图论--最短路问题

图论–最短路问题

邻接表

/*
e[idx]:存储点的编号
w[idx]:存储边的距离(权重)
*/
void add(int a, int b, int c) {e[idx] = b;ne[idx] = h[a];w[idx] = ch[a] = idx ++;
}

1.拓扑排序

给定一个 n 个点 m 条边的有向图,点的编号是 11 到 n,图中可能存在重边和自环。

请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出 −1−1。

若一个由图中所有点构成的序列 A 满足:对于图中的每条边 (x,y),x在 A中都出现在 y 之前,则称 A是该图的一个拓扑序列。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含两个整数 x 和 y,表示存在一条从点 x 到点 y的有向边 (x,y)。

输出格式

共一行,如果存在拓扑序列,则输出任意一个合法的拓扑序列即可。

否则输出 −1−1。

#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>using namespace std;const int N = 1e5 + 10;int n, m;// 队列
int q[N], hh, tt = -1;// 邻接表
int e[N], idx, ne[N], h[N];// 入度
int d[N];void add(int a, int b) {e[idx] = b;ne[idx] = h[a];h[a] = idx ++;
}bool topsort() {for (int i = 1; i <= n; i ++)if (!d[i])q[++ tt] = i;while (hh <= tt) {int tmp = q[hh ++];for (int i = h[tmp]; i != -1; i = ne[i]) {int j = e[i];d[j] --;if (!d[j])q[++ tt] = j;}}if (tt == n-1)  return true;return false;
}int main() {memset(h, -1, sizeof h);cin >> n >> m;while (m --) {int a, b;cin >> a >> b;add(a, b);d[b] ++;}if (topsort()) for (int i = 0; i < n; i ++)cout << q[i] << ' ';else    cout << -1;return 0;
}

2.Dijkstra求最短路

稠密图(边很多)——邻接矩阵

所有边权都是正数,单源最短路

  • 初始化到每个节点距离为无穷inf,初识节点距离dist[1] = 0

  • 迭代n轮

  • 每次从未标记的节点中选择距离出发点最近的节点,标记,收录到最优路径集合中

  • 计算刚加入节点A的临近节点B的距离(不包含标记的节点)。若节点A的距离加节点A到B的距离小于节点B的距离,则更新节点B的距离。

给定一个 n 个点 m条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

#include <iostream>
#include <algorithm>    
#include <cstring>
#include <cstdio>using namespace std;const int N = 505;int n, m;// 标记
int st[N];
// 距离
int dist[N];
// 邻接矩阵
int g[N][N];int dijkstra() {memset(dist, 0x3f, sizeof dist);dist[1] = 0;for (int i = 0; i < n; i ++) {int t = -1;// 选择距离出发点最近的节点for (int j = 1; j <= n; j ++) if (!st[j] && (t == -1 || dist[t] > dist[j]))t = j;st[t] = 1;for (int j = 1; j <= n; j ++) dist[j] = min(dist[j], dist[t] + g[t][j]);}if (dist[n] == 0x3f3f3f3f)return -1;return dist[n];
}int main() {memset(g, 0x3f, sizeof g);scanf("%d%d", &n, &m);for (int i = 1; i <= n; i ++)g[i][i] = 0;while (m --) {int x, y, z;scanf("%d%d%d", &x, &y, &z);g[x][y] = min(g[x][y], z);}int ans = dijkstra();printf("%d", ans);return 0;
}

