2023年华数杯数学建模D题思路分析

文章目录

  • 0 赛题思路
  • 1 竞赛信息
  • 2 竞赛时间
  • 3 组织机构
  • 4 建模常见问题类型
    • 4.1 分类问题
    • 4.2 优化问题
    • 4.3 预测问题
    • 4.4 评价问题

0 赛题思路

(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor

1 竞赛信息

为了培养学生的创新意识及运用数学方法和计算机技术解决实际问题的能力,天津市未来与预测科学研究会、中国未来研究会大数据与数学模型专业委员会(协办)决定举办华数杯全国大学生数学建模竞赛。竞赛的目标是为培养大学生的科学精神及运用数学解决实际问题的能力,为创新性人才的培养奠定基础,为各行各业培养和选拔优秀的人才。

竞赛内容涉及领域广泛,可能包括但不限于应用数学、统计学、运筹学、优化理论等相关领域的问题。竞赛的题目通常来源于实际问题,鼓励参赛队伍运用数学建模的方法解决现实中的挑战。

2 竞赛时间

报名结束时间:2023年8月3日12:00

比赛开始时间:2023年8月3日(周四)18:00

比赛结束时间:2023年8月6日(周日)20:00

结果公布时间:预计2023年8月中下旬

3 组织机构

主办单位:

华数杯全国大学生数学建模竞赛组委会

天津市未来与预测科学研究会

中国未来研究会大数据与数学模型专业委员会(协办)

4 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下华数杯数学建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

  • 分类模型
  • 优化模型
  • 预测模型
  • 评价模型

4.1 分类问题

判别分析:
又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。
其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:
聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。
聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:
BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

4.2 优化问题

线性规划:
研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于生产计划、物流运输、资源分配、金融投资等领域。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

整数规划:
规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

非线性规划:
非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

动态规划:
包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。
动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:
多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:
(1)两个以上的目标函数;
(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:
Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

4.3 预测问题

回归拟合预测
拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测
灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测
BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法
支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

4.4 评价问题

层次分析法
是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法
又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法
是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)
对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)
是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)
因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法
是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux vi/vim以及三种模式常用快捷键

vi/vim vi和vimvi 命令模式vi 插入模式vi 底行模式 vi和vim vi 和 vim 都是在 Linux 系统中的文本编辑器。vim 实际上是 vi 的增强版,提供了更多的功能和改进。 vi: vi 是一个经典的文本编辑器,几乎在每个 Linux 发行版中都预装了。vi 的使用…

算法专题:子序列系列2(回文)

文章目录 示例1:回文子串思路DP数组含义(注意)递推公式初始化遍历顺序(注意) 完整版注意点 示例2:最长回文子序列思路DP数组含义递推公式初始化遍历顺序 完整版注意点另一种写法不能把DP数组全部初始化为1的…

【pandas使用小技巧】如何将DataFrame的index有序化【reset_index()方法】

在pandas中,可以使用**reset_index()**方法将DataFrame的index改成连续的。reset_index()方法会将原来的index作为一列新的数据添加到DataFrame中,并将新的index设置为连续的整数。栗子如下,演示如何使用reset_index()方法将DataFrame的index…

vue3搭建(vite+create-vue)

目录 前提条件 输入命令 对于Add an End-to-End Testing Solution nightwatch和Cypress 和 Playwright 运行 前提条件 熟悉命令行已安装 16.0 或更高版本的 Node.js (node -v查看版本) 输入命令 npm init vuelatest 这一指令将会安装并执行 create-…

Meta AI研究团队新AI模型: Llama 2 大语言模型

Llama是Facebook Research团队开发的基础语言模型集,旨在提供广泛的语言理解能力。它基于转换器架构,参数范围从7B到65B。通过使用Llama模型,研究人员和开发人员可以构建更先进的自然语言处理系统。您可以在GitHub上找到相关的代码和资源&…

kotlin 编写一个简单的天气预报app(四)增加界面显示

编写界面来显示返回的数据 用户友好性&#xff1a;通过界面设计和用户体验优化&#xff0c;可以使天气信息更易读、易理解和易操作。有效的界面设计可以提高用户满意度并提供更好的交互体验。 增加城市名字的TextView <TextViewandroid:id"id/textViewCityName"…

web基础与http协议

dns域名&#xff1a;网络是基于tcp/ip协议进行通信和连接的 ip地址&#xff1a;每一台主机都是有一个唯一的地址标识&#xff08;固定的ip地址&#xff09; 作用&#xff1a;1、区分用户和计算机 2、通信 ip地址的问题&#xff1a;由32位二进制数组成&#xff0c;不方便记忆…

CentOS 7虚拟机 虚拟机安装安装增强VBox_GAs_6.1.22失败:modprobe vboxguest failed

我安装的CentOS 在安装增强工具的时候报错: 查阅资料后 &#xff0c;解决方法&#xff1a; 1、更新kernel内核版本&#xff1a; yum update kernel -y //安装kernel-devel和gcc编译工具链yum install -y kernel-devel gcc//更新kernel和kernel-devel到最新版本yum -y upgrade …

就业并想要长期发展选数字后端还是ic验证?

