【数据结构】带头+双向+循环链表(DList)(增、删、查、改)详解

一、带头双向循环链表的定义和结构

1、定义

带头双向循环链表,有一个数据域两个指针域。一个是前驱指针,指向其前一个节点;一个是后继指针,指向其后一个节点。

// 定义双向链表的节点
typedef struct ListNode
{LTDataType data; // 数据域struct ListNode* prev; // 前驱指针struct ListNode* next; // 后继指针
}ListNode;

2、结构

带头双向循环链表:在所有的链表当中 结构最复杂,一般用在 单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多 优势,实现反而简单了。

二、带头双向循环链表接口的实现

1、创建文件

  • test.c(主函数、测试顺序表各个接口功能)
  • List.c(带头双向循环链表接口函数的实现)
  • List.h(带头双向循环链表的类型定义、接口函数声明、引用的头文件)


2、List.h 头文件代码 

// List.h
// 带头+双向+循环链表增删查改实现
#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>typedef int LTDataType;// 定义双向链表的节点
typedef struct ListNode
{LTDataType data; // 数据域struct ListNode* prev; // 前驱指针struct ListNode* next; // 后继指针
}ListNode;// 动态申请一个新节点
ListNode* BuyListNode(LTDataType x);
// 创建返回链表的头结点
ListNode* ListCreate();
// 双向链表销毁
void ListDestory(ListNode* plist);
// 双向链表打印
void ListPrint(ListNode* plist);
// 双向链表尾插
void ListPushBack(ListNode* plist, LTDataType x);
// 双向链表尾删
void ListPopBack(ListNode* plist);
// 双向链表头插
void ListPushFront(ListNode* plist, LTDataType x);
// 双向链表头删
void ListPopFront(ListNode* plist);
// 双向链表查找
ListNode* ListFind(ListNode* plist, LTDataType x);
// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x);
// 双向链表删除pos位置的节点
void ListErase(ListNode* pos);
// 双向链表的判空
bool ListEmpty(ListNode* phead);
// 获取双向链表的元素个数
size_t ListSize(ListNode* phead);

三、在 List.c 上是西安各个接口函数

1、动态申请一个新结点

// 动态申请一个新节点
ListNode* BuyListNode(LTDataType x)
{ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));newnode->data = x;newnode->prev = NULL;newnode->next = NULL;return newnode;
}

2、创建返回链表的头结点(初始化头结点)

// 创建返回链表的头结点
ListNode* ListCreate()
{ListNode* phead = (ListNode*)malloc(sizeof(ListNode)); // 哨兵位头结点phead->next = phead;phead->prev = phead;return phead;
}

也可以用下面这个函数(道理一样):

// 初始化链表
void ListInit(ListNode** pphead)
{*pphead = BuyListNode(-1); // 动态申请一个头节点(*pphead)->prev = *pphead; // 前驱指针指向自己(*pphead)->next = *pphead; // 后继指针指向自己
}

头指针初始指向 NULL,初始化链表时,需要改变头指针的指向,使其指向头节点,所以这里需要传二级指针。 


初始化带头双向循环链表,首先动态申请一个头结点头结点的前驱和后继指针都指向自己,形成一个循环

image-20210903220045099


3、双向链表的销毁

// 双向链表的销毁
void ListDestroy(ListNode** pphead)
{assert(pphead);assert(*pphead);ListNode* cur = (*pphead)->next;while (cur != *pphead){ListNode* next = cur->next; // 记录cur的直接后继节点free(cur);cur = next;}free(*pphead); // 释放头节点*pphead = NULL; // 置空头指针
}

销毁链表,最后要将头指针 plist 置空,所以用了二级指针来接收。这里也可以用一级指针,但要在函数外面置空 plist 。

一级指针写法:

void ListDestroy(ListNode* phead)
{assert(phead);ListNode* cur = phead->next;while (cur != phead){ListNode* next = cur->next;free(cur);cur = next;}free(phead);phead = NULL;
}