堆优化

稀疏图(点很多)——邻接表

#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cstdio>using namespace std;typedef pair<int, int> pii;const int N = 1e6 + 10;int n, m;// 标记,避免自环
int st[N]; // 邻接表
int e[N], h[N], ne[N], w[N], idx;void add(int a, int b, int c) {e[idx] = b;ne[idx] = h[a];w[idx] = c;h[a] = idx ++;
}int dist[N];int dijkstra() {memset(dist, 0x3f, sizeof dist);dist[1] = 0;// 小根堆 {边权(距离),编号}priority_queue<pii, vector<pii>, greater<pii>> heap;heap.push({0, 1});while (!heap.empty()) {int v = heap.top().second, distance = heap.top().first;heap.pop();if (st[v])  continue;st[v] = 1;for (int i = h[v]; i != -1; i = ne[i]) if (dist[e[i]] > dist[v] + w[i]){dist[e[i]] = dist[v] + w[i];heap.push({dist[e[i]], e[i]});}}if (dist[n] == 0x3f3f3f3f)  return -1;return dist[n];
}int main() {memset(h, -1, sizeof h);scanf("%d%d", &n, &m);while (m --) {int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c);}int t = dijkstra();printf("%d", t);return 0;
}

3.Bellman-Ford算法(存在负权边,有边数限制最短路)

有负权回路,最短路不一定存在

for k 次

​ for 所有边 a, b, w

​ 松弛操作:dist[b] =min(dist[b,dist[a]+w)

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 1号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible

注意:图中可能 存在负权回路

#include <cstdio>
#include <cstring>
#include <iostream>using namespace std;int dist[505], backup[505];
int n, m, k;struct edge {int a, b, w;
} edges[10010];void bellman_ford() {memset(dist, 0x3f, sizeof dist);dist[1] = 0;for (int i = 0; i < k; i ++) {memcpy(backup, dist, sizeof dist);for (int i = 0; i < m; i ++) {int a = edges[i].a, b = edges[i].b, w = edges[i].w;dist[b] = min(dist[b], w + backup[a]);}}}int main() {scanf("%d%d%d", &n, &m, &k);for (int i = 0; i < m; i ++) {int a, b, c;scanf("%d%d%d", &a, &b, &c);edges[i] = {a, b, c};}bellman_ford();if (dist[n] > 0x3f3f3f3f / 2)   puts("impossible");else    printf("%d", dist[n]);return 0;
}

4.SPFA算法(与负权边,无负权回路)

给定一个 n个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出 1号点到 n 号点的最短距离,如果无法从 11 号点走到 n 号点,则输出 impossible

数据保证不存在负权回路。

#include <iostream>
#include <cstring>
#include <queue>using namespace std;const int N = 1e5 + 10;int idx, h[N], ne[N], e[N], w[N];int n, m;// 判断该点是否在队列
bool st[N];
int dist[N];void add(int a, int b, int c) {e[idx] = b;ne[idx] = h[a];w[idx] = c;h[a] = idx ++;
}int spfa() {memset(dist, 0x3f, sizeof dist);dist[1] = 0;queue<int> q;q.emplace(1);st[1] = 1;while (!q.empty()) {int t = q.front();q.pop();st[t] = 0;for (int i = h[t]; i != -1; i = ne[i]) {if (dist[e[i]] > dist[t] + w[i]) {dist[e[i]] = dist[t] + w[i];if (!st[e[i]]) {q.emplace(e[i]);st[e[i]] = 1;}}}}return dist[n];
}int main() {ios::sync_with_stdio(false);memset(h, -1, sizeof h);cin >> n >> m;while (m--) {int a, b, c;cin >> a >> b >> c;add(a, b, c);}int t = spfa();if (t == 0x3f3f3f3f)    cout << "impossible" << endl;else    cout << t;return 0;}

5.Floyd求在求最短路(多源)

给定一个 n 个点 m条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

#include <iostream> 
#include <cstring>
#include <algorithm>using namespace std;const int N = 210, inf = 1e9;int d[N][N];int n;void floyd() {for (int k = 1; k <= n; ++k) {for (int i = 1; i <= n; ++i)for (int j = 1; j <= n; ++j) d[i][j] = min(d[i][j], d[i][k] + d[k][j]);}
}int main() {int m, k;cin >> n >> m >> k;for (int i = 1; i <= n; ++i)for (int j = 1; j <= n; ++j) {if (i == j)     d[i][j] = 0;else    d[i][j] = inf;}while (m--) {int a, b, c;cin >> a >> b >> c;d[a][b] = min(d[a][b], c);}floyd();while (k--) {int a, b;cin >> a >> b;if (d[a][b] > inf / 2)      puts("impossible");else    cout << d[a][b]<<endl;}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18342.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

