聚类分析例题 (多元统计分析期末复习)

例一

动态聚类,K-means法,随机选取凝聚点(题目直接给出)

已知5个样品的观测值为:1,4,5,7,11。试用K均值法分为两类(凝聚点分别取1,4与1,11)


解:以1,4为例
STEP1确定凝聚点:X1和X5
STEP2确定初始分类, G 1 ( 0 ) {G_1^{(0)}} G1(0)={x1,x2,x3}, G 2 ( 0 ) {G_2^{(0)}} G2(0)={x4,x5}
STEP3重新计算各类的重心,以其作为新的凝聚点,分别为3.3和9
STEP4 以新的重心为凝聚点重新修改分类,结果不变,故聚类结果为 G 1 {G_1} G1={x1,x2,x3}, G 2 {G_2} G2={x4,x5}

例二

动态聚类,K-means法,还是上面的例子,使用密度法选取凝聚点

已知5个样品的观测值为:1,4,5,7,11。试用K均值法分为三类


密度法:

  • 首先计算出每个样品的密度,密度即:以正数d为半价,样品为球心,落在球内的样品数;
  • 选择密度最大的样品作为第一凝聚点;
  • 人为确定一个正数D(一般D>d),若次大密度样品点与第一凝聚点距离大于D则作为第二个凝聚点,否则舍去,选取密度次于它的样品;

解:d=2,D=3.5

STEP1计算出每个样品的密度

x1x2x3x4x5
密度01210

因此第一凝聚点为x3,次大密度样品点位x2和x4,但它们与x3的距离小于D,故舍去,选取x1和x5作为第二凝聚点;

STEP2确定初始分类,除凝聚点之外的样品点按照最小距离原则确定它们的分类
G 1 ( 0 ) {G_1^{(0)}} G1(0)={x1}, G 2 ( 0 ) {G_2^{(0)}} G2(0)={x2,x3,x4}, G 3 ( 0 ) {G_3^{(0)}} G3(0)={x5}。

STEP3重新计算各类的重心,以其作为新的凝聚点
三类重心分别为:1,5.3,11
STEP4 重新确定各样品归属的类别:
G 1 ( 1 ) {G_1^{(1)}} G1(1)={x1}, G 2 ( 1 ) {G_2^{(1)}} G2(1)={x2,x3,x4}, G 3 ( 1 ) {G_3^{(1)}} G3(1)={x5}

若与上一次分类的结果不同,需要继续计算各类的重心,重新分类。可以看到这次的分类结果与上一次相同,因此算法终止,聚类结果为 G 1 {G_1} G1={x1}, G 2 {G_2} G2={x2,x3,x4}, G 3 {G_3} G3={x5}。

例三

[应用多元统计分析(高惠璇版)6-3]
系统聚类法——最长距离、类平均法
在这里插入图片描述


系统聚类法基本思想 :设有n个样品,每个样品m项指标。首先将n个样品视为n类,计算类间距离(此时类间距离与样品间距离是等价的),选取 距离最近 的两类合并成新类,并计算新类与其他类的距离,再按最小距离原则并类,每次合并一类直至所有样品都并成一类。

最长距离法

最长距离法和最短距离法的本质是一样的,计算类与类的距离时使用下面的公式:
在这里插入图片描述
STEP1从初始矩阵出发,选择类间距离最小的合并为一类,即并类距离 D 1 {D_1} D1=1
合并x1和x4,记CL4={x1,x4},画出距离矩阵 D ( 1 ) {D^{(1)}} D(1)
其他类 x i {x_i} xi(i=2、3、5)到CL4的距离为: x i {x_i} xi到x1的距离与 x i {x_i} xi到x4的距离中最大的那个
D ( 1 ) {D^{(1)}} D(1)= [ x 2 x 3 x 5 C L 4 x 2 0 x 3 9 0 x 5 3 5 0 C L 4 7 10 8 0 ] \begin{bmatrix} & x2 & x3 & x5& CL4 \\ x2 & 0 & \\ x3 & 9 & 0 \\ x5 & 3 & 5 &0 \\ CL4 & 7 & 10 &8 &0 \end{bmatrix} x2x3x5CL4x20937x30510x508CL40

