18.Netty源码之ByteBuf 详解


highlight: arduino-light

ByteBuf 是 Netty 的数据容器,所有网络通信中字节流的传输都是通过 ByteBuf 完成的。

然而 JDK NIO 包中已经提供了类似的 ByteBuffer 类,为什么 Netty 还要去重复造轮子呢?本节课我会详细地讲解 ByteBuf。

JDK NIO的ByteBuffer

我们首先介绍下 JDK NIO 的 ByteBuffer,才能知道 ByteBuffer 有哪些缺陷和痛点。下图展示了 ByteBuffer 的内部结构:

image.png

从图中可知,ByteBuffer 包含以下四个基本属性:

  • mark:为某个读取过的关键位置做标记,方便回退到该位置;
  • position:当前读取的位置;
  • limit:buffer 中有效的数据长度大小;
  • capacity:初始化时的空间容量。

以上四个基本属性的关系是:mark <= position <= limit <= capacity。结合 ByteBuffer 的基本属性,不难理解它在使用上的一些缺陷。

第一,ByteBuffer 分配的长度是固定的,无法动态扩缩容,所以很难控制需要分配多大的容量。如果分配太大容量,容易造成内存浪费;如果分配太小,存放太大的数据会抛出 BufferOverflowException 异常。在使用 ByteBuffer 时,为了避免容量不足问题,你必须每次在存放数据的时候对容量大小做校验,如果超出 ByteBuffer 最大容量,那么需要重新开辟一个更大容量的 ByteBuffer,将已有的数据迁移过去。整个过程相对烦琐,对开发者而言是非常不友好的。

第二,ByteBuffer 只能通过 position 获取当前可操作的位置,因为读写共用的 position 指针,所以需要频繁调用 flip、rewind 方法切换读写状态,开发者必须很小心处理 ByteBuffer 的数据读写,稍不留意就会出错。

ByteBuffer 作为网络通信中高频使用的数据载体,显然不能够满足 Netty 的需求,Netty 重新实现了一个性能更高、易用性更强的 ByteBuf,相比于 ByteBuffer 它提供了很多非常酷的特性:

  • 容量可以按需动态扩展,类似于 StringBuffer;
  • 读写采用了不同的指针,读写模式可以随意切换,不需要调用 flip 方法;
  • 通过内置的复合缓冲类型可以实现零拷贝;
  • 支持引用计数;
  • 支持缓存池。

这里我们只是对 ByteBuf 有一个简单的了解,接下来我们就一起看下 ByteBuf 是如何实现的吧。

痛点:

1.readIndex 和 writeIndex没有分开

2.需要调用flip和clear方法

3.api命名区分度低

Netty ByteBuf 内部结构

同样我们看下 ByteBuf 的内部结构,与 ByteBuffer 做一个对比。

Netty11(2).png

从图中可以看出,ByteBuf 包含三个指针:读指针 readerIndex写指针 writeIndex最大容量 maxCapacity,根据指针的位置又可以将 ByteBuf 内部结构可以分为四个部分:

第一部分是废弃字节,表示已经丢弃的无效字节数据。

第二部分是可读字节,表示 ByteBuf 中可以被读取的字节内容,可以通过 writeIndex - readerIndex 计算得出。从 ByteBuf 读取 N 个字节,readerIndex 就会自增 N,readerIndex 不会大于 writeIndex,当 readerIndex == writeIndex 时,表示 ByteBuf 已经不可读。

第三部分是可写字节,向 ByteBuf 中写入数据都会存储到可写字节区域。向 ByteBuf 写入 N 字节数据,writeIndex 就会自增 N,当 writeIndex 超过 capacity,表示 ByteBuf 容量不足,需要扩容。

第四部分是可扩容字节,表示 ByteBuf 最多还可以扩容多少字节,当 writeIndex 超过 capacity 时,会触发 ByteBuf 扩容,最多扩容到 maxCapacity 为止,超过 maxCapacity 再写入就会出错。

由此可见,Netty 重新设计的 ByteBuf 有效地区分了可读、可写以及可扩容数据,解决了 ByteBuffer 无法扩容以及读写模式切换烦琐的缺陷。

接下来,我们一起学习下 ByteBuf 的核心 API,你可以把它当作 ByteBuffer 的替代品单独使用。

引用计数

ByteBuf 是基于引用计数设计的,它实现了 ReferenceCounted 接口,ByteBuf 的生命周期是由引用计数所管理。

只要引用计数大于 0,表示 ByteBuf 还在被使用;

