GEE 23:基于GEE实现物种分布模型之随机森林法

基于GEE实现物种分布模型之随机森林法

  • 1.物种分布数据
  • 2.研究区绘制
  • 3.预测因子选择

1.物种分布数据

根据研究目的和需要导入物种数据:

// Load presence data
var Data = ee.FeatureCollection("users/************736/Distribution");
print('Original data size:', Data.size());// Define spatial resolution to work with (m)
var GrainSize = 1000;function RemoveDuplicates(data){var randomraster = ee.Image.random().reproject('EPSG:4326', null, GrainSize);var randpointvals = randomraster.sampleRegions({collection:ee.FeatureCollection(data), scale: 15000, geometries: true});return randpointvals.distinct('random');
}var Data_Remove = RemoveDuplicates(Data);
print('Final data size:', Data_Remove.size());
print('Final data size:', Data_Remove);// Add two maps to the screen.
var left = ui.Map();
var right = ui.Map();
ui.root.clear();
ui.root.add(left);
ui.root.add(right);// Link maps, so when you drag one map, the other will be moved in sync.
ui.Map.Linker([left, right], 'change-bounds');// Visualize presence points on the map
right.addLayer(Data_Remove, {color:'red'}, 'RemoveDuplicates-Presence', 1);
left.addLayer(Data, {color:'blue'}, 'Presence', 1);

此处使用两个模块来展示数据图像:
在这里插入图片描述

2.研究区绘制

这里要注意,使用USDOS/LSIB_SIMPLE/2017数据时,他给出的中国地图有错误,如没有台湾省,以及新疆和西藏接壤处存在问题。

// Define the AOI
// var AOI = Data.geometry().bounds().buffer({distance:50000, maxError:1000});
var AOI = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017').filter(ee.Filter.eq('country_co', 'CH'));
// var AOI = ee.FeatureCollection('users/******736/ChinaMap');
var AOI_polygon = AOI.geometry().bounds();// Add border of study area to the map
var outline = ee.Image().byte().paint({featureCollection: AOI, color: 1, width: 3});
right.addLayer(outline, {palette: '0000FF'}, "Final Study Area");
left.addLayer(outline, {palette: 'FF0000'}, "Original Study Area");// Center each map to the area of interest
right.centerObject(AOI, 3); //Number indicates the zoom level
left.centerObject(AOI, 3); //Number indicates the zoom level

3.预测因子选择

常见的因子包括worldclim中的生物气候因子、地形因子、植被因子等,这里使用了以上三者作为分析,当然你还可以添加土壤因子和人为因子等因素进去。

// Load WorldClim BIO Variables (a multiband image) from the data catalog
var BIO = ee.Image("WORLDCLIM/V1/BIO");// Load elevation data from the data catalog
// and calculate slope, aspect, and a simple hillshade from the terrain Digital Elevation Model.
var Terrain = ee.Algorithms.Terrain(ee.Image("USGS/SRTMGL1_003")); // 30m year:2000// Load NDVI 250 m collection and estimate median annual tree cover value per pixel
var MODIS = ee.ImageCollection("MODIS/006/MOD44B");
var MedianPTC = MODIS.filterDate('2000-01-01', '2020-12-31').select(['Percent_Tree_Cover']).median();// Combine bands into a single multi-band image
var predictors = BIO.addBands(Terrain).addBands(MedianPTC);
print("Predictors values:", predictors)var watermask =  Terrain.select('elevation').gt(0); //Create a water mask
var predictors = predictors.updateMask(watermask).clip(AOI);// Select subset of bands to keep for habitat suitability modeling
// 'bio04','bio05','bio06','bio12','elevation','Percent_Tree_Cover'
var bands = ['bio04','bio05','bio06','bio12','elevation','Percent_Tree_Cover'];
var predictors = predictors.select(bands);// Display layers on the map
right.addLayer(predictors, {bands:['elevation'], min: 0, max: 8000,  palette: ['000000','006600', '009900','33CC00','996600','CC9900','CC9966','FFFFFF',]}, 'Elevation (m)', 0);
right.addLayer(predictors, {bands:['bio05'], min: 100, max: 490, palette:'white,red'}, 'Max temperature of warmest month', 0); 
right.addLayer(predictors, {bands:['bio12'], min: 0, max: 4000, palette:'white,blue'}, 'Annual precipitation (mm)', 0); 
right.addLayer(predictors, {bands:['Percent_Tree_Cover'], min: 0, max: 70, palette:'white,green, red'}, 'Percent_Tree_Cover', 0); 

