2023.8.1号论文阅读

文章目录

  • MCPA: Multi-scale Cross Perceptron Attention Network for 2D Medical Image Segmentation
    • 摘要
    • 本文方法
    • 实验结果
  • SwinMM: Masked Multi-view with SwinTransformers for 3D Medical Image Segmentation
    • 摘要
    • 本文方法
    • 实验结果

MCPA: Multi-scale Cross Perceptron Attention Network for 2D Medical Image Segmentation

摘要

基于卷积神经网络(CNN)的UNet架构在医学图像分析中表现出了显著的性能。
然而,由于有限的接受域和卷积运算固有的偏见,它在捕获远程依赖方面面临挑战。最近,许多基于变压器的技术被整合到UNet体系结构中,通过有效地捕获全局特征相关性来克服这一限制。但是,Transformer模块的集成可能会导致在全局特征融合过程中丢失局部上下文信息。为了克服这些挑战,

我们提出了一种二维医学图像分割模型,称为多尺度交叉感知器注意网络(MCPA)。MCPA由三个主要部件组成:编码器、解码器和交叉感知器。交叉感知器首先使用多个多尺度交叉感知器模块捕获局部相关性,促进跨尺度特征的融合。得到的多尺度特征向量在空间上展开、连接,并通过一个全局感知器模块来建模全局依赖关系。

此外,我们引入了渐进式双分支结构来解决涉及更细组织结构的图像的语义分割。这种结构逐渐将MCPA网络训练的分割重点从大规模结构特征转移到更复杂的像素级特征。我们在来自不同任务和设备的几个公开可用的医学图像数据集上评估了我们提出的MCPA模型,包括CT (Synapse), MRI (ACDC),眼底相机(DRIVE, CHASE_DB1, HRF)和OCTA (ROSE)的开放大规模数据集。实验结果表明我们的MCPA模型达到了最先进的性能
代码地址

本文方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验结果

在这里插入图片描述

SwinMM: Masked Multi-view with SwinTransformers for 3D Medical Image Segmentation

摘要

近年来,大规模VIt的进步在改善医学图像分割的预训练模型方面取得了重大进展。然而,这些方法在获取大量的预训练数据方面面临着显著的挑战,特别是在医学领域。为了解决这一限制,我们提出了带有Swin变压器的遮罩多视图(SwinMM),这是一种新的多视图管道,用于实现准确和数据高效的自监督医学图像分析。我们的策略通过结合两个主要组成部分来利用多视图信息的潜力。在预训练阶段,我们部署了一个屏蔽多视图编码器,旨在通过一系列不同的代理任务并发训练屏蔽多视图观测值。

这些任务包括图像重建、旋转、对比学习和一个采用相互学习范式的新任务。这项新任务利用了来自不同角度的预测之间的一致性,从而能够从3D医疗数据中提取隐藏的多视图信息。在微调阶段,开发了一种跨视点解码器,通过交叉注意块聚合多视点信息。与之前最先进的自监督学习方法Swin UNETR相比,SwinMM在多个医学图像分割任务上表现出显著的优势。它允许多视图信息的平滑集成,显著提高了模型的准确性和数据效率。
代码地址

本文方法

在这里插入图片描述
训练的策略。为了结合三维体的多个视角,我们从不同的观察角度生成了视图,包括轴向、冠状和矢状。此外,我们应用了与每个角度对齐的旋转操作,包括沿相应方向的0◦、90◦、180◦和270◦角度。为了便于自我监督的预训练,我们设计了四个代理任务。
重建和旋转任务分别衡量模型在每个输入上的性能,而对比和相互学习任务使模型能够跨多个视图集成信息

重建任务比较未掩码输入X与重建图像y rec之间的差值。下面采用均方误差(Mean-SquareError, MSE)来计算重建损失

对比学习任务旨在通过比较多个视图的高级特征来评估模型在表示输入数据方面的有效性。

我们的工作假设是,尽管从不同的角度来看,同一样本的表征在地方层面上可能有所不同,但在全球层面上它们应该是一致的。为了计算对比损失,我们使用余弦相似度sim(·),其中y con i和y con j表示对比对,t是温度常数,1是指示函数