4、双向链表的打印

// 打印双向链表
void ListPrint(ListNode* phead)
{assert(phead);ListNode* cur = phead->next; // 记录第一个节点printf("head <-> ");while (cur != phead){printf("%d <-> ", cur->data);cur = cur->next;}printf("head\n");
}

5、双向链表的尾插

// 双向链表尾插
void ListPushBack(ListNode* phead, LTDataType x)
{assert(phead); // 头指针不能为空/* ListNode* newnode = BuyListNode(x); // 动态申请一个节点ListNode* tail = phead->prev; // 记录尾节点tail->next = newnode; // 尾节点的后继指针指向新节点newnode->prev = tail; //2、新节点的前驱指针指向尾节点newnode->next = phead; // 新节点的后继指针指向头节点phead->prev = newnode; // 头节点的前驱指针指向新节点 */ListInsert(phead, x);
}


6、双向链表的尾删

// 双向链表的尾删
void ListPopBack(ListNode* phead)
{assert(phead);assert(phead->next != phead); // 只剩头节点时 链表为空 不能再继续删除/* ListNode* tail = phead->prev; // 记录尾节点ListNode* tailPrev = tail->prev; // 记录尾节点的直接前驱tailPrev->next = phead; // 尾节点的前驱节点的next指针指向头节点phead->prev = tailPrev; // 头节点的prev指针指向尾节点的前驱节点free(tail); // 释放尾节点 */ListErase(pHead->prev);
}


7、双向链表的头插

// 双向链表的头插
void ListPushFront(ListNode* phead, LTDataType x)
{assert(phead);/* ListNode* newnode = BuyListNode(x); // 申请新节点ListNode* pheadNext = phead->next; // 记录第一个节点// 头节点和新节点建立链接phead->next = newnode;newnode->prev = phead;// 新节点和第一个节点建立链接newnode->next = pheadNext;pheadNext->prev = newnode; */ListInsert(phead->next, x);
}


8、双向链表的头删

// 双向链表的头删
void ListPopFront(ListNode* phead)
{assert(phead);assert(phead->next != phead); // 只剩头节点时 链表为空 不能再继续删除/* ListNode* pheadNext = phead->next; // 记录第一个节点// 头节点和第一个节点的后继节点建立链接phead->next = pheadNext->next;pheadNext->next->prev = phead;free(pheadNext); // 头删 */ListErase(phead->next);
}


9、查找双向链表中的元素

// 在双向链表中查找元素,并返回该元素的地址
ListNode* ListFind(ListNode* phead, LTDataType x)
{assert(phead);ListNode* cur = phead->next;while (cur != phead){if (cur->data == x){return cur;  //找到了 返回该元素的地址}cur = cur->next;}return NULL;  //没找到 返回NULL
}

10、在指定pos位置之前插入元素

// 在指定pos位置之前插入元素
void ListInsert(ListNode* pos, LTDataType x)
{assert(pos);ListNode* newnode = BuyListNode(x); // 申请一个节点ListNode* posPrev = pos->prev; // 记录pos的直接前驱// pos的直接前驱和新节点建立链接posPrev->next = newnode;newnode->prev = posPrev;// 新节点和pos建立链接newnode->next = pos;pos->prev = newnode;
}

实现了该函数后,可以尝试改进头插函数(pos相当于链表的第一个节点)和尾插函数(pos相当于链表的头节点),这样写起来更简便


11、删除指定pos位置的元素

// 删除指定pos位置的元素
void ListErase(ListNode* pos)
{assert(pos);ListNode* posPrev = pos->prev; // 记录pos的直接前驱ListNode* posNext = pos->next; // 记录pos的直接后继// pos的直接前驱和直接后继建立链接posPrev->next = posNext;posNext->prev = posPrev;free(pos); // 释放pos位置的元素//pos = NULL;
}

实现了该函数后,可以尝试改进函数(pos相当于链表的第一个节点)和尾删函数(pos相当于链表的最后一个节点),这样写起来更简便


12、双向链表的判空

// 双向链表的判空
bool ListEmpty(ListNode* phead)
{ assert(phead);return phead->next == phead; //为空 返回ture 否则返回false
}