当 ByteBuf 不再被其他对象所引用时,引用计数为 0,那么代表该对象可以被释放。

当新创建一个 ByteBuf 对象时,它的初始引用计数为 1,当 ByteBuf 调用 release() 后,引用计数减 1。

所以不要误以为调用了 release() 就会保证 ByteBuf 对象一定会被回收。因为可能计数是2。

你可以结合以下的代码示例做验证:

md ByteBuf buffer = ctx.alloc().directBuffer(); assert buffer.refCnt() == 1; buffer.release(); assert buffer.refCnt() == 0;

引用计数对于 Netty 设计缓存池化有非常大的帮助,当引用计数为 0,该 ByteBuf 可以被放入到对象池中,避免每次使用 ByteBuf 都重复创建,对于实现高性能的内存管理有着很大的意义。

此外 Netty 可以利用引用计数的特点实现内存泄漏检测工具。

JVM 并不知道 Netty 的引用计数是如何实现的,当 ByteBuf 对象不可达时,一样会被 GC 回收掉,但是如果此时 ByteBuf 的引用计数不为 0,那么该对象就不会释放或者被放入对象池,从而发生了内存泄漏。

Netty 会对分配的 ByteBuf 进行抽样分析,检测 ByteBuf 是否已经不可达且引用计数大于 0,判定内存泄漏的位置并输出到日志中,你需要关注日志中 LEAK 关键字。

ByteBuf 分类

ByteBuf 有多种实现类,每种都有不同的特性,下图是 ByteBuf 的家族图谱,可以划分为三个不同的维度:Heap/DirectPooled/UnpooledUnsafe/非 Unsafe,我逐一介绍这三个维度的不同特性。

image (3).png

Heap/Direct

Heap/Direct 就是堆内和堆外内存

Heap 指的是在 JVM 堆内分配,底层依赖的是字节数据;

Direct 则是堆外内存,不受 JVM 限制,分配方式依赖 JDK 底层的 ByteBuffer。

Pooled/Unpooled

Pooled/Unpooled 表示池化还是非池化内存

Pooled 是从预先分配好的内存中取出,使用完可以放回 ByteBuf 内存池,等待下一次分配。

而 Unpooled 是直接调用系统 API 去申请内存,确保能够被 JVM GC 管理回收。

Unsafe/非 Unsafe

Unsafe/非 Unsafe 的区别在于操作方式是否安全。

Unsafe 表示每次调用 JDK 的 Unsafe 对象操作物理内存,依赖 offset + index 的方式操作数据。

非 Unsafe 则不需要依赖 JDK 的 Unsafe 对象,直接通过数组下标的方式操作数据。

ByteBuf 核心 API

我会分为指针操作数据读写内存管理三个方面介绍 ByteBuf 的核心 API。在开始讲解 API 的使用方法之前,先回顾下之前我们实现的自定义解码器,以便于加深对 ByteBuf API 的理解。

java public final void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) { // 判断 ByteBuf 可读取字节 if (in.readableBytes() < 14) { return; } in.markReaderIndex(); // 标记 ByteBuf 读指针位置 in.skipBytes(2); // 跳过魔数 in.skipBytes(1); // 跳过协议版本号 //获取序列化方式 byte serializeType = in.readByte(); in.skipBytes(1); // 跳过报文类型 in.skipBytes(1); // 跳过状态字段 in.skipBytes(4); // 跳过保留字段 //获取数据长度 int dataLength = in.readInt(); if (in.readableBytes() < dataLength) { in.resetReaderIndex(); // 重置 ByteBuf 读指针位置 return; } //根据数据长度构造 byte[] byte[] data = new byte[dataLength]; in.readBytes(data); //根据序列化方式 反序列化 SerializeService serializeService = getSerializeServiceByType(serializeType); //反序列化为对象 Object obj = serializeService.deserialize(data); if (obj != null) { out.add(obj); } }

指针操作 API

readerIndex()

readerIndex() 返回的是当前的读指针的 readerIndex 位置

writeIndex()

writeIndex() 返回的当前写指针 writeIndex 位置。

markReaderIndex()

markReaderIndex() 用于保存当前readerIndex 的位置。

resetReaderIndex()

resetReaderIndex() 则将当前 readerIndex 重置为之前markReaderIndex保存的位置。

markReaderIndex和resetReaderIndex这对 API 在实现协议解码时最为常用,例如在上述自定义解码器的源码中,在读取协议内容长度字段之前,先使用 markReaderIndex() 保存了 readerIndex 的位置,如果 ByteBuf 中可读字节数小于长度字段的值,则表示 ByteBuf 还没有一个完整的数据包,此时直接使用 resetReaderIndex() 重置readerIndex 的位置。

