网络协议系列:TCP三次握手,四次挥手的全过程,为什么需要三次握手,四次挥手

TCP三次握手,四次挥手的全过程,为什么需要三次握手,四次挥手

  • 一. TCP三次握手,四次挥手的全过程,为什么需要三次握手,四次挥手
    • 前言
    • TCP协议的介绍
    • 三次握手
      • 三次握手流程:
          • 1. A 的 TCP 向 B 发送 连接请求报文段,其首部中的同步位 SYN = 1 ,并随机选择一个序号 seq = x ,表明传送数据时的第一个数据字节序号x
          • 2. B 的 TCP 收到连接请求报文段后,如果同意,则发挥连接同意报文
          • 3. A 收到此报文后向 B 给出确认,其 ACK = 1 ,确认号 ack = y + 1seq = x + 1
          • 4. B 的 TCP 收到主机A的确认后,也通知其上层应用进程:TCP连接已经建立
      • TCP 为什么需要三次握手?而不是两次?
      • 那可不可以是四次,五次或者更多次?
    • 四次挥手
      • 首先解释为什么需要四次挥手?
      • 四次挥手流程:
          • 1. 数据传输结束后,通信双方都可以释放连接
          • 2. B收到后。发出确认,意思我收到了,ACK = 1,确认号 ack = u+1,而这个报文段自己的序号为seq = v
          • 3. 当B发送完数据后,就可以释放连接
          • 4. A 收到连接释放报文后,必须发出确认。ACK = 1 ,确认好 ack = w +1,序号seq = u+1
    • 简单的总结一下
  • 二. TCP的三次握手与四次挥手,为什么TCP连接的时候是3次?2次不可以吗?为什么TCP连接的时候是3次,关闭的时候却是4次?为什么客户端发出第四次挥手的确认报文后要等2MSL的时间才能释放TCP连接?
    • 前言
    • 一、什么是TCP?
    • 二、TCP报文的头部结构
      • 重要字段:
    • 三、三次握手
      • 三次握手的本质是确认通信双方收发数据的能力。
        • 第一次握手:
        • 第二次握手:
        • 第三次握手:
    • 四、四次挥手
      • 第一次挥手:
      • 第二次挥手:
      • 第三次挥手:
      • 第四次挥手:
    • 五、常见面试题
      • 5.1 为什么TCP连接的时候是3次?2次不可以吗?
      • 5.2 为什么TCP连接的时候是3次,关闭的时候却是4次?
      • 5.3 为什么客户端发出第四次挥手的确认报文后要等2MSL的时间才能释放TCP连接?




一. TCP三次握手,四次挥手的全过程,为什么需要三次握手,四次挥手

前言

主要介绍为什么TCP协议需要三次握手和四次挥手

TCP协议的介绍

传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议.

  • 面向连接(可靠传输)

  • 确认,流量、差错控制、定时

  • 可靠按序交付

  • 不支持多播和广播,开销大

  • TCP连接是基于字节流的

  • 传输的数据单位是TCP报文段

三次握手

TCP连接的建立:三次握手

  • 使每一方确认对方的存在

  • 允许双方进行参数的协商

  • 进行资源的分配

标志位:

  • SYN: Synchronize Sequence Numbers,同步序列编号

  • ACK: Acknowledge Character,确认字符 (不同与ack)
    关键字:

  • seq:Sequence Number,序列号 代表本条消息的序列号 (按序交付)

  • ack:期待下一次收到的序列号,一般为seq+1

三次握手流程:

1. A 的 TCP 向 B 发送 连接请求报文段,其首部中的同步位 SYN = 1 ,并随机选择一个序号 seq = x ,表明传送数据时的第一个数据字节序号x

TCP 协议规定,SYN 置 1 的报文段不能携带数据,但是要消耗一个序号

在这里插入图片描述

2. B 的 TCP 收到连接请求报文段后,如果同意,则发挥连接同意报文

B 在连接同意报文段中应使 SYN = 1 ,使 ACK = 1 其确认号ack = x + 1 ,自己随机选择一个序号seq = y
在这里插入图片描述

3. A 收到此报文后向 B 给出确认,其 ACK = 1 ,确认号 ack = y + 1seq = x + 1

A 的TCP通知上层应用进程,连接已经建立

在这里插入图片描述

4. B 的 TCP 收到主机A的确认后,也通知其上层应用进程:TCP连接已经建立

在这里插入图片描述

TCP 为什么需要三次握手?而不是两次?

