排序分析(Ordination analysis)及R实现

在生态学、统计学和生物学等领域,排序分析是一种用于探索和展示数据结构的多元统计技术。这种分析方法通过将多维数据集中的样本或变量映射到低维空间,以便更容易理解和可视化数据之间的关系。排序分析常用于研究物种组成、生态系统结构等生态学和生物学问题。

一、常见的排序分析方法:

  1. 主成分分析(Principal Component Analysis,PCA): 用于降维和识别主要的数据变异方向。适用于线性关系强烈的数据集,例如生态学中的物种丰富度或环境变量。

  2. 对应分析(Correspondence Analysis,CA):主要用于分析两个分类变量之间的关系。常用于分析生态学中的物种和环境因素之间的关系。

  3. 多维尺度分析(Non-metric Multidimensional Scaling,NMDS):用于非线性关系较强或者不适用于欧几里得距离的数据。适用于生态学中的生境相似性分析等问题。

  4. 对应分析(Canonical Correspondence Analysis,CCA):用于分析两个表格(例如,物种数据和环境数据)之间的关系,结合了对应分析和多元回归的特点。

  5. 排序(Ordination):通常是一个泛称,包括各种排序分析方法。排序分析的目标是通过将样本或变量在空间中排序,以揭示它们之间的相对位置和关系。

  6. 典型对应分析(Canonical Correspondence Analysis,CCA): 类似于对应分析,但着重于解释数据中的结构,并通过最大化可解释的变异来找到约束的对应。适用于物种和环境变量之间的关系分析。

  7. 因子分析(Factor Analysis):用于识别隐藏在观测数据背后的潜在变量(因子),通常用于探索数据的内在结构。

二、经典排序分析方法的R实现

加载数据。

library(microbiome)
library(phyloseq)
library(ggplot2)
data(dietswap)
pseq <- dietswap# Convert to compositional data
pseq.rel <- microbiome::transform(pseq, "compositional")# Pick core taxa with with the given prevalence and detection limits
pseq.core <- core(pseq.rel, detection = .1/100, prevalence = 90/100)# Use relative abundances for the core
pseq.core <- microbiome::transform(pseq.core, "compositional")

用给定的方法和差异度量对样本进行投影。 

# Ordinate the data
set.seed(4235421)
# proj <- get_ordination(pseq, "MDS", "bray")
ord <- ordinate(pseq, "MDS", "bray")
Multidimensional scaling (MDS / PCoA)
plot_ordination(pseq, ord, color = "nationality") +geom_point(size = 5)

Canonical correspondence analysis (CCA)

# With samples
pseq.cca <- ordinate(pseq, "CCA")
p <- plot_ordination(pseq, pseq.cca,type = "samples", color = "nationality")
p <- p + geom_point(size = 4)
print(p)# With taxa:
p <- plot_ordination(pseq, pseq.cca,type = "taxa", color = "Phylum")
p <- p + geom_point(size = 4)
print(p)

Split plot

plot_ordination(pseq, pseq.cca,type = "split", shape = "nationality", color = "Phylum", label = "nationality")

t-SNE

t-SNE是一种流行的新的排序方法。

library(vegan)
library(microbiome)
library(Rtsne) # Load package
set.seed(423542)method <- "tsne"
trans <- "hellinger"
distance <- "euclidean"# Distance matrix for samples
ps <- microbiome::transform(pseq, trans)# Calculate sample similarities
dm <- vegdist(otu_table(ps), distance)# Run TSNE
tsne_out <- Rtsne(dm, dims = 2) 
proj <- tsne_out$Y
rownames(proj) <- rownames(otu_table(ps))library(ggplot2)
p <- plot_landscape(proj, legend = T, size = 1) 
print(p)

 

适用条件取决于数据的性质和研究的目标。在选择排序分析方法时,需要考虑数据的线性性、分布情况、相关性和可能存在的潜在结构。选择适当的排序分析方法有助于更好地理解数据集中的模式和关系。

References:

Ordination analysis

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/185530.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中伟视界:AI盒子中的报警预录像功能能解决什么问题?实现原理是怎样的?

现代社会智能安防已成为各行各业的重要一环&#xff0c;而AI盒子中的报警预录像功能更是智能安防的一大利器。这一功能能够解决很多安防方面的难题&#xff0c;其实现原理更是技术创新的体现。 首先&#xff0c;让我们来看看AI盒子中的报警预录像功能能解决哪些问题。在传统的安…

Prosys OPC Client连接OPC DA

Prosys OPC Client连接OPC DA Prosys OPC 客户端将帮助排除 OPC 连接故障并测试 OPC 服务器。 您可以读写数据、浏览服务器以及导出和导入地址空间。 OPC 客户端轻巧、快速且易于使用。 支持 OPC DA 1.0a 和 OPC DA 2.05a 官方地址: https://www.prosysopc.com/products/opc-…

《开箱元宇宙》:Madballs 解锁炫酷新境界,人物化身系列大卖

你是否曾想过&#xff0c;元宇宙是如何融入世界上最具代表性的品牌和名人的战略中的&#xff1f;在本期的《开箱元宇宙》 系列中&#xff0c;我们与 Madballs 的战略顾问 Derek Roberto 一起聊聊 Madballs 如何在 90 分钟内售罄 2,000 个人物化身系列&#xff0c;以及是什么原…

4.7-容器网络之host和none

这一节我们来看一下docker中的另外两种网络&#xff0c;host和none。 docker network inspect none 于是就看到Containers, 里面包含了一个test1 表示这个容器连接到了none。