此外对应的写指针操作还有 markWriterIndex() 和 resetWriterIndex(),与读指针的操作类似,我就不再一一赘述了。

数据读写 API

isReadable()

isReadable() 用于判断 ByteBuf 是否可读,如果 writerIndex 大于 readerIndex,那么 ByteBuf 是可读的,否则是不可读状态。

readableBytes()

readableBytes() 可以获取 ByteBuf 当前可读取的字节数,可以通过 writerIndex - readerIndex 计算得到

readBytes(byte[] dst)

writeBytes(byte[] src)

readBytes() 和 writeBytes() 是两个最为常用的方法。

readBytes() 是将 ByteBuf 的数据读取相应的字节到字节数组dst 中,readBytes() 经常结合 readableBytes() 一起使用,

dst 字节数组的大小通常等于 readableBytes() 的大小。

java //收到的消息 ByteBuf bytebuf = (ByteBuf) msg; //构建字节数组 byte[] req = new byte[bytebuf.readableBytes()]; //将ByteBuf中的数据读取到字节数组中 bytebuf.readBytes(req); String body = new String(req, "UTF-8");

readByte()

writeByte(int value)

readByte() 是从 ByteBuf 中读取一个字节,相应的 readerIndex + 1;同理 writeByte 是向 ByteBuf 写入一个字节,相应的 writerIndex + 1。

类似的 Netty 提供了 8 种基础数据类型的读取和写入,例如 readChar()、readShort()、readInt()、readLong()、writeChar()、writeShort()、writeInt()、writeLong() 等,在这里就不详细展开了。

getByte(int index)

setByte(int index, int value)

readByte() 是从 ByteBuf 中读取一个字节,相应的 readerIndex + 1;

同理 writeByte 是向 ByteBuf 写入一个字节,相应的 writerIndex + 1。

与 readByte() 和 writeByte() 相对应的还有 getByte() 和 setByte(),get/set 系列方法也提供了 8 种基础类型的读写,那么这两个系列的方法有什么区别呢?

read/write 方法在读写时会改变readerIndex 和 writerIndex 指针,而 get/set 方法则不会改变指针位置。

release() & retain()

之前已经介绍了引用计数的基本概念,每调用一次 release() 引用计数减 1,每调用一次 retain() 引用计数加 1。

slice()

返回ByteBuf可读字节的一部分。 修改返回的ByteBuf或当前ByteBuf会影响彼此的内容, 同时它们维护单独的索引和标记,此方法不会修改当前ByteBuf的readerIndex或writerIndex *另请注意,此方法不会调用{@link #retain()},因此不会增加引用计数

slice() 等同于 slice(buffer.readerIndex(), buffer.readableBytes()),默认截取 readerIndex 到 writerIndex 之间的数据,最大容量 maxCapacity 为原始 ByteBuf 的可读取字节数,底层分配的内存、引用计数都与原始的 ByteBuf 共享。

duplicate()

duplicate() 与 slice() 不同的是,duplicate()截取的是整个原始 ByteBuf 信息,底层分配的内存、引用计数也是共享的。如果向 duplicate() 分配出来的 ByteBuf 写入数据,那么都会影响到原始的 ByteBuf 底层数据。

返回共享当前ByteBuf信息的新ByteBuf,他们使用独立的readIndex writeIndex markIndex *修改返回的ByteBuf或当前ByteBuf会影响彼此的内容,同时它们维护单独的索引和标记, *此方法不会修改当前ByteBuf的readerIndex或writerIndex, 另请注意,此方法不会调用{@link #retain()},因此不会增加引用计数

copy()

会从原始的 ByteBuf 中拷贝所有信息,所有数据都是独立的,向 copy() 分配的 ByteBuf 中写数据不会影响原始的 ByteBuf。

返回ByteBuf的可读字节的拷贝。修改返回的ByteBuf内容与当前ByteBuf完全不会相互影响。

此方法不会修改当前ByteBuf的readerIndex或writerIndex

到底为止,ByteBuf 的核心 API 我们基本已经介绍完了,ByteBuf 读写指针分离的小设计,确实带来了很多实用和便利的功能,在开发的过程中不必再去想着 flip、rewind 这种头疼的操作了。