不是两次的主要原因使为了防止多次连接导致连接混乱。 比如A
主机的网络较差,连续发送了多个连接请求,B收到请求后给予想用,但是B不知道A是否收到了同意连接请求,就只能重复同意,这些过期的请求可能回导致网络的混乱
所以设计成三次握手的情况,客户端在接收到服务端SEQ+1的返回消息之后,就会知道这个连接是历史连接,所以会发送报文给服务端,告诉服务端。
所以三次握手的原因就是避免多次建立重复连接

那可不可以是四次,五次或者更多次?

可以,但是没有必要,三次已经足够适应需求了,多次的握手可能导致了资源的浪费

四次挥手

TCP连接的释放:双向释放(4次挥手)

首先解释为什么需要四次挥手?

TCP是基于全双工通信的,所以双方都可以主动释放连接。
四次挥手的意义就在于,当 A 发送完最后一条数据之后,但可能B还有未发送给A 的数据。
所以A在发送完收据后可以请求释放连接,此时B给与A响应,告诉A我知道你想断开连接,此时A还可以继续接收B发送的信息
在B处理完工作后,也请求释放连接。A同意后,就断开连接。
这样可以保证数据正常可靠的交互。

四次挥手流程:

FIN : 标志位,请求关闭连接

TCP 的标准规定,FIN报文即使不携带数据信息,也需要消耗一个seq

1. 数据传输结束后,通信双方都可以释放连接

现在假设AB已经发送完数据,A就可以发出连接释放报文段,并停止在发送数据,主动关闭TCP连接
A 把连接释放报文首部的 FIN = 1,其序列号 seq = u,等待 B 的确认。 u 为 A 已传送数据的最后一个字节的序号加1

在这里插入图片描述

2. B收到后。发出确认,意思我收到了,ACK = 1,确认号 ack = u+1,而这个报文段自己的序号为seq = v

从A 到 B 这个方向的连接就释放了,TCP 连接处于半关闭状态。B 若发送数据,A仍需要接收

在这里插入图片描述

3. 当B发送完数据后,就可以释放连接

B 发出的连接释放报文 的== FIN = 1== ,序号为w,ack仍为u+1
在这里插入图片描述

4. A 收到连接释放报文后,必须发出确认。ACK = 1 ,确认好 ack = w +1,序号seq = u+1

至此,双方断开连接
在这里插入图片描述

简单的总结一下

我是这么理解的:
a—>b:第一次握手,a问b你能听到吗
b—>a:第二次握手,b回答能听到,并反问a能听到吗
a—>b:第三次握手,a回答b,能听到,连接确定

二. TCP的三次握手与四次挥手,为什么TCP连接的时候是3次?2次不可以吗?为什么TCP连接的时候是3次,关闭的时候却是4次?为什么客户端发出第四次挥手的确认报文后要等2MSL的时间才能释放TCP连接?

前言

TCP的三次握手与四次挥手是面试中的高频考点,需要能掌握。

一、什么是TCP?

TCP是一种面向连接的、可靠的、基于字节流的传输层通信协议,在发送数据前,通信双方必须在彼此间建立一条连接,所谓的连接其实就是客服端和服务端保存的一份关于对方的信息,如ip地址、端口号等。
TCP可以看成是一种字节流,它会处理IP层或以下的层的丢包、重复以及错误问题。
在建立连接的过程中,双方需要交换一些连接参数,这些参数可以放在TCP头部。一个TCP连接由一个4元组构成,分别是两个IP地址和两个端口号。
一个TCP连接通常分为三个阶段:连接、数据传输、退出(关闭)。通过三次握手来建立一个链接,通过四次挥手来关闭一个链接。
当一个链接被建立或者被终止时,交换的报文段只包含TCP头部而没有数据。

二、TCP报文的头部结构

在这里插入图片描述

在这里插入图片描述

重要字段:

1、序号:seq序号,32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。
2、确认序号:ack序号,占32位,只有ACK标志为1时,确认序号字段才有效。ack=seq+1
3、标志位:共6个,即URG、ACK、PSH、RST、SYN、FIN等,具体含义如下:
ACK:确认序号有效。
FIN:释放一个连接。
PSH:接收方应该尽快将这个报文交给应用层。
RST:重置连接。
SYN:发起一个新的连接。
URG:紧急指针(urgent pointer)有效。

需要注意的是,不要把确认序号ack与标志位中的ACK搞混了。确认方ack=发起方seq+1,两端配对。

三、三次握手

TCP在传送数据前必须建立连接,TCP连接是通过三次握手建立的。
三次握手通俗比喻:
以前电话没有普及的时候,村里面通信基本上靠吼。
有一天老张下地了,家里有事,老孙赶紧跑到田头去喊老张。
老孙:老张~我是老孙,你能听得到我说话吗?
老张:老孙老孙,我是老张,我能听到,你能听到吗?
老王一听是老张:老张,我听到了,我有要事要跟你说。
(连接建立,开始传输消息)
“你老婆要生了,你赶紧回去吧!”

