esp32-s3部署yolox_nano进行目标检测

ESP32-S3部署yolox_nano进行目标检测

      • 一、生成模型部署项目
        • 01 环境
        • 02 配置TVM包
        • 03 模型量化
          • 3.1预处理
          • 3.2 量化
        • 04 生成项目
      • 二、烧录程序

手上的是ESP32-S3-WROOM-1 N8R8芯片,整个链路跑通了,但是识别速度太慢了,20秒一张图,所以暂时还没打算进一步优化程序。
在这里插入图片描述

一、生成模型部署项目

官方指导文件:使用TVM自动生成模型部署项目

先下载onnx模型:yolox_nano.onnx,将下载好的yolox_nano.onnx放置在esp-dl/tutorial/evm_example路径下。

01 环境
  • ESP-IDF 5.0
  • 虚拟机Ubuntu 20.04
  • python环境
    在这里插入图片描述
02 配置TVM包

按官方文档下载完包后,设置环境变量PYTHONPATH

sudo vim ~/.bashrc
# 在文件的最后添加以下行,其中path-to-esp-dl更换为你的文件路径
export PYTHONPATH='$PYTHONPATH:/path-to-esp-dl/tools/tvm/python'
03 模型量化
3.1预处理
~/esp-dl $ cd tutorial/tvm_example
~/esp-dl/tutorial/tvm_example $ python -m onnxruntime.quantization.preprocess --input yolox_nano.onnx --output yolox_nano_opt.onnx
3.2 量化
  • 生成校准数据
import numpy as np
import cv2
import os# 图片路径
path = 'esp-dl/img/calib'# 读取图片并将它们保存为numpy数组
images = []
for filename in os.listdir(path):img = cv2.imread(os.path.join(path, filename))img_resized = cv2.resize(img, (416, 416))img_array = np.transpose(img_resized, (2, 0, 1))img_array = img_array / 255.0if img_array is not None:images.append(img_array)print(filename)# 将numpy数组保存为npy文件
np.save('esp-dl/tutorial/tvm_example/calib_416x416.npy', images)
  • 生成模型输入
import numpy as np
import cv2
import ospath = 'esp-dl/img/input.jpg'img = cv2.imread(path)
img_resized = cv2.resize(img, (416, 416))
img_array = np.transpose(img_resized, (2, 0, 1))
img_array = img_array / 255.0
images = [img_array]np.save('esp-dl/tutorial/tvm_example/input_416x416.npy', images)
  • 生成量化后的模型
~/esp-dl/tutorial/tvm_example $ python ../../tools/tvm/esp_quantize_onnx.py --input_model yolox_nano_opt.onnx --output_model yolox_nano_quant.onnx --calibrate_dataset calib_416x416.npy
Collecting tensor data and making histogram ...
Finding optimal threshold for each tensor using entropy algorithm ...
Number of tensors : 365
Number of histogram bins : 128 (The number may increase depends on the data it collects)
Number of quantized bins : 128
WARNING:root:Please use QuantFormat.QDQ for activation type QInt8 and weight type QInt8. Or it will lead to bad performance on x64.
04 生成项目
~/esp-dl/tutorial/tvm_example $ python ../../tools/tvm/export_onnx_model.py --model_path yolox_nano_quant.onnx --img_path input_416x416.npy --target_chip esp32s3 --out_path "." --template_path "../../tools/tvm/template_project_for_model/"
Model Information:
------------------
Input Name: images
Input Shape: (1, 3, 416, 416)
Input DType: float
Output Name: output
Output Shape: (1, 3549, 85)
Output DType: float
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.max_pool2d
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.max_pool2d
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.max_pool2d
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: image.resize2d
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: image.resize2d
esp_dl_library_path: /home/zymidea/Desktop/esp32-cam/esp-dl
generated project in: ./new_project

二、烧录程序

烧录用的windows系统,将虚拟机中生成的new_project文件夹复制到PC端,打开ESP-IDF CMD

cd new_preject
idf.py set-target esp32s3
idf.py flash monitor

这是按照官方的教程进行烧录,但是模型太大会出现内存溢出esp32-template-project.elf section '.dram0.bss' will not fit in region 'dram0_0_seg' region 'dram0_0_seg' overflowed by 2141320 bytes

