太快了!文生图片只需1秒,开源SDXL Turbo来啦!

11月29日,著名开源生成式AI平台Stability.ai在官网发布了,开源文生图模型SDXL Turbo。

根据使用体验,SDXL Turbo的生成图像效率非常快,可以做到实时响应(可能小于1秒)。

在你输入完最后一个文本后,图像就能马上显示,推理效率超过了Midjourney、DALL·E 3以及Stability.ai自己开发的Stable Difusion系列模型。

天下武功,无坚不破,唯快不破,SDXL Turbo就是大模型界的“博尔特”。用风驰电掣、电光石火、疾风骤雨来形容SDXL Turbo都不过分。

「AIGC开放社区」介绍了那么多的文生图模型,截至目前这个是响应最快,并且生成的图像质量非常高,精准还原提示文本的描述。

开源地址:https://github.com/Stability-AI/generative-models

在线体验地址:https://clipdrop.co/stable-diffusion-turbo

论文地址:https://stability.ai/s/adversarial_diffusion_distillation.pdf

SDXL Turbo简单介绍

SDXL Turbo是基于SDXL 1.0开发而成,并且使用了一种全新的对抗扩散蒸馏技术(ADD),将图像所需的生成步骤从50减少至1—4步,并且丝毫不影响图像质量。稍后「AIGC开放社区」会详细介绍这篇论文。

图片

该技术可以在高质量图像下以1—4个步骤对大规模基础图像扩散模型进行采样。使用分数蒸馏来利用大规模现成的图像扩散模型作为指导。

并将其与对抗网络相结合,以确保即使在一个或两个采样步骤的低步骤状态下也能确保高图像保真度,同时避免了其他蒸馏方法中常见的失真或模糊问题。

SDXL Turbo实验数据

为了测试SDXL Turbo的性能,Stability.ai使用相同的文本提示,与StyleGAN-T++,OpenMUSE,IF-XL,SDXL和LCM-XL等不同版本的文生图模型进行了比较。

测试结果显示,SDXL Turbo只用一个生成步骤,就击败了LCM-XL的4步骤生成的图像,以及击败了SDXL通过50个步骤生成的图像。

图片

虽然SDXL Turbo功能很强,也有一些局限性。Stability.ai表示,目前SDXL Turbo只能用于学术研究,稍后会开放商业权限。

图片

此外,SDXL Turbo只能生成512x512固定像素的图片,对一些细节可能表现的不够好,例如,人的手指、面部表情等,无法完美的展现照片级真实感。

但SDXL Turbo对扩散模型的生成效率、质量实现了重大技术突破,可以帮助中小型企业以更低的成本来进行部署使用。

本文素材来源Stability.ai官网,如有侵权请联系删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/181610.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【优选算法系列】【专题十四优先级队列】第一节.(1046. 最后一块石头的重量和703. 数据流中的第 K 大元素)

文章目录 前言一、最后一块石头的重量 1.1 题目描述 1.2 题目解析 1.2.1 算法原理 1.2.2 代码编写 1.2.3 题目总结二、数据流中的第 K 大元素 2.1 题目描述 2.2 题目解析 2.2.1 算法原理 2.2…

java第20章节

一.线程简介 二.创建线程 1.继承Thread类 Thread类中常用的两个构造方法如下: public Thread():创建一个新的线程对象。 public Thread(String threadName):创建一个名称为threadName的线程对象。 继承Thread类创建一个新的线程的语法如下: public c…

AI视频智能分析识别技术的发展与EasyCVR智慧安防视频监控方案

随着科技的不断进步,基于AI神经网络的视频智能分析技术已经成为了当今社会的一个重要组成部分。这项技术通过利用计算机视觉和深度学习等技术,实现对视频数据的智能分析和处理,从而为各个领域提供了广泛的应用。今天我们就来介绍下视频智能分…

建立健全涉密测绘外业安全保密管理制度,落实监管人员和保密责任,外业所用涉密计算机纳入涉密单机进行管理

建立健全涉密测绘外业安全保密管理制度,落实监管人员和保密责任,外业所用涉密计算机纳入涉密单机进行管理 1.涉密测绘外业安全保密管理制度 2.外业人员及设备清单(包括:外业从业人员名单、工作岗位,外业设备名称、密…

Opencv | 直方图均衡化

import cv2 #opencv 读取的格式是BGR import numpy as np import matplotlib.pyplot as plt #Matplotlib是RGB %matplotlib inline def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows() cv2.calcHist(images,channels,mask,histSize,ranges) - …

Gitee-PicGo-Typora

Gitee-PicGo-Typora 问题引出 问题1:根据相关法律法规和政策,您的部分文件因存在敏感信息而无法显示 就在昨晚, 我在记笔记的时候,发现之前配置的七牛云图床出了问题: 1、根据相关法律法规和政策,您的部…

JAVA进阶之路JVM-3:JVM内存模型,运行时数据区域划分,程序计数器,虚拟机栈,本地方法栈,堆,元空间,字符串常量池

JVM内存模型 对于 Java 程序员来说,在虚拟机自动内存管理机制下,不再需要像 C/C 程序开发程序员这样为每一个操作去写对应的 delete / free 操作,不容易出现内存泄漏和内存溢出问题。正是因为 Java 程序把内new存控制权利交给JVM虚拟机。一旦…