在这里插入图片描述

三次握手的本质是确认通信双方收发数据的能力。

首先,我让信使运输一份信件给对方,对方收到了,那么他就知道了我的发件能力和他的收件能力是可以的。于是他给我回信,我若收到了,我便知我的发件能力和他的收件能力是可以的,并且他的发件能力和我的收件能力是可以。然而此时他还不知道他的发件能力和我的收件能力到底可不可以,于是我最后回馈一次,他若收到了,他便清楚了他的发件能力和我的收件能力是可以的。这,就是三次握手。

第一次握手:

客户端要向服务端发起连接请求,首先客户端随机生成一个起始序列号ISN(比如是100),那客户端向服务端发送的报文段包含SYN标志位(也就是SYN=1),序列号seq=100。

第二次握手:

服务端收到客户端发过来的报文后,发现SYN=1,知道这是一个连接请求,于是将客户端的起始序列号100存起来,并且随机生成一个服务端的起始序列号(比如是300)。然后给客户端回复一段报文,回复报文包含SYN和ACK标志(也就是SYN=1,ACK=1)、序列号seq=300、确认号ack=101(客户端发过来的序列号+1)。

第三次握手:

客户端收到服务端的回复后发现ACK=1并且ack=101,于是知道服务端已经收到了序列号为100的那段报文;同时发现SYN=1,知道了服务端同意了这次连接,于是就将服务端的序列号300给存下来。然后客户端再回复一段报文给服务端,报文包含ACK标志位(ACK=1)、ack=301(服务端序列号+1)、seq=101(第一次握手时发送报文是占据一个序列号的,所以这次seq就从101开始,需要注意的是不携带数据的ACK报文是不占据序列号的,所以后面第一次正式发送数据时seq还是101)。当服务端收到报文后发现ACK=1并且ack=301,就知道客户端收到序列号为300的报文了,就这样客户端和服务端通过TCP建立了连接。

四、四次挥手

四次挥手的目的是关闭一个连接
在这里插入图片描述

比如客户端初始化的序列号ISA=100,服务端初始化的序列号ISA=300。TCP连接成功后客户端总共发送了1000个字节的数据,服务端在客户端发FIN报文前总共回复了2000个字节的数据。

第一次挥手:

当客户端的数据都传输完成后,客户端向服务端发出连接释放报文(当然数据没发完时也可以发送连接释放报文并停止发送数据),释放连接报文包含FIN标志位(FIN=1)、序列号seq=1101(100+1+1000,其中的1是建立连接时占的一个序列号)。需要注意的是客户端发出FIN报文段后只是不能发数据了,但是还可以正常收数据;另外FIN报文段即使不携带数据也要占据一个序列号。

第二次挥手:

服务端收到客户端发的FIN报文后给客户端回复确认报文,确认报文包含ACK标志位(ACK=1)、确认号ack=1102(客户端FIN报文序列号1101+1)、序列号seq=2300(300+2000)。此时服务端处于关闭等待状态,而不是立马给客户端发FIN报文,这个状态还要持续一段时间,因为服务端可能还有数据没发完。

第三次挥手:

服务端将最后数据(比如50个字节)发送完毕后就向客户端发出连接释放报文,报文包含FIN和ACK标志位(FIN=1,ACK=1)、确认号和第二次挥手一样ack=1102、序列号seq=2350(2300+50)。

第四次挥手:

客户端收到服务端发的FIN报文后,向服务端发出确认报文,确认报文包含ACK标志位(ACK=1)、确认号ack=2351、序列号seq=1102。注意客户端发出确认报文后不是立马释放TCP连接,而是要经过2MSL(最长报文段寿命的2倍时长)后才释放TCP连接。而服务端一旦收到客户端发出的确认报文就会立马释放TCP连接,所以服务端结束TCP连接的时间要比客户端早一些。

五、常见面试题

5.1 为什么TCP连接的时候是3次?2次不可以吗?