STEP2同样选择类间距离最小的合并为一类,x2和x5的距离最近,并类距离 D 2 {D_2} D2=3
合并x2和x5,记CL3={x2,x5},画出距离矩阵 D ( 2 ) {D^{(2)}} D(2)
x3到CL4和CL3的距离计算和上面一样

D ( 2 ) {D^{(2)}} D(2)= [ x 3 C L 4 C L 3 x 3 0 C L 4 10 0 C L 3 9 8 0 ] \begin{bmatrix} & x3 & CL4 & CL3 \\ x3 & 0 & \\ CL4 & 10 & 0 \\ CL3 & 9 & 8 &0 \\ \end{bmatrix} x3CL4CL3x30109CL408CL30

STEP3选择类间距离最小的合并为一类,CL4和CL3的距离最近,并类距离 D 3 {D_3} D3=8
合并CL3和CL4,记CL2={x1,x2,x4,x5},画出距离矩阵 D ( 3 ) {D^{(3)}} D(3)

D ( 3 ) {D^{(3)}} D(3)= [ x 3 C L 2 x 3 0 C L 2 10 0 ] \begin{bmatrix} & x3 & CL2 \\ x3 & 0 & \\ CL2 & 10 & 0 \\ \end{bmatrix} x3CL2x3010CL20

STEP4将所有类合并为一类,CL1={x1,x2,x3,x4,x5},并类距离 D 4 {D_4} D4=10

D ( 4 ) {D^{(4)}} D(4)= [ C L 1 C L 1 0 ] \begin{bmatrix} & CL1 \\ CL1 & 0 & \\ \end{bmatrix} [CL1CL10]

STEP5画出谱系聚类图

在这里插入图片描述

类平均法

类平均法的类间距离计算公式如下
在这里插入图片描述
具体步骤和上面类似,不同的是在计算类间距离的不同。这里使用距离的平方。
STEP1从初始矩阵出发,选择类间距离最小的合并为一类,即并类距离 D 1 {D_1} D1=1
合并x1和x4,记CL4={x1,x4},画出距离矩阵 D ( 1 ) {D^{(1)}} D(1)
其他类 x i {x_i} xi(i=2、3、5)到CL4的距离为:
以x2到CL4的距离为例,其他的同理:
D 2 {D^2} D2= 1 2 {1 \over 2} 21 D 21 2 {D_{21}^2} D212+ 1 2 {1 \over 2} 21 D 24 2 {D_{24}^2} D242= 1 2 {1 \over 2} 21× 4²+ 1 2 {1 \over 2} 21× 7²=65/2

所以可以画出的距离矩阵为:
D ( 1 ) {D^{(1)}} D(1)= [ x 2 x 3 x 5 C L 4 x 2 0 x 3 9 2 0 x 5 3 2 5 2 0 C L 4 65 / 2 136 / 2 100 / 2 0 ] \begin{bmatrix} & x2 & x3 & x5& CL4 \\ x2 & 0 & \\ x3 & 9² & 0 \\ x5 & 3² & 5² &0 \\ CL4 & 65/2 & 136/2 &100/2 &0 \end{bmatrix} x2x3x5CL4x20923265/2x3052136/2x50100/2CL40

STEP2同样选择类间距离最小的合并为一类,x2和x5的距离最近,并类距离 D 2 {D_2} D2=3
合并x2和x5,记CL3={x2,x5},画出距离矩阵 D ( 2 ) {D^{(2)}} D(2)

CL4到CL3的距离计算如下:

D 2 {D^2} D2= 1 2 {1 \over 2} 21 D ( C L 4 ) 2 2 {D_{(CL4)2}^2} D(CL4)22+ 1 2 {1 \over 2} 21 D ( C L 4 ) 5 2 {D_{(CL4)5}^2} D(CL4)52= 1 2 {1 \over 2} 21× (65/2)+ 1 2 {1 \over 2} 21× (100/2)=165/4

D ( 2 ) {D^{(2)}} D(2)= [ x 3 C L 4 C L 3 x 3 0 C L 4 136 / 2 0 C L 3 106 / 2 165 / 4 0 ] \begin{bmatrix} & x3 & CL4 & CL3 \\ x3 & 0 & \\ CL4 & 136/2 & 0 \\ CL3 & 106/2 & 165/4 &0 \\ \end{bmatrix} x3CL4CL3x30136/2106/2CL40165/4CL30