陈嘉庚慈善践行与卓顺发的大爱传承

陈嘉庚慈善践行&#xff0c;了解陈嘉庚后人与卓顺发的大爱传承。 2023年11月25日,卓顺发太平绅士以及陈家后人在分享他们对慈善领域见解的过程中,特别强调了慈善在促进社会和谐以及推动社会进步方面的关键作用。同时,他们深入探讨了如何在当今社会中继续传扬和实践家国情怀以及…

清理docker Build Cache缓存文件

使用docker构建镜像&#xff0c;发现docker的overlay2文件会越来越大。 使用命令查看docker系统占用资源&#xff1a; docker system df 可以看到已经占用了26.7GB&#xff0c;清理这个缓存 docker builder prune 再次查看&#xff0c;已经没有缓存了&#xff0c;清理成功。 …

Linux基础操作二:Linux系统介绍

1、系统启动过程 Linux系统的启动过程并不是大家想象中的那么复杂&#xff0c;其过程可以分为5个阶段&#xff1a; 内核的引导。运行 init。系统初始化。建立终端 。用户登录系统。 1.1、内核引导 当计算机打开电源后&#xff0c;首先是BIOS开机自检&#xff0c;按照BIOS中…

固态继电器的分类:揭秘热门趋势

固态继电器(SSR)已成为现代电子和自动化系统不可或缺的一部分&#xff0c;与传统电磁继电器相比具有众多优势。随着技术的进步&#xff0c;SSR的分类不断发展&#xff0c;催生了令人兴奋的趋势和创新。在本文中&#xff0c;我们将探讨SSR分类的最新趋势&#xff0c;阐明该领域的…

10.索引

一.索引简介 索引用于快速找出在某个列中有一特定值的行。 不使用索引&#xff0c;MySQL必须从第1条记录开始读完整个表&#xff0c;直到找出相关的行。表越大&#xff0c;查询数据所花费的时间越多。 如果表中查询的列有一个索引&#xff0c;MySQL能快速到达某个位置去搜寻…

计算机毕业设计 基于Web的课程设计选题管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

css 字体倾斜

css 字体倾斜 //左右倾斜 transform: skew(40deg, 0deg);//上下倾斜 transform: skew(0deg, 16deg);

【代码】考虑区域多能源系统集群协同优化的联合需求侧响应模型(完美复现)

程序名称&#xff1a;考虑区域多能源系统集群协同优化的联合需求侧响应模型 实现平台&#xff1a;matlab-yalmip-cplex/gurobi 代码简介&#xff1a;风电、光伏发电等波动电源接入比例不断提高&#xff0c;使得区域多能源系统中能量转化和协调能力减弱。基于此&#xff0c;该…

面试:SpringMVC问题

文章目录 SpringMVC运行流程MVC的概念与请求在MVC中的执行路径&#xff0c;ResponsBody注解的用途SpringMVC启动流程SpringMVC的拦截器和过滤器有什么区别&#xff1f;执行顺序&#xff1f;Spring和SpringMVC为什么需要父子容器&#xff1f; SpringMVC运行流程 • 客户端&#…

Docker Swarm总结+Jenkins安装配置与集成snarqube和目标服务器(4/5)

博主介绍&#xff1a;Java领域优质创作者,博客之星城市赛道TOP20、专注于前端流行技术框架、Java后端技术领域、项目实战运维以及GIS地理信息领域。 &#x1f345;文末获取源码下载地址&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3fb;…

海外热门:香港服务器和美国服务器的成本较量

​  提到 2023 年海外热门服务器&#xff0c;在整个 IDC 站长圈中&#xff0c;要数香港服务器和美国服务器的关注度一直居高不下。其实也正常&#xff0c;毕竟这两种海外服务器相较成熟。不过&#xff0c;在实际使用中&#xff0c;两者也会被拿来对比&#xff0c;最显而易见的…

Python多线程优化:提升程序性能的实例

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是涛哥&#xff0c;今天为大家分享 Python多线程优化&#xff1a;提升程序性能的实例&#xff0c;全文5600字&#xff0c;阅读大约16钟。 多线程是一种有效的并发编程方式&#xff0c;能够提高程序的性能。本文…

(六)基于高尔夫优化算法GOA求解无人机三维路径规划研究(MATLAB代码)

一、无人机模型简介&#xff1a; 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献&#xff1a; [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、高尔夫优化算法GOA简介 高尔夫优化算法…

c++——取地址(引用)和取内容(解引用)操作

今天又做蒙了一道题&#xff0c;把思考和实验记录下来。 struct sk{ int a; float b;}data; int *p; 若要使p指向data中的a域&#xff0c;正确的赋值语句是 p&a; pdata.a; p&data.a; *pdata.a前两个可以很容易看出错误之处&#xff0c;a是结构体内的变量&#xff0c;需…

P0级事故频发后,这家公司终于醒悟了!

近期&#xff0c;国内的互联网大厂接连爆发P0级事件&#xff0c;阿里云崩完滴滴崩&#xff0c;企业在追求效益的前提是业务的连续和稳定。如果发生故障不能快速恢复&#xff0c;引发业务中断&#xff0c;给企业带来的损失是巨大的&#xff0c;换言之&#xff0c;企业需要一套清…

OFDM通信连路仿真学习

文章目录 前言一、前置知识1、块状导频与梳状导频①、相似点②、区别③、其他 2、其他知识 二、仿真任务及方案1、仿真任务2、仿真方案 三、MATLAB仿真1、MATLAB 源码2、程序流程3、仿真结果①、打印信息③、8PSK 星座图②、脉冲成型图③、ETU300登加AWGN信道下误比特率曲线 四…