因为需要考虑连接时丢包的问题,如果只握手2次,第二次握手时如果服务端发给客户端的确认报文段丢失,此时服务端已经准备好了收发数(可以理解服务端已经连接成功)据,而客户端一直没收到服务端的确认报文,所以客户端就不知道服务端是否已经准备好了(可以理解为客户端未连接成功),这种情况下客户端不会给服务端发数据,也会忽略服务端发过来的数据。
如果是三次握手,即便发生丢包也不会有问题,比如如果第三次握手客户端发的确认ack报文丢失,服务端在一段时间内没有收到确认ack报文的话就会重新进行第二次握手,也就是服务端会重发SYN报文段,客户端收到重发的报文段后会再次给服务端发送确认ack报文。

5.2 为什么TCP连接的时候是3次,关闭的时候却是4次?

因为只有在客户端和服务端都没有数据要发送的时候才能断开TCP。
而客户端发出FIN报文时只能保证客户端没有数据发了,服务端还有没有数据发客户端是不知道的。
而服务端收到客户端的FIN报文后只能先回复客户端一个确认报文来告诉客户端我服务端已经收到你的FIN报文了,但我服务端还有一些数据没发完,等这些数据发完了服务端才能给客户端发FIN报文(所以不能一次性将确认报文和FIN报文发给客户端,就是这里多出来了一次)。

5.3 为什么客户端发出第四次挥手的确认报文后要等2MSL的时间才能释放TCP连接?

这里同样是要考虑丢包的问题,如果第四次挥手的报文丢失,服务端没收到确认ack报文就会重发第三次挥手的报文,这样报文一去一回最长时间就是2MSL,所以需要等这么长时间来确认服务端确实已经收到了。







Vivien_oO0

TCP三次握手,四次挥手的全过程,为什么需要三次握手,四次挥手

sunzixiao

TCP的三次握手与四次挥手,为什么TCP连接的时候是3次?2次不可以吗?为什么TCP连接的时候是3次,关闭的时候却是4次?为什么客户端发出第四次挥手的确认报文后要等2MSL的时间才能释放TCP连接?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/181777.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【嵌入式Linux开发一路清障-连载04】虚拟机VirtualBox7.0安装Ubuntu22.04后挂载Windows平台共享文件夹

虚拟机安装Ubuntu22.04后挂载Windows平台共享文件夹 障碍07-虚拟机VirtualBox7.0完装完Ubuntu22.04后,无法成功挂载Windows平台中共享文件夹,无法访问电脑中的各类重要文件,我该怎么办?一、问题的模样:VirtualBox7.0设…

LeetCode:907. 子数组的最小值之和(单调栈 C++ 、Java)

目录 907. 子数组的最小值之和 题目描述: 实现代码与解析: 单调栈 原理思路: 907. 子数组的最小值之和 题目描述: 给定一个整数数组 arr,找到 min(b) 的总和,其中 b 的范围为 arr 的每个(…

【算法训练营】算法分析实验(递归实现斐波那契+插入排序、分治思想实现归并排序+快排)附代码+解析

![0 🌈欢迎来到算法专栏 🙋🏾‍♀️作者介绍:前PLA队员 目前是一名普通本科大三的软件工程专业学生 🌏IP坐标:湖北武汉 🍉 目前技术栈:C/C、Linux系统编程、计算机网络、数据结构、M…

SpringBoot : ch08 自动配置原理

前言 在现代的Java开发中,Spring Boot已经成为了一个备受欢迎的框架。它以其简化开发流程、提高效率和强大的功能而闻名,使得开发人员能够更加专注于业务逻辑的实现而不必过多地关注配置问题。 然而,你是否曾经好奇过Spring Boot是如何做到…

白盒测试 接口测试 自动化测试

一、什么是白盒测试 白盒测试是一种测试策略,这种策略允许我们检查程序的内部结构,对程序的逻辑结构进行检查,从中获取测试数据。白盒测试的对象基本是源程序,所以它又称为结构测试或逻辑驱动测试,白盒测试方法一般分为…

Python编程基础:数据类型和运算符解析

想要学习Python编程语言?本文将为您介绍Python中常见的数据类型和运算符,为您打下坚实的编程基础。了解不同的数据类型和运算符,掌握它们之间的配合方式,让您能够更轻松地进行数据处理和计算任务。无论您是初学者还是有一定经验的…

电能量数据采集终端是电表采集器吗?

