   FreeMemory (hEncoder->next2SampleBuff[channel]);

faacEncStruct 中修改为

// double *nextSampleBuff[MAX_CHANNELS];
// double *next2SampleBuff[MAX_CHANNELS];

这样每声道可以节约 16KB 内存

内存统计如下,约 210 KB

1.5 优化数据结构

修改 libfaac\coder.h
这有个前提条件,就是不启用 DRM,这个宏在 libfaac\coder.h,默认就是关闭的
//#define DRM

接下来再看代码,CoderInfo 中有这样一个成员

struct {int data;int len;
} s[DATASIZE];

它用来进行哈夫曼编码,查看源码可知,这个结构体只在 huffcode() 函数中赋值,里面的数据来自于哈夫曼编码表,使用的码表为 book01book11,没有用到 book12,这11个码表的成员原型如下

typedef struct {const uint16_t len;const uint16_t data;
} hcode16_t;

因此可以把 int 改成 short,每声道可以节约6KB内存
备注:这样修改其实是错的,但是完全可以正常使用,具体原因见下文

内存统计如下,约 200 KB

1.6 禁用 TNS

修改 libfaac\coder.hlibfaac\bitstream.c
这个修改会影响音质,实测影响很小,音质上的差异要仔细听才能察觉,个人认为这一点音质上的损失完全可以接受。
CoderInfo.tnsInfo 成员也去掉,并删除 faacEncEncode()TnsEncode() 的调用以及两处 TnsInit() 调用。
删除 faacEncConfiguration 中的 unsigned int useTns
编译时删除 tns.c
直接将 WriteTNSData() 函数修改如下

static int WriteTNSData(CoderInfo *coderInfo,BitStream *bitStream,int writeFlag)
{int bits = 0;#ifndef DRMif (writeFlag) {PutBit(bitStream, 0, LEN_TNS_PRES);}bits += LEN_TNS_PRES;
#endifreturn bits;
}

内存统计如下,约 170 KB

1.7 修改数据类型

修改所有文件的 doublefloat
理论上来说这个修改会影响音质,实测没听出来,个人认为这个修改应该没问题
每声道内存再节省一半

内存统计如下,大约 90 KB

1.8 其他

以下无关紧要,能优化一点点,这里就不统计了
faacEncConfigurationint channel_map[64]; 可以改为 int channel_map[MAX_CHANNELS];
faacEncStruct 去掉 double *msSpectrum[MAX_CHANNELS];

优化总结

除去 main() 函数中申请的 buffer,经过以上优化已经可以做到单声道约 70 KB,双声道约 90 KB,这样的内存开销即使放到stm32的部分中高端型号上都能运行,还要啥自行车?

单声道内存统计如下,大约 70 KB

大家如果有更好的优化方法欢迎留言分享

其他问题

Q&A

Q: windows编译报错 #include "win32_ver.h"
A: 这个文件是由configure生成的,目前看似乎没有太大影响,先去掉

关于《1.5 优化数据结构》章节的优化问题

这确实是一个不合理,但碰巧能够正常运行的优化。下面来详细解释一下这个问题。

首先引用一下CSDN上 asd451006071 和 weixin_43957341 这两位网友的留言

asd451006071
2022.10.04
并不是,音频会卡顿,不连续,通过QQ音乐等软件都能听得出来。这是因为huff编码哪里出了问题。我也是查了源码确实huffcode是16位的。但是就是这样。把uint16_t改成int16_t就行了。至于为什么这样就行了。我也感到很好奇。很惊讶。。weixin_43957341
2021.11.06
第六点,所有 double 转 float 这个有点小坑,虽然看起来能播,单独放在 苹果设备 上也能播,但是封装到 MP4 里,在 苹果设备 上就会播放异常,出现如卡视频,音频只有前几秒声音的情况,搞得我一度怀疑是时间戳或者 MP4 库本身的兼容问题asd451006071
2022.10.04
huffcode那个s数组,uint16_t改int16_t就好了。你试试看。。

不知道这两位网友是不是看错了,我前文写的很清楚,把这个结构体中的int改成short,结果他俩都改成unsigned short

struct {int data;int len;
} s[DATASIZE];