日常整理的一些前端知识点笔记

整理的一些前端知识点 ECMAScript和JavaScript是什么关系 ECMAScript 和 JavaScript 的关系是&#xff0c;前者是后者的规格&#xff0c;后者是前者的一种实现 &#xff08;另外的 ECMAScript 方言还有 JScript 和 ActionScript&#xff09;。日常场合&#xff0c;这两个词是…

Delphi 开发不一样的窗体标题栏:TTitleBarPanel

目录 TTitleBarPanel 的使用 TTitleBarPanel 的使用进阶 一、设置标题栏高度、颜色 二、个性化标题栏的关闭等按键 我们在用Delphi开发程序的时候&#xff0c;窗体的标题栏一般都是标准的windows标题栏&#xff0c;上面包括&#xff1a;程序图标、标题、最小化、最大化、关闭…

Linux中error while loading shared libraries错误解决办法

默认情况下&#xff0c;编译器只会使用/lib和/usr/lib这两个目录下的库文件&#xff0c;通常通过源码包进行安装时&#xff0c;如果不指定–prefix&#xff0c;会将库安装在/usr/local/lib目录下 当运行程序需要链接动态库时&#xff0c;提示找不到相关的.so库&#xff0c;会报…

[Python进阶]定制类:属性篇

4.10.2 属性篇 4.10.2.1 getattr、getattribute 通常我们可以通过obj.attr访问某个对象的属性。而__getattr__则是用来处理我们在获取某个不存在的属性时希望的处理。 默认情况下&#xff0c;如果我们获取了一个不存在的属性时&#xff0c;会报错&#xff1a;AttributeError。…

如何做好Code Review:思考、方法和实践 (真实经验总结)

目录 背景 Code Review 目标 系统层面 代码规范 业务逻辑 日志 测试 安全

k8s1.26.6 安装gitlab

Gitlab官方提供了 Helm 的方式在 Kubernetes 集群中来快速安装&#xff0c;但是在使用的过程中发现 Helm 提供的 Chart 包中有很多其他额外的配置&#xff0c;所以我们这里使用自定义的方式来安装&#xff0c;也就是自己来定义一些资源清单文件。 Gitlab主要涉及到3个应用&…

Python爬虫时遇到连接超时解决方案

在进行Python爬虫任务时&#xff0c;经常会遇到连接超时&#xff08;TimeoutError&#xff09;错误。连接超时意味着爬虫无法在规定的时间内建立与目标服务器的连接&#xff0c;导致请求失败。为了帮助您解决这个常见的问题&#xff0c;本文将提供一些解决办法&#xff0c;并提…

用合成数据训练托盘检测模型【机器学习】

想象一下&#xff0c;你是一名机器人或机器学习 (ML) 工程师&#xff0c;负责开发一个模型来检测托盘&#xff0c;以便叉车可以操纵它们。 ‌你熟悉传统的深度学习流程&#xff0c;已经整理了手动标注的数据集&#xff0c;并且已经训练了成功的模型。 推荐&#xff1a;用 NSDT设…

【LeetCode】88. 合并两个有序数组

这道题我总共想了三种解法。 1.将nums2中的元素依次放入nums1有效元素的后面&#xff0c;再总体进行排序。 import java.util.*; class Solution {public void merge(int[] nums1, int m, int[] nums2, int n) {int j 0;for(int i m;i<mn;i){nums1[i] nums2[j];j;}Arrays…

搭建网站 --- 快速WordPress个人博客并内网穿透发布到互联网

文章目录 快速WordPress个人博客并内网穿透发布到互联网 快速WordPress个人博客并内网穿透发布到互联网 我们能够通过cpolar完整的搭建起一个属于自己的网站&#xff0c;并且通过cpolar建立的数据隧道&#xff0c;从而让我们存放在本地电脑上的网站&#xff0c;能够为公众互联…