随着科技的发展和能源管理的日益精细化,电能量数据采集终端——电表采集器在保障电力系统稳定运行、实现节能减排等方面发挥着越来越重要的作用。下面,小编来为大家全面介绍电表采集器的功能、应用场景及其在我国能源领域的价值。 一、电表采集器的定义与…

Golang rsa 验证

一下代码用于rsa 签名的验签, 签名可以用其他语言产生。也可以用golang生成。 package mainimport ("crypto""crypto/rsa""crypto/sha256""crypto/x509""encoding/pem""errors""fmt" )fun…

分治法之快速排序

思路: 选择一个基准值,通常是数组中的第一个元素。 将数组分为两部分,一部分是小于基准值的元素,另一部分是大于基准值的元素。 对这两部分分别进行递归排序,直到子数组长度为 1 或 0。 合并排序好的两部分,得到最终…

第二十章Java博客

如果一次只完成一件事情,很容易实现。但现实生活中,很多事情都是同时进行的。Java中为了模拟这种状态,引入了线程机制。简单地说,当程序同时完成多件事情时,就是所谓的多线程。多线程应用相当广泛,使用多线…

【Java学习笔记】 74 - 本章作业

1.验证电子邮件格式是否合法 规定电子邮件规则为 1.只能有一个 2. 前面是用户名,可以是a-z A-Z 0-9 _ - 字符 3. 后面是域名,并且域名只能是英文字母,比如sohu.com或者tsinghua.org.cn 4.写出对应的正则表达式,验证输入的字符串是否为满…

浏览器触发下载Excel文件-Java实现

目录 1:引入maven 2:代码实现 3.导出通讯录信息到Excel文件 4.生成并下载Excel文件部分解释 1:引入maven 添加依赖:首先,在你的项目中添加EasyExcel库的依赖。你可以在项目的构建文件(如Maven的pom.xml)中添加以下依赖项:<dependency><groupId>com.alib…

Linux-chrpath指令

chrpath指令用于改变程序的rpath/runpath&#xff0c;从而改变程序运行时的动态库搜索路径&#xff0c;常见用法为 chrpath -r "/path/to/shared_library" binary_name chrpath -r "$ORIGIN:/$ORIGIN/../lib"第一种用法将一个指定的路径替换原程序的rpath…

Python基础语法之学习input()函数

Python基础语法之学习input函数 前言一、代码二、效果 前言 一、代码 # 默认是字符串类型 number input("请输入一个数字&#xff1a;") print("输入的数字是",number)二、效果 没有人可以阻止你成为自己想成为的人&#xff0c;只有你自己才能放弃梦想。…

idea git合并推送分支

远端代码合并到当前分支 1.本地切换到当前分支 2.远端目标分支右键合并到当前分支(使用合并拉入) 本地当前分支推送合并到远端分支 1.切换到远端本地分支 2.合并本地其他分支(想要推送的分支)到当前分支 3.推送分支 注意:这里的合并是:将XXX合并到XXX中 …

【LeetCode刷题笔记】160.相交链表

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 更多算法知识专栏&#xff1a;算法分析&#x1f525; 给大家跳段街舞感谢…

Spring(2):Spring事务管理机制

Spring事务管理高层抽象主要包括3个接口&#xff0c;Spring的事务主要是由他们共同完成的&#xff1a; PlatformTransactionManager&#xff1a;事务管理器—主要用于平台相关事务的管理。TransactionDefinition&#xff1a; 事务定义信息(隔离、传播、超时、只读)—通过配置如…

LeetCode算法题解(动态规划)|LeetCode198. 打家劫舍、LeetCode213. 打家劫舍 II、LeetCode337. 打家劫舍 III

一、LeetCode198. 打家劫舍 题目链接&#xff1a;198. 打家劫舍 题目描述&#xff1a; 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的…

android 12 添加菜单

1.创建一级菜单 packages\apps\Settings\res\xml\top_level_settings.xml <com.android.settings.widget.HomepagePreferenceandroid:fragment"com.android.settings.DeviceStatusSettings"android:icon"drawable/ic_settings_display_white"android:…

harmonyos应用开发者高级认证考试部分答案(2)

一、判断 只要使用端云一体化的云端资源就需要支付费用&#xff08;错&#xff09; 所有使用Component修饰的自定义组件都支持onPageShow&#xff0c;onBackPress和onPageHide生命周期函数。&#xff08;错&#xff09; HarmonyOS应用可以兼容OpenHarmony生态&#xff08;对&am…