“就业并想要长期发展选数字后端还是ic验证&#xff1f;” 这是知乎上的一个热点问题&#xff0c;浏览量达到了13,183。看来有不少同学对这个问题感到疑惑。之前更新了数字后端&数字验证的诸多文章&#xff0c;从学习到职业发展&#xff0c;都写过&#xff0c;唯一没有做过…

windows编译ncnn

官方代码https://github.com/Tencent/ncnn/wiki/how-to-build#build-for-windows-x64-using-visual-studio-community-2017 编译工具 visual studio 2017 一、编译protobuf 1、下载protobuf protobuf-3.11.2&#xff1a;https://github.com/google/protobuf/archive/v3.11…

指针初阶(超详解)

指针初阶 1.指针是什么2.指针和指针类型2.1 指针-整数2.2 指针的解引用 3.野指针3.1 野指针成因3.2如何避免野指针 4.指针运算4.1 指针-整数4.2 指针-指针4.3 指针的关系运算 5.指针和数组6.二级指针7.指针数组 1.指针是什么 指针是什么&#xff1f; 指针理解的2个要点&#xf…

Class.forName和ClassLoader区别

【反射中&#xff0c;Class.forName和ClassLoader区别】_lfsun666的博客-CSDN博客

docker启动报错:Cannot connect to the Docker daemon

Couldn’t connect to Docker daemon at httpdocker://localunixsocket - is it running? 解决方式&#xff1a;正确的是将当前用户加入docker组解决步骤 sudo groupadd docker #添加docker用户组 sudo gpasswd -a $USER docker #将登陆用户加入到docker用户组中 ne…

SDWAN的技术背景及其发展历程

一、SDWAN&#xff08;软件定义广域网&#xff09;技术的背景 传统广域网&#xff08;WAN&#xff09;主要基于专线连接&#xff0c;例如MPLS&#xff08;多协议标签交换&#xff09;网络&#xff0c;用于连接企业的分支机构和总部。这些传统的WAN网络在过去是为了满足数据中心…

BladeX框架开源-工作-笔记-Docker部署-Jenkins配置

BladeX框架开源-工作-笔记-Docker部署-Jenkins配置 文章目录 BladeX框架开源-工作-笔记-Docker部署-Jenkins配置第一章-概要-BladeX框架简介与git地址第二章-BladeX框架前后端项目Docker部署与DockerFile配置文件2.1-开始部署阶段&#xff0c;默认服务器上面已有Nacos服务2.2-采…

maven下载按照及初次使用相关配置

maven下载按照及初次使用相关配置 一、下载 与安装 依赖Java&#xff0c;需要配置JAVA_HOME设置MAVEN自身的运行环境&#xff0c;需要配置MAVEN_HOME测试环境配置结果 MVN测试成功&#xff01;&#xff01;&#xff01; 二、本地仓库配置 Maven启动后&#xff0c;会自动保…

基于Amoeba读写分离(三十六)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 今天要学的是基于Amoeba读写分离。Amoeba是一个开源的关系型数据库管理系统&#xf…

Spark性能调优之数据序列化

前言 在使用Spark进行数据开发的时候,避不开的一个问题就是性能调优。网上一搜一大堆所谓的调优策略很多作者自己都不知所云,导致读者看了后只会更加困惑。我们在研究一个技术的时候第一手资料永远都请参考官网,官网对性能优化不一定是最全甚至最优,但是可以解决大部分问题…

六、初始化和清理(4)

本章概要 数组的初始化 动态数组创建可变参数列表 枚举类型 数组初始化 数组是相同类型的、用一个标识符名称封装到一起的一个对象序列或基本类型数据序列。数组是通过方括号下标操作符 [] 来定义和使用的。要定义一个数组引用&#xff0c;只需要在类型名加上方括号&#xf…

NestJS 的 拦截器 学习

拦截器会用到RxJs&#xff0c;所以在学习拦截器之前可以先了解一下它。 拦截器是使用Injectable()装饰器装饰的类并且实现了接口NestInterceptor。 拦截器受到 AOP(面向切面编程)技术的启发&#xff0c;具有如下的功能&#xff1a; 在方法执行之前/之后绑定额外的逻辑转换函…