13、获取双向链表的元素个数

// 获取双向链表的元素个数
size_t ListSize(ListNode* phead)
{assert(phead);size_t size = 0;ListNode* cur = phead->next; // 记录第一个节点while (cur != phead){size++;cur = cur->next;}return size;
}

四、代码整合

// List.c
#include "List.h"// 动态申请一个新节点
ListNode* BuyListNode(LTDataType x)
{ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));newnode->data = x;newnode->prev = NULL;newnode->next = NULL;return newnode;
}// 创建返回链表的头结点
ListNode* ListCreate()
{ListNode* phead = (ListNode*)malloc(sizeof(ListNode)); // 哨兵位头结点phead->next = phead;phead->prev = phead;return phead;
}// 双向链表的销毁
void ListDestroy(ListNode** pphead)
{assert(pphead);assert(*pphead);ListNode* cur = (*pphead)->next;while (cur != *pphead){ListNode* next = cur->next; // 记录cur的直接后继节点free(cur);cur = next;}free(*pphead); // 释放头节点*pphead = NULL; // 置空头指针
}// 打印双向链表
void ListPrint(ListNode* phead)
{assert(phead);ListNode* cur = phead->next; // 记录第一个节点printf("head <-> ");while (cur != phead){printf("%d <-> ", cur->data);cur = cur->next;}printf("head\n");
}// 双向链表尾插
void ListPushBack(ListNode* phead, LTDataType x)
{assert(phead); // 头指针不能为空ListInsert(phead, x);
}// 双向链表的尾删
void ListPopBack(ListNode* phead)
{assert(phead);assert(phead->next != phead); // 只剩头节点时 链表为空 不能再继续删除ListErase(pHead->prev);
}// 双向链表的头插
void ListPushFront(ListNode* phead, LTDataType x)
{assert(phead);ListInsert(phead->next, x);
}// 双向链表的头删
void ListPopFront(ListNode* phead)
{assert(phead);assert(phead->next != phead); // 只剩头节点时 链表为空 不能再继续删除ListErase(phead->next);
}// 在双向链表中查找元素,并返回该元素的地址
ListNode* ListFind(ListNode* phead, LTDataType x)
{assert(phead);ListNode* cur = phead->next;while (cur != phead){if (cur->data == x){return cur;  //找到了 返回该元素的地址}cur = cur->next;}return NULL;  //没找到 返回NULL
}// 在指定pos位置之前插入元素
void ListInsert(ListNode* pos, LTDataType x)
{assert(pos);ListNode* newnode = BuyListNode(x); // 申请一个节点ListNode* posPrev = pos->prev; // 记录pos的直接前驱// pos的直接前驱和新节点建立链接posPrev->next = newnode;newnode->prev = posPrev;// 新节点和pos建立链接newnode->next = pos;pos->prev = newnode;
}// 删除指定pos位置的元素
void ListErase(ListNode* pos)
{assert(pos);ListNode* posPrev = pos->prev; // 记录pos的直接前驱ListNode* posNext = pos->next; // 记录pos的直接后继// pos的直接前驱和直接后继建立链接posPrev->next = posNext;posNext->prev = posPrev;free(pos); // 释放pos位置的元素//pos = NULL;
}// 双向链表的判空
bool ListEmpty(ListNode* phead)
{ assert(phead);return phead->next == phead; //为空 返回ture 否则返回false
}// 获取双向链表的元素个数
size_t ListSize(ListNode* phead)
{assert(phead);size_t size = 0;ListNode* cur = phead->next; // 记录第一个节点while (cur != phead){size++;cur = cur->next;}return size;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/17767.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java判断字符串是否和空字符串(““)相等、是否和空引用(null)相等,比较顺序不同导致出现死代码(Dead code)

我在用Java实现需求的时候&#xff0c;用到了字符串跟空字符串&#xff08;“”&#xff09;比较&#xff0c;跟空引用null比较&#xff0c;两个比较语句的顺序不同&#xff0c;一个顺序出现了死代码&#xff08;Dead code&#xff09;。 下面这个代码片段&#xff0c;字符串li…