~/new_project $ idf.py size-components
...
Total sizes:                                                                               
Used static IRAM:   61042 bytes ( 301198 remain, 16.9% used)                                    .text size:   60015 bytes                                                                  .vectors size:    1027 bytes                                                         
Used stat D/IRAM: 2442376 bytes (-2096520 remain, 706.2% used) Overflow detected!              .data size:   11088 bytes                                                                  .bss  size: 2431288 bytes                                                             
Used Flash size : 3729295 bytes                                                                .text     :  473467 bytes                                                                  .rodata   : 3255572 bytes                                                             
Total image size: 3801425 bytes (.bin may be padded larger) 

在这里插入图片描述

找到new_project/build/project_description.jsonlibtvm_model.a静态文件的源代码。
在这里插入图片描述

官方指导片外RAM

需要调整的是将模型的权重文件保存到flash并将模型的输出存放在PSRAM,操作如下

// 打开/new_project/components/tvm_model/model/codegen/host/src/default_lib0.c// 代码最前面
// 增加一个头文件
#include "E:/Espressif/frameworks/esp-idf-v5.0.4/components/esp_common/include/esp_attr.h"// static struct global_const_workspace 将static改为const
const struct global_const_workspace// 代码最后面
// __attribute__((section(".bss.noinit.tvm"), aligned(16))) 将这句话注释掉
static EXT_RAM_BSS_ATTR uint8_t global_workspace[2422784]; // 增加宏EXT_RAM_BSS_ATTR
// 打开/new_project/main/output_data.h
const static _SECTION_ATTR_IMPL(".ext_ram.bss", __COUNTER__) __attribute__((aligned(16))) float output_data[42588] // 指定该数组存放到外部RAM的.ext_ram.bss段
~/new_project $ idf.py menuconfig

在这里插入图片描述
在这里插入图片描述
修改完毕S键保存,Esc键退出。

修改/new_project/partitions.csv分区表中的factory的大小,原本的3000多K存储模型权重不够,将其增大点,三个区的Offset都清空,生成过程它会自动匹配。

在这里插入图片描述

所有的修改完毕后再重新再看一下各个RAM的使用情况

~/new_project $ idf.py size-components
...
Used static IRAM:   61042 bytes ( 301198 remain, 16.9% used).text size:   60015 bytes.vectors size:    1027 bytes
Used stat D/IRAM:   19592 bytes ( 326264 remain, 5.7% used) .data size:   11088 bytes.bss  size:    8504 bytes 
Used Flash size : 3729203 bytes                                                                .text     :  473455 bytes                                                                  .rodata   : 3255492 bytes                                                             
Total image size: 3801333 bytes (.bin may be padded larger) 
...

在这里插入图片描述

最后重新烧录就能运行成功了。

~/new_project $ idf.py flash monitor

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/185160.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3D数字孪生场景编辑器

在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 数字孪生的强大功能来自于将真实世界的资产与真实世界的数据联系起来,因此您可以…

C# WPF上位机开发(开篇)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 之前很少用到c#语言,大部分时间都用c/c,主要是它可以兼顾上位机qt开发以及嵌入式开发。所以,用c/c是比较合理的…

Vue3-路由

VueRouter4路由语法解析 1.创建路由实例由createRouter实现 2.路由模式 1)history模式使用createWebHistory():地址栏不带# 2)hash模式使用createWebHashHistory():地址栏带# 3)参数是基础路径,默认/ …

latex中算法的几种模板

latex中算法的几种模板_latex算法模板-CSDN博客文章浏览阅读6.2k次,点赞3次,收藏45次。latex中几种算法模板_latex算法模板https://blog.csdn.net/weixin_50514171/article/details/125136121?spm1001.2014.3001.5506

【JavaEE】多线程 (2) --线程安全

目录 1. 观察线程不安全 2. 线程安全的概念 3. 线程不安全的原因 4. 解决之前的线程不安全问题 5. synchronized 关键字 - 监视器锁 monitor lock 5.1 synchronized 的特性 5.2 synchronized 使⽤⽰例 1. 观察线程不安全 package thread; public class ThreadDemo19 {p…

无公网IP下,如何实现公网远程访问MongoDB文件数据库

文章目录 前言1. 安装数据库2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射2.3 测试随机公网地址远程连接 3. 配置固定TCP端口地址3.1 保留一个固定的公网TCP端口地址3.2 配置固定公网TCP端口地址3.3 测试固定地址公网远程访问 前言 MongoDB是一个基于分布式文件存储的数…

抖音本地生活服务商申请条件

抖音的本地生活服务商目前有两种,一种是可以做全国的服务商,我们一般叫抖音本地生活服务商,一种是区域优待服务商,也就是后面出来的服务商,这两种服务商的申请方式大同小异。 相同的地方就是都需要给平台交保证金。抖…

网站监控有什么作用?