JS动态转盘可自由设置个数与概率

让我为大家介绍一下转盘的实现过程与原理&#xff0c;介绍都放在下面代码块中&#xff0c;一步一步的教会你。 我们转盘使用线段来实现 <!DOCTYPE html> <html> <head><meta charset"utf-8"><title></title><style type&quo…

【理解ARM架构】异常处理

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《理解ARM架构》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 目录 ⚡ARM系统中异常与中断处理流程&#x1f362;向量表&#x1f362;保存现场&#x1f362;恢…

对一个预算有限的创业者来说,应该选择哪些形式的办公场地

对于一个预算有限的创业者来说&#xff0c;选择合适的办公场地是一个重要的决策。不同的办公场地形式有各自的优缺点&#xff0c;需要根据创业者的具体情况和需求来权衡。 一般来说&#xff0c;有以下几种常见的办公场地形式&#xff1a; - 家庭办公&#xff1a;这是最节省成本…

觉得可视化地图太难做?那你是没用过它!

后台一直有粉丝私信老李&#xff0c;问到现在各大企业对数据可视化越来越看重&#xff0c;但是感觉那些高大上的图表做起来一定很复杂甚至可能还需要一些编程基础&#xff0c;希望老李可以推荐一些简单好上手的数据可视化工具。   作为一名数据分析爱好者&#xff0c;我也尝试…

STM32之定时器--超声波测距

1、模块介绍 型号&#xff1a;HC-SR04 超声波测距模块是用来测量距离的一种产品&#xff0c;通过发送和收超声波&#xff0c;利用时间差和声音传播速度&#xff0c; 计算出模块到前方障碍物的距离。 2、超声波模块的使用方法 怎么让它发送波 Trig &#xff0c;给Trig端口至…

面试篇之微服务(一)

目录 概览 1.什么是微服务&#xff1f; 2.微服务带来了哪些挑战&#xff1f; 3.现在有哪些流行的微服务解决方案&#xff1f; 这三种方案有什么区别吗&#xff1f; 4.说下微服务有哪些组件&#xff1f; 注册中心 5.注册中心是用来干什么的&#xff1f; 6.SpringCloud可…

损失函数总结(十六):NRMSELoss、RRMSELoss

损失函数总结&#xff08;十六&#xff09;&#xff1a;MSLELoss、RMSLELoss 1 引言2 损失函数2.1 NRMSELoss2.2 RRMSELoss 3 总结 1 引言 在前面的文章中已经介绍了介绍了一系列损失函数 (L1Loss、MSELoss、BCELoss、CrossEntropyLoss、NLLLoss、CTCLoss、PoissonNLLLoss、Ga…

亚马逊云科技 re:Invent 2023:引领科技前沿,探索未来云计算之窗

文章目录 一、前言二、什么是亚马逊云科技 re:Invent&#xff1f;三、亚马逊云科技 re:Invent 2023 将于何时何地举行四、亚马逊云科技 re:Invent 2023 有什么内容&#xff1f;4.1 亚马逊云科技 re:Invent 2023 主题演讲4.2 亚马逊云科技行业专家探实战 五、更多亚马逊云科技活…

二十章 多线程

线程简介 在 Java 中&#xff0c;并发机制非常重要。在以往的程序设计中&#xff0c;我们都是一个任务完成后再进行下一个任务&#xff0c;这样下一个任务的开始必须等待前一个任务的结束。Java 语言提供了并发机制&#xff0c;程序员可以在程序中执行多个线程&#xff0c;每一…

基于Webserver的工业数据采集控制小项目

主要用到的知识点&#xff0c;http协议&#xff0c;modbus协议&#xff0c;以及进程间通信&#xff0c;消息队列&#xff0c;共享内存等 框架 数据采集 #include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #…

vue+uniapp校园寻物失物招领平台 微信小程序1f6z5

系统中的核心用户是管理员&#xff0c;管理员登录后&#xff0c;通过管理员菜单来管理后台系统。主要功能有&#xff1a;首页、个人中心、用户管理、物品分类管理、物品信息管理、物品归还管理、留言板管理、系统管理等功能。管理员用例如图3-7所示。 对于本网上失物招领小程序…

Linux—进程状态

目录 一.前言 1.1.通过系统调用获取进程标示符 1.2.通过系统调用创建进程 二.进程状态 三.Z(zombie)-僵尸进程 四.僵尸进程危害 一.前言 学习进程的状态&#xff0c;我们首先了解一下进程的基本数据 1.1.通过系统调用获取进程标示符 由getpid&#xff08;&#xff09…

【Python】plt库详解和示例

plt 是 Python 中 Matplotlib 库的一个常用别名&#xff0c;它表示 pyplot&#xff0c;这是一个用于创建图形和图形的可视化表示的工具。下面是一些 plt 函数的详解和示例&#xff0c;以帮助大家理解和使用。 目录 plt.subplots&#xff08;&#xff09;plt.savefig&#xff0…