于是就会出现音频卡顿的问题,这个和播放器无关,因为就是编码出错了。这份代码我自己也一直再在用,没有任何异常,最近闲下来了,正好研究一下这个问题。

下文都用uint16代替unsigned short,其他数据类似
首先我要承认,这是我的错,这个结构体确实只在 huffcode() 函数中赋值,里面的数据来也确实来自于哈夫曼编码表 book01book11,我最初在做优化时大概看了一眼这几个编码表,以为数值都在 int16 范围内不会溢出,所以大胆地将 int 改成 short 而且也没出问题。但不巧遗漏了 book03 的倒数第7项 {16,65534},这是唯一一个超出 int16 范围的数据,这也是我在重新研究这个问题时才发现的。但这并不是唯一会导致bug的值,但为什么改成int16正常,改成uint16反而异常?下面会结合代码进行分析。

先以 uint16 的情况为例,来看实际在 huffcode() 函数中用到 book03 的这段代码

    case 3:case 4:for(ofs = 0; ofs < len; ofs += 4){// 此处省略若干代码else{data = book[idx].data;// add sign bitsfor(cnt = 0; cnt < 4; cnt++){if(qp[cnt]){blen++;data <<= 1;if (qp[cnt] < 0)data |= 1;}}coder->s[datacnt].data = data;coder->s[datacnt++].len = blen;DRMDATA;}bits += blen;}break;
  • 假设在 data = book[idx].data; 这里读取的是 {16,65534},此时 data 为 65534
  • 假设4次循环中只有一次 if(qp[cnt]) 条件成立,执行 blen++; data <<= 1 这两句以后,此时 data 为 131068(0x0001 fffc),blen 为 17,这里暂不考虑 if (qp[cnt] < 0)
  • 因为 uint16 溢出,这时 coder->s[datacnt].data = data; 使 s[datacnt].data 被赋值为 65532(0xfffc)

最终编码时在 WriteSpectralData() 函数中

static int WriteSpectralData(CoderInfo *coderInfo,BitStream *bitStream,int writeFlag)
{int i, bits = 0;if (writeFlag) {for(i = 0; i < coderInfo->datacnt; i++) {int data = coderInfo->s[i].data;int len = coderInfo->s[i].len;if (len > 0) {PutBit(bitStream, data, len);bits += len;}}} else {for(i = 0; i < coderInfo->datacnt; i++) {bits += coderInfo->s[i].len;}}return bits;
}
  • int data = coderInfo->s[i].data; 读取的 data 为 65532(0x0000 fffc),len 为17
  • PutBit(bitStream, data, len); 将 17 位数据写入文件,即写入的二进制数据为 0 1111 1111 1111 1100,注意这里写入的最高位是0
  • 而实际上应该写入的二进制数据为 1 1111 1111 1111 1100,即131068(0x1fffc),也就是由于溢出的原因是的最高位从1变成了0,进而导致音频播放出错

接下来以 int16 的情况再看一遍这些代码的执行结果

  • 假设在 data = book[idx].data; 这里读取的是 {16,65534},此时 data 为 65534
  • 假设4次循环中只有一次 if(qp[cnt]) 条件成立,执行 blen++; data <<= 1 这两句以后,此时 data 为 131068(0x0001 fffc),blen 为 17,这里暂不考虑 if (qp[cnt] < 0)
  • 因为 int16 溢出,这时 coder->s[datacnt].data = data; 使 s[datacnt].data 被赋值为 -4(0xfffc)。
  • WriteSpectralData() 函数中
  • int data = coderInfo->s[i].data; 读取的 data 为 -4(0xffff fffc),len 为17。注意!这里是重点!因为它是有符号数,高位全部被置为1
  • PutBit(bitStream, data, len); 将 17 位数据写入文件,即写入的二进制数据为 1 1111 1111 1111 1100,正好将正确的数值写了进去!

所以,真正会出问题的哈夫曼编码不止 {16,65534},假设循环执行了4次,也就是放大了16倍,那么凡是大于4096的像 {13,8188} 这样的编码都会出错。另外一个可以使它正常工作的巧合在于查看 huffdata.c 中的编码表会发现,所有数值都是接近2的n次方的数值,对于大于4096的数来说这些数的高4位都是1,使得它即使左移4位,超出16位以上的部分仍然是1,进而在之后转换为有符号数时不会出现该是0的位被补为1,保证了数值的正确。例如8188(0x1ffc),左移4位得131068(0x1fffc),int16溢出后为-4(0xfffc),再赋值给int32为-4(0xffff fffc),丝毫不影响。假设出现 4097(0x1001)这样的数,左移4位得65552(0x10010),int16溢出后为16(0x0010),再赋值给int32为16(0x0000 0010),数据又会出现错误!