在这里插入图片描述

在这里插入图片描述

实验结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18537.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pytorch个人学习记录总结 09

目录 损失函数与反向传播 L1Loss MSELOSS CrossEntropyLoss 损失函数与反向传播 所需的Loss计算函数都在torch.nn的LossFunctions中,官方网址是:torch.nn — PyTorch 2.0 documentation。举例了L1Loss、MSELoss、CrossEntropyLoss。 在这些Loss函数…

linux系统将OpenSSH升级到最高版本

一、背景: 公司安全扫描到主机的OpenSSH安全漏洞,由于是虚拟机只能由自己修复,很多OpenSSH的漏洞厂商都没有提供补丁,只能通过禁用scp或者端口的方式临时解决,但是后面使用就不方便了,而且也不安全&#x…

这所211考数一英二,学硕降分33分,十分罕见!

一、学校及专业介绍 合肥工业大学(Hefei University of Technology),简称“合工大”,校本部位于安徽省合肥市,是中华人民共和国教育部直属的全国重点大学,是国家“双一流”建设高校, 国家“211工…

sftp和scp协议,哪个传大文件到服务器传输速率快?

环境: 1.Win scp 6.1.1 2.XFTP 7 3.9.6G压缩文件 4.Centos 7 5.联想E14笔记本Win10 6.HW-S1730S-S48T4S-A交换机 问题描述: sftp和scp协议,哪个传大文件到服务器速度快? 1.SFTP 基于SSH加密传输文件,可靠性高&am…

【论文阅读24】Better Few-Shot Text Classification with Pre-trained Language Model

论文相关 论文标题:Label prompt for multi-label text classification(基于预训练模型对少样本进行文本分类) 发表时间:2021 领域:多标签文本分类 发表期刊:ICANN(顶级会议) 相关代…

基于opencv的几种图像滤波

一、介绍 盒式滤波、均值滤波、高斯滤波、中值滤波、双边滤波、导向滤波。 boxFilter() blur() GaussianBlur() medianBlur() bilateralFilter() 二、代码 #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> …

JDBC的书写

文章目录 基本概念操作数据库方式一&#xff08;不建议使用这种查询&#xff0c;可以sql注入&#xff09;读取properties文件 事务转账示例 获取id连接池 基本概念 持久化:把数据放在磁盘上&#xff0c;断电后还是有数据。使用execute 执行增删改返回false,查返回true 操作数…

AI 绘画Stable Diffusion 研究(三)sd模型种类介绍及安装使用详解

本文使用工具&#xff0c;作者:秋葉aaaki 免责声明: 工具免费提供 无任何盈利目的 大家好&#xff0c;我是风雨无阻。 今天为大家带来的是 AI 绘画Stable Diffusion 研究&#xff08;三&#xff09;sd模型种类介绍及安装使用详解。 目前&#xff0c;AI 绘画Stable Diffusion的…

css3 hover border 流动效果

/* Hover 边线流动 */.hoverDrawLine {border: 0 !important;position: relative;border-radius: 5px;--border-color: #60daaa; } .hoverDrawLine::before, .hoverDrawLine::after {box-sizing: border-box;content: ;position: absolute;border: 2px solid transparent;borde…

生成对抗网络DCGAN学习实践

在AI内容生成领域&#xff0c;有三种常见的AI模型技术&#xff1a;GAN、VAE、Diffusion。其中&#xff0c;Diffusion是较新的技术&#xff0c;相关资料较为稀缺。VAE通常更多用于压缩任务&#xff0c;而GAN由于其问世较早&#xff0c;相关的开源项目和科普文章也更加全面&#…