科技改变生活,科技的发展让我们的生活越来越精彩丰富,数据中心机房监控系统也可以称为“自我监控系统”,主要是针对机房所有的设备及环境进行集中监控和管理的,其监控对象构成机房的各个子系统:动力系统、环境系统、消…

CV计算机视觉每日开源代码Paper with code速览-2023.11.23

点击CV计算机视觉,关注更多CV干货 论文已打包,点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【基础网络架构:Transformer】White-Box Transformers via Sparse Rate Reduction: Compression Is All There Is? 论文地址&am…

【Java】文件I/O-字节流转换成字符流

上文中我们讲了Reader,Writer,InputStream,OutputStream这四种流的基本用法🔢 【Java】文件I/O-文件内容操作-输入输出流-Reader/Writer/InputStream/OutputStream四种流 其中InputStream和OutputStream两个类涉及到的都是byte&…

rabbitMQ对消息不可达处理-备份交换机/备份队列

生产者发送消息,在消息不可达指定队列时,可以借助扇出类型交换机(之前写过消息回退的处理方案,扇出交换机处理的方案优先级高于消息回退)处理不可达消息,然后放置一个备份队列,供消费者处理不可…

IP地址的地理位置:固定性与动态性的平衡

IP地址的地理位置是网络通信中一个重要的元素,常被用于定位设备和用户。然而,很多人好奇,IP地址的地理位置是否会发生变化?本文将深入讨论IP地址地理位置的固定性与动态性之间的平衡,以及造成这种变化的因素。 1. IP地…

DevEco Studio设置每次进入 是否自动进入上一次的项目

首先 我们第一次创建项目 并不是这个界面 如果我们想在这个界面创建项目的话 可以 点击左上角 File 下的 New 下的 Create Project 这里 我们可以点击左上角 File 选择下面的 Settings… 这个界面就有非常多的配置 然后 我们选择到下图操作的位置 这里有一个Reopen projects…

MySQL进阶知识:锁

目录 前言 全局锁 表级锁 表锁 元数据锁(MDL) 意向锁 行级锁 行锁 行锁演示 间隙锁/临界锁 演示 前言 MySQL中的锁,按照锁的粒度分,分为以下三类 全局锁:锁定数据库中的所有表。表级锁:每次操…

民安智库(第三方市场调查公司):专业调研引领某月饼生产商企业发展

在中国的传统佳节中,月饼是一种重要的节日食品,也是送礼的首选。某月饼生产商一直以来以其高品质、独特口味的月饼而备受消费者喜爱。为了更好地了解消费者对产品的满意度,该月饼生产商决定委托民安智库(湖北知名满意度测评公司&a…

el-row错位问题解决

<el-row type"flex" style"flex-wrap:wrap">

yolov8 原木识别模型

一、模型介绍 模型基于 yolov8数据集采用SKU-110k&#xff0c;这数据集太大了十几个 G&#xff0c;所以只训练了 10 轮左右就拿来微调了原木数据微调&#xff1a;纯手工标注 200 张左右原木图片&#xff0c;训练 20 轮的效果 PS&#xff1a;因为训练时间比较长 Google 的 Cola…

关于pyqt5与moviepy到打包的坑点

1,pyqt5 关于pyqt5 designer.exe 的使用主要就是了解pyqt5右侧菜单栏的功能使用 打包后的文件&#xff0c;需要继承改类&#xff0c;进行图形指令交互 关于pyqt5&#xff0c;要了解信号&#xff0c;和槽点的相互关系。 我在pyqt5中使用moviepy的时候&#xff0c;需要用到异步…

[VNCTF 2023] web刷题记录

文章目录 象棋王子电子木鱼BabyGo 象棋王子 考点&#xff1a;前端js代码审计 直接查看js源码&#xff0c;搜一下alert 丢到控制台即可 电子木鱼 考点&#xff1a;整数溢出 main.rs我们分段分析 首先这段代码是一个基于Rust的web应用程序中的路由处理函数。它使用了Rust的异步…