到此为止整个问题分析完毕。一个不合理的优化在两种巧合的共同作用下让它完美运行。

最后再次感谢 asd451006071 和 weixin_43957341 这两位网友的留言!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18605.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

意外:WPS编程新工具,不用编程,excel用户:可以不用VBA啦

来来来&#xff0c;拓宽一下视野&#xff01; 别总以为excel和WPS只能用VBA编程&#xff0c;也别总是想着ACCESS这些老生常谈的工具。其实对于电子表格高级用户来讲&#xff0c;不会VBA&#xff0c;不用ACCESS&#xff0c;也一样可以解决复杂问题或者高级应用。 尤其是WPS用户…

【腾讯云 Cloud Studio 实战训练营】CloudStudio体验真正的现代化开发方式,双手插兜不知道什么叫对手!

CloudStudio体验真正的现代化开发方式&#xff0c;双手插兜不知道什么叫对手&#xff01; 文章目录 CloudStudio体验真正的现代化开发方式&#xff0c;双手插兜不知道什么叫对手&#xff01;前言出现的背景一、CloudStudio 是什么&#xff1f;二、CloudStudio 的特点三、CloudS…

PostgreSql 锁

一、概述 在 PostgreSQL 事务中提到&#xff0c;多个用户访问相同数据时可能出现脏读&#xff0c;不可重复度&#xff0c;幻读&#xff0c;更新丢失的问题&#xff0c;为解决这些问题&#xff0c;定义了不同的隔离级别&#xff0c;而隔离级别的具体实现&#xff0c;依靠的就是数…

钉钉群消息推送

1. 添加钉钉群机器人 PC端登录&#xff08;当前版本手机端无法进行推送关键词设置&#xff09;&#xff0c;群设置--> 机器人 --> webhook进行安全设置复制webhook对应的url 2. 群消息推送 钉钉群消息支持纯文本和markdown类型 2.1 调用示例源码 import com.alibaba.…

助你丝滑过度到 Vue3 组合式Api的优势新的组件 ②⑧

作者 : SYFStrive 博客首页 : HomePage &#x1f4dc;&#xff1a; VUE3~TS &#x1f4cc;&#xff1a;个人社区&#xff08;欢迎大佬们加入&#xff09; &#x1f449;&#xff1a;社区链接&#x1f517; &#x1f4cc;&#xff1a;觉得文章不错可以点点关注 &#x1f449;…

2023.08.01 驱动开发day8

驱动层 #include <linux/init.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/interrupt.h> #include <linux/fs.h> #include <linux/gpio.h> #include <linux/of_gpio.h>#…

如何在免费版 pycharm 中使用 github copilot (chatGPT)?

起因 在 vscode 中使用了 github copilot 以后&#xff0c;感觉这个人工智能还不错。 但 vscode 对于 python 项目调试并不是特别方便&#xff0c;所以想在 Pycharm 中也能使用同一个 github 账号&#xff0c;用上 copilot 的功能。 不需要等待&#xff0c;安装即用&#xff…

【Web 表单】与用户数据打交道-1(mdn笔记)

0. Web 表单指南 我们将介绍 Web 表单的各个方面&#xff1a;HTML 结构、样式、验证表单数据&#xff0c;以及提交数据到服务器。 基本指南 你的第一个表单 第一次创建 HTML 表单的经验&#xff0c;包括设计一个简单表单、使用正确的 HTML 元素实现它、通过 CSS 添加一些非常简…

【Spring Cloud一】微服务基本知识

系列文章目录 微服务基本知识 系列文章目录前言一、系统架构的演变1.1单体架构1.2分层架构1.3分布式架构1.4微服务架构1.5分布式、SOA、微服务的异同点 二、CAP原则三、RESTfulRESTful的核心概念&#xff1a; 四、共识算法 前言 在实际项目开发过程中&#xff0c;目前负责开发…