内存管理 API

未池化堆内存

java ByteBuf heapByteBuf = Unpooled.buffer(10);

未池化直接内存

java ByteBuf directByteBuf = Unpooled.directBuffer(10);

池化堆内存

java PooledByteBufAllocator allocator = new PooledByteBufAllocator(false); ByteBuf pHeapByteBuf = allocator.buffer();

池化直接内存

java PooledByteBufAllocator allocator2 = new PooledByteBufAllocator(true);

ByteBuf 实战演练

学习完 ByteBuf 的内部构造以及核心 API 之后,我们下面通过一个简单的示例演示一下 ByteBuf 应该如何使用,代码如下所示。

java public class ByteBufTest { public static void main(String[] args) { // static final ByteBufAllocator DEFAULT_ALLOCATOR; // 根据allocType创建不同的分配器 如果没有值默认使用池化技术 // alloc = UnpooledByteBufAllocator.DEFAULT; // alloc = PooledByteBufAllocator.DEFAULT; // 初始是6 最大是10 ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer(6, 10); printByteBufInfo("ByteBufAllocator.buffer(5, 10)", buffer); buffer.writeBytes(new byte[]{1, 2}); printByteBufInfo("write 2 Bytes", buffer); buffer.writeInt(100); printByteBufInfo("write Int 100", buffer); buffer.writeBytes(new byte[]{3, 4, 5}); printByteBufInfo("write 3 Bytes", buffer); byte[] read = new byte[buffer.readableBytes()]; buffer.readBytes(read); printByteBufInfo("readBytes(" + buffer.readableBytes() + ")", buffer); printByteBufInfo("BeforeGetAndSet", buffer); System.out.println("getInt(2): " + buffer.getInt(2)); buffer.setByte(1, 0); System.out.println("getByte(1): " + buffer.getByte(1)); printByteBufInfo("AfterGetAndSet", buffer); } private static void printByteBufInfo(String step, ByteBuf buffer) { System.out.println("------" + step + "-----"); System.out.println("readerIndex(): " + buffer.readerIndex()); System.out.println("writerIndex(): " + buffer.writerIndex()); System.out.println("isReadable(): " + buffer.isReadable()); System.out.println("isWritable(): " + buffer.isWritable()); System.out.println("readableBytes(): " + buffer.readableBytes()); System.out.println("writableBytes(): " + buffer.writableBytes()); System.out.println("maxWritableBytes(): " + buffer.maxWritableBytes()); System.out.println("capacity(): " + buffer.capacity()); System.out.println("maxCapacity(): " + buffer.maxCapacity()); } }

java ------ByteBufAllocator.buffer(5, 10)----- readerIndex(): 0 writerIndex(): 0 isReadable(): false isWritable(): true readableBytes(): 0 writableBytes(): 6 maxWritableBytes(): 10 capacity(): 6 maxCapacity(): 10 ------write 2 Bytes----- readerIndex(): 0 writerIndex(): 2 isReadable(): true isWritable(): true readableBytes(): 2 writableBytes(): 4 maxWritableBytes(): 8 capacity(): 6 maxCapacity(): 10 ------write Int 100----- readerIndex(): 0 writerIndex(): 6 isReadable(): true isWritable(): false readableBytes(): 6 writableBytes(): 0 maxWritableBytes(): 4 capacity(): 6 maxCapacity(): 10 ------write 3 Bytes----- readerIndex(): 0 writerIndex(): 9 isReadable(): true isWritable(): true readableBytes(): 9 writableBytes(): 1 maxWritableBytes(): 1 capacity(): 10 maxCapacity(): 10 ------readBytes(0)----- readerIndex(): 9 writerIndex(): 9 isReadable(): false isWritable(): true readableBytes(): 0 writableBytes(): 1 maxWritableBytes(): 1 capacity(): 10 maxCapacity(): 10 ------BeforeGetAndSet----- readerIndex(): 9 writerIndex(): 9 isReadable(): false isWritable(): true readableBytes(): 0 writableBytes(): 1 maxWritableBytes(): 1 capacity(): 10 maxCapacity(): 10 getInt(2): 100 getByte(1): 0 ------AfterGetAndSet----- readerIndex(): 9 writerIndex(): 9 isReadable(): false isWritable(): true readableBytes(): 0 writableBytes(): 1 maxWritableBytes(): 1 capacity(): 10 maxCapacity(): 10

结合代码示例,我们总结一下 ByteBuf API 使用时的注意点:

  • write 系列方法会改变 writerIndex 位置,当 writerIndex 等于 capacity 的时候,Buffer 置为不可写状态;
  • 向不可写 Buffer 写入数据时,Buffer 会尝试扩容,但是扩容后 capacity 最大不能超过 maxCapacity,如果写入的数据超过 maxCapacity,程序会直接抛出异常;
  • read 系列方法会改变 readerIndex 位置,get/set 系列方法不会改变 readerIndex/writerIndex 位置。

总结

Netty 强大的数据容器 ByteBuf,它不仅解决了 JDK NIO 中 ByteBuffer 的缺陷,而且提供了易用性更强的接口。很多开发者已经使用 ByteBuf 代替 ByteBuffer,即便他没有在写一个网络应用,也会单独使用 ByteBuf。ByteBuf 作为 Netty 中最基础的数据结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18576.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring学习记录----十五、面向切面编程AOP+十六、Spring对事务的支持

目录 十五、面向切面编程AOP 15.1 AOP介绍 总结 15.2 AOP的七大术语 15.3 切点表达式 15.4 使用Spring的AOP 15.4.1 准备工作 15.4.1.1Spring AOP 基于注解之实现步骤 15.4.1.2-Spring AOP 基于注解之切点表达式 代码 运行结果&#xff1a; 代码 运行结果 通知类…

Python高阶技巧 递归

递归的定义 函数作为一种代码封装&#xff0c;可以被其他程序调用&#xff0c;当然&#xff0c;也可以被函数内部代码调用。这种函数定义中调用函数自身的方式称为递归。 递归的思想 把规模大的问题转化为规模小的、具有与原来问题相同解法的问题来解决。在函数实现时&#…

SpringBoot集成Thymeleaf

Spring Boot 集成 Thymeleaf 模板引擎 1、Thymeleaf 介绍 Thymeleaf 是适用于 Web 和独立环境的现代服务器端 Java 模板引擎。 Thymeleaf 的主要目标是为开发工作流程带来优雅的自然模板&#xff0c;既可以在浏览器中正确显示的 HTML&#xff0c;也可以用作静态原型&#xf…

C#+WPF上位机开发(模块化+反应式)

在上位机开发领域中&#xff0c;C#与C两种语言是应用最多的两种开发语言&#xff0c;在C语言中&#xff0c;与之搭配的前端框架通常以QT最为常用&#xff0c;而C#语言中&#xff0c;与之搭配的前端框架是Winform和WPF两种框架。今天我们主要讨论一下C#和WPF这一对组合在上位机开…

css图标 | 来自 fontawesome 字体文件的586 个小图标

1. css效果 /*!* Font Awesome 4.4.0 by davegandy - http://fontawesome.io - fontawesome* License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License)*/.fa-glass:before {content:"\f000"} .fa-music:before {content:"\f001"…

小白如何理解MySQL?一文吃透

从本质上来说&#xff0c;MySQL也是一个软件&#xff0c;以Java为例&#xff0c;Java通过JDBC进行MySQL驱动连接后&#xff0c;通过调用“MySQL”的“接口”将SQL语句传给MySQL&#xff0c;并获取返回结果&#xff01; 连接器 第一步&#xff0c;你会先连接到这个数据库上&…

项目管理:项目计划有哪些不可忽视的作用

为了确保项目在我们的预期范围内完成&#xff0c;编制计划是不可或缺的&#xff0c;它可以帮助项目管理团队进行提前思考、识别和管理任何疏漏和风险。 项目计划进行跟踪中有哪些不可忽视的作用&#xff1a; 1、了解成员的工作情况 分配任务后&#xff0c;项目经理应主动与…

蓝海卓越计费管理系统任意文件读取下载

看了大佬的文章&#xff0c;太牛逼啦&#xff0c;下面是大佬文章原文。 蓝海卓越计费管理系统任意文件读取下载 鹰图语法&#xff1a;web.title"蓝海卓越计费管理系统" 访问url 直接更改url就行了 /download.php?file../../../../../etc/passwd

nginx 配置多域名多站点 Ubuntu

nginx 配置多域名多站点 Ubuntu 一、安装 nginx apt install nginx二、配置文件说明 nginx 的配置文件在 /etc/nginx 目录下&#xff0c;它的默认内容是这样的 root2bd0:/etc/nginx# ll total 72 drwxr-xr-x 8 root root 4096 Jul 31 15:21 ./ drwxr-xr-x 104 root root …