探秘二叉树后序遍历:从叶子到根的深度之旅

本篇博客会讲解力扣“145. 二叉树的后序遍历”的解题思路&#xff0c;这是题目链接。 本题的思路是&#xff1a; 先创建一个数组&#xff0c;用来存储二叉树后序遍历的结果。数组的大小跟树的结点个数有关。树的结点个数可以使用递归实现&#xff0c;即总个数左子树结点个数右…

图像 检测 - FCOS: Fully Convolutional One-Stage Object Detection (ICCV 2019)

FCOS: Fully Convolutional One-Stage Object Detection - 全卷积一阶段目标检测&#xff08;ICCV 2019&#xff09; 摘要1. 引言2. 相关工作3. 我们的方法3.1 全卷积一阶目标检测器3.2 FCOS的FPN多级预测3.3 FCOS中心度 4. 实验4.1 消融研究4.1.1 FPN多级预测4.1.2 有无中心度…

Gis入门,根据起止点和一个控制点计算二阶贝塞尔曲线(共三个控制点组成的线段转曲线)

前言 本章讲解如何在gis地图中使用起止点和一个控制点(总共三个控制点)生成二阶贝塞尔曲线。 三阶贝塞尔曲线请参考下一章《Gis入门,使用起止点和两个控制点生成三阶贝塞尔曲线(共四个控制点)》 贝塞尔曲线(Bezier curve)介绍 贝塞尔曲线(Bezier curve)是一种数学…

Nim游戏博弈论

【模板】nim 游戏 题目描述 https://www.luogu.com.cn/problem/P2197 甲&#xff0c;乙两个人玩 nim 取石子游戏。 nim 游戏的规则是这样的&#xff1a;地上有 n n n 堆石子&#xff08;每堆石子数量小于 1 0 4 10^4 104&#xff09;&#xff0c;每人每次可从任意一堆石子…

ISO 7637-2 5a/5b抛负载测试保护用TVS二极管,如何选型号?

在国际标准ISO 16750-2颁布之前&#xff0c;全球各大汽车零部件制造商一直采用的是ISO 7637-2标准。ISO 16750-2国际标准发行之后&#xff0c;汽车抛负载浪涌测试中ISO 7637-2 5A和5B测试标准被ISO 16750-2测试标准取代。查看ISO 16750-2和ISO 7637-2国际标准文档资料对比会发现…

13个ChatGPT类实用AI工具汇总

在ChatGPT爆火后&#xff0c;各种工具如同雨后春笋一般层出不穷。以下汇总了13种ChatGPT类实用工具&#xff0c;可以帮助学习、教学和科研。 01 / ChatGPT for google/ 一个浏览器插件&#xff0c;可搭配现有的搜索引擎来使用 最大化搜索效率&#xff0c;对搜索体验的提升相…

多线程(JavaEE初阶系列6)

目录 前言&#xff1a; 1.什么是线程池 2.标准库中的线程池 3.实现线程池 结束语&#xff1a; 前言&#xff1a; 在上一节中小编带着大家了解了一下Java标准库中的定时器的使用方式并给大家实现了一下&#xff0c;那么这节中小编将分享一下多线程中的线程池。给大家讲解一…

NoSQL-Redis集群

NoSQL-Redis集群 一、集群&#xff1a;1.单点Redis带来的问题&#xff1a;2.解决&#xff1a;3.集群的介绍&#xff1a;4.集群的优势&#xff1a;5.集群的实现方式&#xff1a; 二、集群的模式&#xff1a;1.类型&#xff1a;2.主从复制&#xff1a; 三、搭建主从复制&#xff…

在CentOS 7上挂载硬盘到系统的步骤及操作

目录 1&#xff1a;查询未挂载硬盘2&#xff1a;创建挂载目录3&#xff1a;检查磁盘是否被分区4&#xff1a;格式化硬盘5&#xff1a;挂载目录6&#xff1a;检查挂载状态7&#xff1a;设置开机自动挂载总结&#xff1a; 本文介绍了在CentOS 7上挂载硬盘到系统的详细步骤。通过确…