Spring?Boot项目如何优雅实现Excel导入与导出功能

目录 背景EasyExcel 问题分析与解决Spring Boot Excel 导入与导出 依赖引入Excel 导入 基本导入功能进阶导入功能Excel 导出 Excel 导入参数校验 开启校验 校验规则定义 Bean Validation 定义校验规则ExcelValidator 接口定义校验规则校验结果接收 异常捕获接收校验结果contro…

小研究 - 主动式微服务细粒度弹性缩放算法研究(三)

微服务架构已成为云数据中心的基本服务架构。但目前关于微服务系统弹性缩放的研究大多是基于服务或实例级别的水平缩放&#xff0c;忽略了能够充分利用单台服务器资源的细粒度垂直缩放&#xff0c;从而导致资源浪费。为此&#xff0c;本文设计了主动式微服务细粒度弹性缩放算法…

使用 Go 语言实现二叉搜索树

原文链接&#xff1a; 使用 Go 语言实现二叉搜索树 二叉树是一种常见并且非常重要的数据结构&#xff0c;在很多项目中都能看到二叉树的身影。 它有很多变种&#xff0c;比如红黑树&#xff0c;常被用作 std::map 和 std::set 的底层实现&#xff1b;B 树和 B 树&#xff0c;…

Total Variation loss

Total Variation loss 适合任务 图像复原、去噪等 处理的问题 图像上的一点点噪声可能就会对复原的结果产生非常大的影响&#xff0c;很多复原算法都会放大噪声。因此需要在最优化问题的模型中添加一些正则项来保持图像的光滑性&#xff0c;图片中相邻像素值的差异可以通过…

传统计算机视觉

传统计算机视觉 计算机视觉难点图像分割基于主动轮廓的图像分割基于水平集的图像分割交互式图像分割基于模型的运动分割 目标跟踪基于光流的点目标跟踪基于均值漂移的块目标跟踪基于粒子滤波的目标跟踪基于核相关滤波的目标跟踪 目标检测一般目标检测识别之特征一般目标检测识别…

18.Netty源码之ByteBuf 详解

highlight: arduino-light ByteBuf 是 Netty 的数据容器&#xff0c;所有网络通信中字节流的传输都是通过 ByteBuf 完成的。 然而 JDK NIO 包中已经提供了类似的 ByteBuffer 类&#xff0c;为什么 Netty 还要去重复造轮子呢&#xff1f;本节课我会详细地讲解 ByteBuf。 JDK NIO…

Spring学习记录----十五、面向切面编程AOP+十六、Spring对事务的支持

目录 十五、面向切面编程AOP 15.1 AOP介绍 总结 15.2 AOP的七大术语 15.3 切点表达式 15.4 使用Spring的AOP 15.4.1 准备工作 15.4.1.1Spring AOP 基于注解之实现步骤 15.4.1.2-Spring AOP 基于注解之切点表达式 代码 运行结果&#xff1a; 代码 运行结果 通知类…

Python高阶技巧 递归

递归的定义 函数作为一种代码封装&#xff0c;可以被其他程序调用&#xff0c;当然&#xff0c;也可以被函数内部代码调用。这种函数定义中调用函数自身的方式称为递归。 递归的思想 把规模大的问题转化为规模小的、具有与原来问题相同解法的问题来解决。在函数实现时&#…

SpringBoot集成Thymeleaf

Spring Boot 集成 Thymeleaf 模板引擎 1、Thymeleaf 介绍 Thymeleaf 是适用于 Web 和独立环境的现代服务器端 Java 模板引擎。 Thymeleaf 的主要目标是为开发工作流程带来优雅的自然模板&#xff0c;既可以在浏览器中正确显示的 HTML&#xff0c;也可以用作静态原型&#xf…

C#+WPF上位机开发(模块化+反应式)

在上位机开发领域中&#xff0c;C#与C两种语言是应用最多的两种开发语言&#xff0c;在C语言中&#xff0c;与之搭配的前端框架通常以QT最为常用&#xff0c;而C#语言中&#xff0c;与之搭配的前端框架是Winform和WPF两种框架。今天我们主要讨论一下C#和WPF这一对组合在上位机开…

css图标 | 来自 fontawesome 字体文件的586 个小图标

1. css效果 /*!* Font Awesome 4.4.0 by davegandy - http://fontawesome.io - fontawesome* License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)*/.fa-glass:before {content:"\f000"} .fa-music:before {content:"\f001"…