海拔:
在这里插入图片描述

最大温度:
在这里插入图片描述

年降水量:
在这里插入图片描述

森林植被覆盖率:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/182999.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

web和微信小程序设置placeholder样式

文章目录 一、场景二、web2.1、概念2.2、用法2.3、样式 三、小程序四、最后 一、场景 在页面布局时经常会用到input输入框,有时为了提示用户输入正确的信息,需要用placeholder属性加以说明。 二、web 2.1、概念 placeholder 是HTML5 中新增的一个属性…

cocos creator-碰撞检测

碰撞检测文档 刚体自行选择,刚体正常设置分组、tag,tag用于区分是哪个物体被碰撞了 正常在一个node下挂载脚本就行 注意:Builtin 2D 物理模块只会发送 BEGIN_CONTACT 和 END_CONTACT 回调消息。ccclass(TestContactCallBack) export class …

NoSql非关系型数据库

前言:Nosql not only sql,意即“不仅仅是sql”,泛指非关系型数据库。这些类型的数据存储不需要固定的模式(当然也有固定的模式),无需多余的操作就可以横向扩展。NoSql数据库中的数据是使用聚合模型来进行处…

A*算法学习

系列文章目录 前言 在总结 2023华为软件精英挑战赛——全赛段思路分享与总结 - 知乎 (zhihu.com)时,发现自己还有很多技术细节没搞懂,这里看静态全局路径规划最常见的A*算法,这个博主讲得很好: A-Star(A*&#xff0…

基于谷歌Flutter的媒体资讯APP的设计与实现

基于谷歌Flutter框架媒体资讯App的设计与实现 摘要: 当今社会,随着经济和科技的发展,人们的生活节奏也愈来愈快,人们生活的阅读时间也越来越少,越发的流行碎片化阅读,而同样的对于互联网的客户端开发者&am…

目标检测常用评价指标

1 基本概念 1.1 IOU(Intersection over Union) 1.2 TP TN FP FN 2. 各种率 3. PR曲线 4. mAP的计算 4.1 AP的计算 4.2 mAP 4.3 mAP0.5和mAP0.5:0.95 1.1 IOU(Intersection over Union) 1.2 TP TN FP FN TP(Truth Positive): 预测正类,实际正类&#x…

文件重命名:如何删除文件名中的下划线,特殊符号批量删除

在日常的工作中,经常会遇到文件名中包含特殊符号的情况,例如,一些文件名可能包含下划线、空格或其他特殊符号,这些符号可能会干扰我们的文件搜索和识别。此外,一些文件名可能包含无法识别的非标准字符,这可…

Neural Architecture Search for Deep Image Prior

深度图像先验的神经结构搜索 论文链接:https://arxiv.org/abs/2001.04776 项目链接:https://github.com/Pol22/NAS_DIP Abstract 在最近提出的深度图像先验算法(DIP)下,我们提出了一种神经结构搜索(NAS)技术来提高无监督图像去噪、修复和超…