STEP3选择类间距离最小的合并为一类,CL4和CL3的距离最近,并类距离 D 3 {D_3} D3= 165 / 4 \sqrt{165/4} 165/4
合并CL3和CL4,记CL2={x1,x2,x4,x5},画出距离矩阵 D ( 3 ) {D^{(3)}} D(3)

D ( 3 ) {D^{(3)}} D(3)= [ x 3 C L 2 x 3 0 C L 2 121 / 2 0 ] \begin{bmatrix} & x3 & CL2 \\ x3 & 0 & \\ CL2 & 121/2 & 0 \\ \end{bmatrix} x3CL2x30121/2CL20

STEP4将所有类合并为一类,CL1={x1,x2,x3,x4,x5},并类距离 D 4 {D_4} D4= 121 / 2 \sqrt{121/2} 121/2

D ( 4 ) {D^{(4)}} D(4)= [ C L 1 C L 1 0 ] \begin{bmatrix} & CL1 \\ CL1 & 0 & \\ \end{bmatrix} [CL1CL10]

STEP5画出谱系聚类图

在这里插入图片描述


(注:无论用什么系统聚类法,在并类时都是选择类间距离最小的两个类,使用最长距离法/类平均法/···的区别只是在计算类与类之间的距离时不同)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/183143.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

找不到 sun.misc.BASE64Decoder ,sun.misc.BASE64Encoder 类

找不到 sun.misc.BASE64Decoder ,sun.misc.BASE64Encoder 类 1. 现象 idea 引用报错 找不到对应的包 import sun.misc.BASE64Decoder; import sun.misc.BASE64Encoder;2. 原因 因为sun.misc.BASE64Decoder和sun.misc.BASE64Encoder是Java的内部API,通…

oracle java.sql.SQLException: Invalid column type: 1111

1.遇到的问题 org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.type.TypeException: Could not set parameters for mapping: ParameterMapping{propertyuuid, modeIN, javaTypeclass java.lang.String, jdbcTypenull, numericScalenull, r…

VR虚拟教育展厅,为教学领域开启创新之路

线上虚拟展厅是一项全新的展示技术,可以为参展者带来不一样的观展体验。传统的实体展览存在着空间限制、时间限制以及高昂的成本,因此对于教育领域来说,线上虚拟教育展厅的出现,可以对传统教育方式带来改革,凭借强大的…

An illegal reflective access operation has occurred问题记录

报错 2023-11-30T01:08:18.7440800 [ERROR] [system.err] WARNING: An illegal reflective access operation has occurred 2023-11-30T01:08:18.7450800 [ERROR] [system.err] WARNING: Illegal reflective access by com.intellij.ui.JreHiDpiUtil to method sun.java2d.Sun…

ORA-00837: Specified value of MEMORY_TARGET greater than MEMORY_MAX_TARGET

有个11g rac环境,停电维护后,orcl1正常启动了,orcl2启动报错如下 SQL*Plus: Release 11.2.0.4.0 Production on Wed Nov 29 14:04:21 2023 Copyright (c) 1982, 2013, Oracle. All rights reserved. Connected to an idle instance. SYS…

1091 Acute Stroke (三维搜索)

题目可能看起来很难的样子,但是看懂了其实挺简单的。(众所周知,pat考察英文水平) 题目意思大概是:给你一个L*M*N的01长方体,求全为1的连通块的总体积大小。(连通块体积大于T才计算在内&#xf…

从0开始学习JavaScript--JavaScript 模板字符串的全面应用

JavaScript 模板字符串是 ES6 引入的一项强大特性,它提供了一种更优雅、更灵活的字符串拼接方式。在本文中,将深入探讨模板字符串的基本语法、高级用法以及在实际项目中的广泛应用,通过丰富的示例代码带你领略模板字符串的魅力。 模板字符串…

亚马逊云科技基于 Polygon 推出首款 Amazon Managed Blockchain Access,助 Web3 开发人员降低区块链节点运行成本

2023 年 11 月 26 日,亚马逊 (Amazon) 旗下 Amazon Web Services(Amazon)在其官方博客上宣布,Amazon Managed Blockchain (AMB) Access 已支持 Polygon Proof-of-Stake(POS) 网络,并将满足各种场景的需求,包…

vueRouter常用属性

vueRouter常用属性 basemodehashhistoryhistory模式下可能会遇到的问题及解决方案 routesprops配置(最佳方案) scrollBehavior base 基本的路由请求的路径 如果整个单页应用服务在 /app/ 下,然后 base 就应该设为 “/app/”,所有的请求都会在url之后加上/app/ new …