【机器学习】Gradient Descent

Gradient Descent for Linear Regression 1、梯度下降2、梯度下降算法的实现(1) 计算梯度(2) 梯度下降(3) 梯度下降的cost与迭代次数(4) 预测 3、绘图4、学习率 首先导入所需的库&#xff1a; import math, copy import numpy as np import matplotlib.pyplot as plt plt.styl…

Devops系统中jira平台迁移

需求:把aws中的devops系统迁移到华为云中,其中主要是jira系统中的数据迁移,主要方法为在华为云中建立一套 与aws相同的devops平台,再把数据库和文件系统中的数据迁移,最后进行测试。 主要涉及到的服务集群CCE、数据库mysql、弹性文件服务SFS、数据复制DRS、弹性负载均衡ELB。 迁…

问道管理:补仓什么意思?怎么补仓可以降低成本?

补仓这个术语我们在理财出资中经常听到&#xff0c;例如基金补仓&#xff0c;股票补仓。那么&#xff0c;补仓什么意思&#xff1f;怎样补仓能够降低成本&#xff1f;问道管理为我们预备了相关内容&#xff0c;以供参阅。 补仓什么意思&#xff1f; 股票补仓是指出资者在某一只…

Debian 12.1 “书虫 “发布,包含 89 个错误修复和 26 个安全更新

导读Debian 项目今天宣布&#xff0c;作为最新 Debian GNU/Linux 12 “书虫 “操作系统系列的首个 ISO 更新&#xff0c;Debian 12.1 正式发布并全面上市。 Debian 12.1 是在 Debian GNU/Linux 12 “书虫 “发布六周后推出的&#xff0c;目的是为那些希望在新硬件上部署操作系统…

Vivado进行自定义IP封装

一. 简介 本篇文章将介绍如何使用Vivado来对上篇文章(FPGA驱动SPI屏幕)中的代码进行一个IP封装&#xff0c;Vivado自带的IP核应该都使用过&#xff0c;非常方便。 这里将其封装成IP核的目的主要是为了后续项目的调用&#xff0c;否则当我新建一个项目的时候&#xff0c;我需要将…

VirtualBox Ubuntu无法安装增强功能以及无法复制粘贴踩坑记录

在VirtualBox安装增强功能想要和主机双向复制粘贴&#xff0c;中间查了很多资料&#xff0c;终于是弄好了。记录一下过程&#xff0c;可能对后来人也有帮助&#xff0c;我把我参考的几篇主要的博客都贴上来了&#xff0c;如果觉得我哪里讲得不清楚的&#xff0c;可以去对应的博…

Shell脚本学习-Shell函数

函数的作用就是将程序里多次被调用的相同代码组合起来&#xff08;函数体&#xff09;&#xff0c;并为其取一个名字&#xff0c;即函数名。其他所有想重复调用这部分代码的地方都只需要调用这个名字就可以了。当需要修改这部分代码时候&#xff0c;只需要修改函数体内的这部分…

【简单认识GFS分布式文件系统】

文章目录 一.GlusterFS 概述1.GlusterFS简介2.特点3.GlusterFS 术语4.模块化堆栈式架构5.GlusterFS 的工作流程6.GlusterFS的卷类型1、**分布式卷&#xff08;Distribute volume&#xff09;**2、条带卷&#xff08;Stripe volume&#xff09;3、复制卷&#xff08;Replica vol…

Web后端基本设计思想

JavaWeb应用的后端一般基于MVC和三层架构思想实现。 MVC是一种设计模式&#xff0c;用于开发用户界面和交互式应用程序。M即Model&#xff0c;业务模型&#xff0c;负责处理应用程序的业务逻辑和数据&#xff1b;V即View&#xff0c;视图&#xff0c;负责给用户展示界面和数据&…

快速创建vue3+vite+ts项目

安装nodejs 创建项目 npm init vitelatest 默认之后回车 选择项目名字my-vue-project 选择vue框架 选择ts 运行项目 cd my-vue-project npm install --registryhttps://registry.npm.taobao.org npm run dev