MySQL之undo日志

聊聊undo log 什么是undo log undo log(回滚事务),在事务没有提交前,MySQL将记录更新操作的反向操作到undo log日志中,以便进行回退保证事务的原子性 undo log的作用 1.提供回滚操作 我们在进行数据更新操作的时候…

uniapp和vue3+ts实现自定义头部导航栏左侧胶囊内容

由于某些原因,可能需要我们自己定义头部导航栏的内容,实现各种设计师画的设计稿,所以就需要这个自定义的组件,实现的内容:自定义标题和左侧胶囊图标内容,也可以自定义搜索内容到里面,实现的效果…

html-video:计算视频是否完整播放 / 计算视频完播率

一、video 播放视频 <video width"100%"id"myVideo"object-fit"fill":autoplay"true":loop"false":enable-auto-rotation"true":enable-play-gesture"true":src"videoInfo.videoUrl":pos…

人工智能(pytorch)搭建模型21-基于pytorch搭建卷积神经网络VoVNetV2模型,并利用简单数据进行快速训练

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能(pytorch)搭建模型21-基于pytorch搭建卷积神经网络VoVNetV2模型&#xff0c;并利用简单数据进行快速训练。VoVNetV2模型是计算机视觉领域的一个重要研究成果&#xff0c;它采用了Voice of Visual Residual&…

安装vmware_esxi 超详细

安装vmware_esxi 超详细 </h2><div id"cnblogs_post_body" class"blogpost-body blogpost-body-html">esxi安装手册 1、esxi介绍 ESXI原生架构模式的虚拟化技术&#xff0c;是不需要宿主操作系统的&#xff0c;它自己本身就是操作系统。因此…

vue3跟vue2的区别?

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:vue3和vue2的区别 目录 一、Vue3介绍 哪些变化 速度更快 体积更小 更易维护 compositon Api …

06 # 枚举类型

一个角色判断例子 function initByRole(role) {if (role 1 || role 2) {// do sth} else if (role 3 || role 4) {// do sth} else if (role 5) {// do sth} else {// do sth} }上面的代码存在的问题&#xff1a; 可读性差&#xff1a;很难记住数字的含义可维护性差&…

Redis 基础、字符串、哈希、有序集合、集合、列表以及与 Jedis 操作 Redis 和与 Spring 集成。

目录 1. 数据类型 1.1 字符串 1.2 hash 1.3 List 1.4 Set 1.5 sorted set 2. jedis操作redis 3. 与spring集成 1. 数据类型 1.1 字符串 String是最常用的数据格式&#xff0c;普通的kay-value都归结为此类&#xff0c; value值不仅可以是string&#xff0c;可以是数字…

【Apifox】token的使用方式和脚本示例

前言&#xff0c;关于token的使用&#xff0c;仅做了简单的demo测试token效果。 一、手动登录获取token 顾名思义&#xff0c;因为只有登录之后才有token的信息&#xff0c;所以在调用其他接口前需要拥有token才能访问。 操作步骤 1)添加环境变量、全局参数 这里拿测试环境举…

前端编码规范

文章目录 一、背景二、内容1、注释规范&#xff08;1&#xff09;文件注释&#xff08;2&#xff09;函数注释&#xff08;3&#xff09;单行注释&#xff08;3&#xff09;多行注释 2、命名规范&#xff08;1&#xff09;项目命名&#xff08;2&#xff09;目录命名&#xff0…

Bug 检查 0x7B:INACCESSIBLE_BOOT_DEVICE(未解决)

环境&#xff1a; HP ProDesk 480 G7 Win10 专业版 问题描述&#xff1a; INACCESSIBLE_BOOT_DEVICE bug 检查的值为0x0000007B。 此 bug 检查表明 Microsoft Windows 操作系统在启动过程中无法访问系统分区 原因&#xff1a; 1.INACCESSIBLE_BOOT_DEVICE bug 检查经常发生…

大数据Hadoop-HDFS_元数据持久化

大数据Hadoop-HDFS_元数据持久化 &#xff08;1&#xff09;在HDFS第一次格式化后&#xff0c;NameNode&#xff08;即图中的主NameNode&#xff09;就会生成fsimage和editslog两个文件&#xff1b; &#xff08;2&#xff09;备用NameNode&#xff08;即图中的备NameNode&…