智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蝙蝠算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蝙蝠算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蝙蝠算法

蝙蝠算法原理请参考:https://blog.csdn.net/u011835903/article/details/107937903
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

蝙蝠算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明蝙蝠算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/178782.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ELk部署,保姆级教学超详细!!!

Elk(Elasticsearch, Logstash, Kibana)是一套日志收集、存储和展示方案,是由Elastic公司开发的开源软件组合。 Elasticsearch:是一个分布式的搜索和分析引擎。它能够处理大量的数据,并提供快速、准确的搜索结果&#x…

63 权限提升-Linux脏牛内核漏洞SUID信息收集

目录 演示案例:Linux提权自动化脚本利用-4个脚本Linux提权SUID配合脚本演示-AliyunLinux提权本地配合内核漏洞演示-MozheLinux提权脏牛内核漏洞演示-Aliyun,Vulnhub涉及资源: linux提权相对windows提权方法相对少一些,linux提权方法相对来讲有七八种方式…

stm32 TIM

一、TIM简介 TIM(Timer)定时器定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断。16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时定时器不仅具备基本的定时中断功能&…

FFmpeg介绍

官方网站:http://www.ffmpeg.org/ 项目组成 libavformat 封装模块,封装了Protocol层和Demuxer、Muxer层,使得协议和格式对于开发者来说是透明的。FFmpeg能否支持一种封装格式的视频的封装与解封装,完全取决于这个库&#xff0c…

QT中的 容器(container)-大全

一、介绍 Qt库提供了一套通用的基于模板的容器类&#xff0c;可以用这些类存储指定类型的项。比如&#xff0c;你需要一个大小可变的QString的数组&#xff0c;则使用QVector<QString>。 这些容器类比STL&#xff08;C标准模板库&#xff09;容器设计得更轻量、更安全并…

光伏电站开发流程

随着人们对可再生能源的关注度不断提高&#xff0c;光伏电站的开发流程也变得越来越重要。光伏电站是一种利用太阳能发电的设施&#xff0c;它可以有效地减少化石能源的消耗&#xff0c;同时也可以为环保事业做出贡献。 首先&#xff0c;要进行光伏电站的开发&#xff0c;需要选…

PWM 正玄波形 通过C语言生成

#include <stdio.h> #include <math.h> #include <stdint.h>#define SAMPLE_POINT_NUM (200) /* 需要生成的点的个数 */ #define SINE_MAX (255) /* sin 函数幅值 */ #define PI (3.14…

pytorch训练模型内存溢出

1、训练模型命令命令 如下所示是训练命名实体识别的命令&#xff0c;在win10系统下执行 activate pytorch cd F:\Python\github\ultralytics-main\submain\pytorch_bert_bilstm_crf_ner-main f: python main.py --bert_dir"../model_hub/chinese-bert-wwm-ext/" --…

TIME_WAIT状态TCP连接导致套接字无法重用实验

理论相关知识可以看一下《TIME_WAIT相关知识》。 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<unistd.h> #include<arpa/inet.h> #include<sys/socket.h> #include<errno.h> #include<syslog.h> #inc…

Echarts legend图例配置项 设置位置 显示隐藏

Echarts 官网完整配置项 https://echarts.apache.org/zh/option.html#legend 配置项 legend: { }设置图例为圆形 icon: circle,//设置图例为圆形设置图例位置 top: 20%//距离顶部百分之20//y:bottom 在底部显示设置图例 宽度 高度 itemWidth: 10,//设置图例宽度 itemHeight: …

每日一练【移动零】

一、题目描述 283. 移动零 - 力扣&#xff08;LeetCode&#xff09; 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 二、题目解析 可以…

Python中调用VisualStudio创建的DLL库

1、创建DLL 打开VisualStudio2022&#xff0c;创建新项目 动态链接库-下一步 设置项目名称、项目位置、创建 单击头文件、添加、新建项 选择.h、设置名称、添加 同样的在源文件新建项&#xff0c;创建 代码&#xff1a; test.h #pragma once#ifdef BUILD_TEST #define API_S…

unity3d NPC自动寻路不移动

烘焙的路面不能有间隔&#xff0c;调整地面重新烘焙

数据结构(超详细讲解!!)第二十五节 树与森林

1.树的存储结构 和线性表一样&#xff0c;树可以用顺序和链式两种存储结构。 树的顺序存储结构适合树中结点比较“满”的情况。根据树的非线性结构特点&#xff0c;常用链式存储方式来表示树。树常用的存储方法有&#xff1a;双亲表示法、孩子表示法和孩子兄弟表…

【Linux进阶之路】进程间通信

文章目录 一、原理二、方式1.管道1.1匿名管道1.1.1通信原理1.1.2接口使用 1.2命名管道 2.共享内存2.1原理2.2接口使用 3.消息队列原理 4.信号量引入原理 总结 一、原理 进程间的通信是什么&#xff1f;解释&#xff1a; 简单理解就是&#xff0c;不同进程之间进行数据的输入输出…

Typora+PicGo+Minio搭建博客图床

文章目录 TyporaPicGoMinio搭建博客图床前言什么是图床?为什么需要图床?准备工作一、Typora二、Picgo1. 下载Picgo2. 下载node.js3. 下载minio插件 三、服务器端配置1. 添加端口到安全组2. 使用Docker安装minio3. 配置minio image-20231127175530696四、minio插件配置五、Typ…

C++ day37 贪心算法 单调递增的数字 监控二叉树

题目1&#xff1a;738 单调递增的数字 题目链接&#xff1a;单调递增的数字 对题目的理解 返回小于或等于n的最大数字&#xff0c;且数字是单调递增&#xff08;单调递增数字的定义&#xff1a;每个相邻位上的数字满足x<y&#xff09; 贪心算法 注意本题的遍历顺序是从…

【带头学C++】----- 八、C++面向对象编程 ---- 8.1 面向对象编程概述

目录 8.1 面向对象编程概述 8.1.1 面向对象概念&#xff08;OOP&#xff09; 8.1.2 面向过程概念 8.2 :: 作用域运算符 8.3 命名空间namespace 8.3.1 C的命名空间 namespace 8.3.2 命名空间 namespace使用语法 1. 创建一个命名空间&#xff1a; 2. 命名空间只能在全局…

WIN10 x86环境部署ARM虚拟机(银河麒麟)

我们经常使用的是x86架构的cpu&#xff0c;而对于不同cpu架构的arm架构的操作系统&#xff0c;我们可以通过QEMU模拟器来进行模拟一个arm环境 1、部署前的准备 arm的镜像&#xff1a; 以此镜像为例&#xff1a;Kylin-Server-10-SP2-aarch64-Release-Build09-20210524.iso QE…

Co-DETR:DETRs与协同混合分配训练论文学习笔记

论文地址&#xff1a;https://arxiv.org/pdf/2211.12860.pdf 代码地址&#xff1a; GitHub - Sense-X/Co-DETR: [ICCV 2023] DETRs with Collaborative Hybrid Assignments Training 摘要 作者提出了一种新的协同混合任务训练方案&#xff0c;即Co-DETR&#xff0c;以从多种标…