机器学习分布式框架ray运行xgboost实例

Ray是一个开源的分布式计算框架&#xff0c;专门用于构建高性能的机器学习和深度学习应用程序。它的目标是简化分布式计算的复杂性&#xff0c;使得用户能够轻松地将任务并行化并在多台机器上运行&#xff0c;以加速训练和推理的速度。Ray的主要特点包括支持分布式任务执行、Ac…

vue3单选选择全部传all,否则可以多选

<el-form-item label"发布范围-单位选择"><el-radio-group v-model"formData.unitRadio" change"getUnit"><el-radio label"ALL" click.prevent"radioChange(ALL)">全部</el-radio><el-radio la…

限流简单实例

1、限流算法 &#xff08;1&#xff09;固定窗口计数器算法 固定窗口其实就是时间窗口。固定窗口计数器算法规定了我们单位时间处理的请求数量。 思路如下&#xff1a; 1&#xff09;给定一个变量counter来记录当前接口处理的请求数量&#xff0c;初始值为0&#xff08;代表接口…

微信开发者工具 miniprogram_npm 未找到

背景 微信开发者工具中&#xff0c;打开集成了vant-weapp的项目&#xff0c;构建npm时&#xff0c;报错\miniprogram_npm\ 未找到。 问题 微信开发者工具&#xff0c;工具----->构建npm时&#xff0c;提示 message&#xff1a;发生错误 Error: D:\some\path\miniprogram…

Linux 命令学习:

1. PS命令 ps 的aux和-ef区别 1、输出风格不同&#xff0c;展示的格式略有不同 两者的输出结果差别不大&#xff0c;但展示风格不同。aux是BSD风格&#xff0c;-ef是System V风格。 2、aux会截断command列&#xff0c;而-ef不会&#xff0c;当结合grep时这种区别会影响到结果 …

java 企业工程管理系统软件源码+Spring Cloud + Spring Boot +二次开发+ MybatisPlus + Redis em

&#xfeff; 工程项目管理软件&#xff08;工程项目管理系统&#xff09;对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营&#xff0c;全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据…

【C++】STL——list的模拟实现、构造函数、迭代器类的实现、运算符重载、增删查改

文章目录 1.模拟实现list1.1构造函数1.2迭代器类的实现1.3运算符重载1.4增删查改 1.模拟实现list list使用文章 1.1构造函数 析构函数 在定义了一个类模板list时。我们让该类模板包含了一个内部结构体_list_node&#xff0c;用于表示链表的节点。该结构体包含了指向前一个节点…

深度学习入门 ---- 张量(Tensor)

文章目录 张量张量在深度学习领域的定义张量的基本属性使用PyTorch安装PyTorch查看安装版本 创建张量常用函数四种创建张量的方式和区别 四则运算 张量 张量在深度学习领域的定义 张量&#xff08;tensor&#xff09;是多维数组&#xff0c;目的是把向量、矩阵推向更高的维度。…

uniapp 微信小程序:v-model双向绑定问题(自定义 props 名无效)

uniapp 微信小程序&#xff1a;v-model双向绑定问题&#xff08;自定义 props 名无效&#xff09; 前言问题双向绑定示例使用 v-model使用 v-bind v-on使用 sync 修饰符 参考资料 前言 VUE中父子组件传递数据的基本套路&#xff1a; 父传子 props子传父 this.$emit(事件名, …

如何安装、部署、启动Jenkins

一、测试环境 Linux系统 Centos 7 二、安装步骤&#xff1a; 1、安装jdk 我安装的是jdk8&#xff0c;此处就不多说了&#xff0c;自己百度哈&#xff0c;很简单 2、安装jenkins 首先依次执行如下三个命令&#xff1a; 2.1、导入镜像&#xff1a; [rootcentos7 ~]# sudo …