需要暴雨天气安全“指南”的不仅仅是个人

昨日&#xff0c;人民日报官微发布#暴雨天气10个安全指南#&#xff0c;从居家防范、行车安全、户外出行、遇灾求救、次生灾害、防疫防病等方面给出了针对暴雨的安全建议。 以上10条指南是主要面向个人的建议&#xff0c;而在城市水利基础设施的运营和维护上&#xff0c;需要一些…

leetcode 860. 柠檬水找零

2023.8.1 简单的一个思路就是建一个大小为3的数组change &#xff0c;用于存储剩余的零钱&#xff0c;然后遍历账单&#xff0c;每次找零钱的时候判断一下是否有足够的零钱&#xff0c;不够的话直接返回false。 能坚持到结束遍历则返回true。 代码如下&#xff1a; class Solu…

【视觉SLAM入门】5.1. 特征提取和匹配--FAST,ORB(关键点描述子),2D-2D对极几何,本质矩阵,单应矩阵,三角测量,三角化矛盾

"不言而善应" 0. 基础知识1. 特征提取和匹配1.1 FAST关键点1.2 ORB的关键点--改进FAST1.3 ORB的描述子--BRIEF1.4 总结 2. 对极几何&#xff0c;对极约束2.1 本质矩阵(对极约束)2.1.1 求解本质矩阵2.1.2 恢复相机运动 R &#xff0c; t R&#xff0c;t R&#xff0c;…

【React】搭建React项目

最近自己在尝试搭建react项目&#xff0c;其实react项目搭建没有想象中的那么复杂&#xff0c;我们只需要使用一个命令把React架子搭建好&#xff0c;其他的依赖可以根据具体的需求去安装&#xff0c;比如AntDesignMobile的UI框架&#xff0c;执行npm install antd-mobile --sa…

无涯教程-Lua - 变量声明

变量的名称可以由字母&#xff0c;数字和下划线字符组成。它必须以字母或下划线开头&#xff0c;由于Lua区分大小写&#xff0c;因此大写和小写字母是不同的。 在Lua中&#xff0c;尽管无涯教程没有变量数据类型&#xff0c;但是根据变量的范围有三种类型。 全局变量(Global) …

[Linux]详解环境基础开发工具的使用

[Linux]环境基础开发工具的使用 文章目录 [Linux]环境基础开发工具的使用0. 前言1. Linux 软件包管理器 yumyum介绍yum的使用yum源 2. Linux编辑器-vimvim介绍vim基本模式底行模式下的命令汇总命令模式下的命令汇总vim简单配置 3. Linux编译器gcc/g4. Linux项目自动化构建工具-…

IO进程线程第四天(8.1)opendir,closedir,readdir

作业1&#xff1a; 从终端获取一个文件的路径以及名字。 若该文件是目录文件&#xff0c;则将该文件下的所有文件的属性显示到终端&#xff0c;类似ls -l该文件夹 若该文件不是目录文件&#xff0c;则显示该文件的属性到终端上&#xff0c;类似ls -l这单个文件 #include<…

Linux|ubuntu下运行python

参考&#xff1a;ubuntu系统下切换python版本的方法 文章目录 python版本问题查看ubuntu下的所有python版本通过apt-get install可以安装不同版本python查看python版本号更新update-alternatives替代列表查看update-alternatives下的python版本切换python版本删除python版本 p…

工作记录------单元测试(持续更新)

工作记录------单元测试 之前的工作中从来没有写过单元测试&#xff0c;新入职公司要求写单元测试&#xff0c; 个人觉得&#xff0c;作为程序员单元测试还是必须会写的 于此记录一下首次编写单元测试的过程。 首先引入单元测试相关的依赖 <dependency><groupId>…

分布式开源监控Zabbix实战

Zabbix作为一个分布式开源监控软件&#xff0c;在传统的监控领域有着先天的优势&#xff0c;具备灵活的数据采集、自定义的告警策略、丰富的图表展示以及高可用性和扩展性。本文简要介绍Zabbix的特性、整体架构和工作流程&#xff0c;以及安装部署的过程&#xff0c;并结合实战…

【爬虫逆向案例】某易云音乐(评论)js逆向—— params、encSecKey解密

声明&#xff1a;本文只作学习研究&#xff0c;禁止用于非法用途&#xff0c;否则后果自负&#xff0c;如有侵权&#xff0c;请告知删除&#xff0c;谢谢&#xff01; 【爬虫逆向案例】某易云音乐&#xff08;评论&#xff09;js逆向—— params、encSecKey解密 1、前言2、行动…