代码随想录算法训练营第二十八天 | Leetcode随机抽题检测

Leetcode随机抽题检测--使用题库&#xff1a;Leetcode热题100 1 两数之和未看解答自己编写的青春版重点题解的代码日后再次复习重新写 49 字母异位词分组未看解答自己编写的青春版重点题解的代码日后再次复习重新写 128 最长连续序列未看解答自己编写的青春版重点关于 left 和 …

C语言每日一题:12《数据结构》相交链表。

题目&#xff1a; 题目链接 思路一&#xff1a; 1.如果最后一个节点相同说明一定有交点。 2.使用两个循环获取一下长度&#xff0c;同时可以获取到尾节点。 3。注意初始化lenA和lenB为1&#xff0c;判断下一个节点是空是可以保留尾节点的。长度会少一个&#xff0c;尾节点没有…

根据前序和中序遍历序列构造二叉树 (递归+迭代两种方法实现)

给定两个整数数组 preorder 和 inorder &#xff0c;其中 preorder 是二叉树的先序遍历&#xff0c; inorder 是同一棵树的中序遍历&#xff0c;请构造二叉树并返回其根节点。 输入: preorder [3,9,20,15,7], inorder [9,3,15,20,7] 输出: [3,9,20,null,null,15,7]源代码如下…

【虚拟数字人】SadTalker简易部署教程

视频教程在这里&#xff1a; sadtalker数字人创建简易教程 项目基于SadTalkers实现视频唇形合成的Wav2lip。通过以视频文件方式进行语音驱动生成唇形&#xff0c;设置面部区域可配置的增强方式进行合成唇形&#xff08;人脸&#xff09;区域画面增强&#xff0c;提高生成唇形的…

修改conda环境缓存默认路径

前言&#xff1a;conda环境占用的内存太大了&#xff0c;每次建立一个新的虚拟环境都要加5个G差不多。所以想要修改默认的路径 问题1&#xff1a;找不到.condarc文件夹 创建condarc文件命令 conda config --add channels r 修改conda环境缓存默认路径 打开.condarc 添加 en…

xinput1_4.dll丢失怎么办?这几个方法都能解决

xinput1_4.dll是一个动态链接库文件&#xff08;DLL&#xff09;&#xff0c;它是Microsoft DirectX的一部分&#xff0c;用于处理游戏控制器输入。当你的电脑提示xinput1_4.dll文件丢失时&#xff0c;意味着与这个文件相关的游戏或应用程序无法正常运行。 当你的电脑提示xinp…

iPhone 8 Plus透明屏应用范围详解

iPhone 8 Plus是苹果公司于2017年推出的一款智能手机&#xff0c;它采用了全新的玻璃机身设计&#xff0c;支持无线充电&#xff0c;并且搭载了更强大的A11仿生芯片。 而透明屏则是一种新型的屏幕技术&#xff0c;可以使手机屏幕呈现出透明的效果。 透明屏是一种将屏幕背后的元…

基于深度学习的裂纹图像分类研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

11、springboot项目启动时对容器中的bean进行延迟初始化

springboot项目启动时对容器中的bean进行延迟初始化 预初始化&#xff1a; Spring Boot在启动应用时&#xff0c;会启动Spring容器&#xff0c;当启动Spring容器时&#xff0c;Spring会自动初始化容器中所有的singleton Bean——这是默认行为 预初始化的好处&#xff1a; 1、项…

MATLAB编程实践12、13

生命游戏 游戏的宇宙是无限可扩展的二维矩形网格&#xff0c;群体是那些标注为存活的网格的集合。群体可以依照称为代的离散时间步距进化。在每一步中&#xff0c;每个网格的命运由它周围最近的8个网格邻居的活度决定&#xff0c;规则如下&#xff1a; 如果一个存活的网格有两个…