删除list中除最后一个之外所有的数据

1.你可以新建一个list List<Integer> listnew ArrayList<>();int i0;while (i<100){list.add(i);}List<Integer> subList list.subList(list.size()-1, list.size());System.out.println("原list大小--"list.size());System.out.println("…

el-table根据返回数据回显选择复选框

接口给你返回一个集合&#xff0c;然后如果这个集合里面的status2&#xff0c;就把这一行的复选框给选中 注意&#xff1a; 绑定的ref :row-key"getRowKeys" this.$refs.multiTableInst.toggleRowSelection(this.list[i], true); <el-table :data"list"…

群晖安装portainer

一、下载镜像 打开【Container Manager】 ,搜索portainer&#xff0c;双击【6053537/portainer-ce】下载汉化版本 二、创建映射文件夹 打开【File Station】&#xff0c;在docker目录下创建【portainer】文件夹 三、开启SSH 群晖 - 【控制面板】-【终端机和SNMP】 勾选【启动…

创建conan包-不同/相同repo中的配方和来源

创建conan包-不同/相同repo中的配方和来源 1 Recipe and Sources in a Different Repo1.1 source()的方法1.2 使用scm 属性 2 Recipe and Sources in the Same Repo2.1 Exporting the Sources with the Recipe: exports_sources2.2 Capturing the Remote and Commit: scm 本文是…

第二十章 多线程总结

继承Thread 类 Thread 类时 java.lang 包中的一个类&#xff0c;从类中实例化的对象代表线程&#xff0c;程序员启动一个新线程需要建立 Thread 实例。 Thread 对象需要一个任务来执行&#xff0c;任务是指线程在启动时执行的工作&#xff0c;start() 方法启动线程&…

五、初识FreeRTOS之FreeRTOS的任务创建和删除

本节主要学习以下内容&#xff1a; 1&#xff0c;任务创建和删除的API函数&#xff08;熟悉&#xff09; 2&#xff0c;任务创建和删除&#xff08;动态方法&#xff09;&#xff08;掌握&#xff09; 3&#xff0c;任务创建和删除&#xff08;静态方法&#xff09;&#xf…

Spark_日期参数解析参数-spark.sql.legacy.timeParserPolicy

在Apache Spark中&#xff0c;spark.sql.legacy.timeParserPolicy是一个配置选项&#xff0c;它控制着时间和日期解析策略。此选项主要影响如何解析日期和时间字符串。 在Spark 3.0之前的版本中&#xff0c;日期和时间解析使用java.text.SimpleDateFormat&#xff0c;它在解析…

【11】Python函数专题(中)

文章目录 1. 函数的返回值1.1 一个返回值1.2 多个返回值1.3 无返回值2. 文档字符串2.2 `help()`函数3. 函数的作用域3.1 局部作用域3.2 全局作用域3.3 嵌套作用域3.4 内置作用域3.5 global关键字4. 命名空间5. 递归函数1. 函数的返回值 在Python中,定义一个函数时,可以使用r…

mongodb基本操作命令

mongodb快速搭建及使用 1.mongodb安装1.1 docker安装启动mongodb 2.mongo shell常用命令2.1 插入文档2.1.1 插入单个文档2.1.2 插入多个文档2.1.3 用脚本批量插入 2.2 查询文档 前言&#xff1a;本篇默认你是对nongodb的基础概念有了了解&#xff0c;操作是非常基础的。但是与关…

微信小程序——给按钮添加点击音效

今天来讲解一下如何给微信小程序的按钮添加点击音效 注意&#xff1a;这里的按钮不一定只是 <button>&#xff0c;也可以是一张图片&#xff0c;其实只是添加一个监听点击事件的函数而已 首先来看下按钮的定义 <button bind:tap"onInput" >点我有音效&…

C++面向对象复习笔记暨备忘录

C指针 指针作为形参 交换两个实际参数的值 #include <iostream> #include<cassert> using namespace std;int swap(int *x, int* y) {int a;a *x;*x *y;*y a;return 0; } int main() {int a 1;int b 2;swap(&a, &b);cout << a << &quo…