AMP State Evolution的计算:以伯努利先验为例

AMP State Evolution (SE)的计算

t = 1 t=1 t=1时, E ( t ) = E [ X 2 ] \mathcal E^{(t)} = \mathbb E [X^2] E(t)=E[X2],SE的迭代式为
τ r ( t ) = σ 2 + 1 δ E ( t ) E ( t + 1 ) = E ∣ η ( t ) ( X + Z ) − X ∣ 2 , Z ∼ N ( 0 , τ r ( t ) ) \begin{aligned} \tau^{(t)}_r &= \sigma^2 + \frac{1}{\delta} \mathcal E^{(t)} \\ \mathcal E^{(t+1)} &= \mathbb E \left | \eta^{(t)} \left ( X + Z \right) - X \right |^2, \ Z \sim \mathcal N(0, \tau^{(t)}_r) \end{aligned} τr(t)E(t+1)=σ2+δ1E(t)=E η(t)(X+Z)X 2, ZN(0,τr(t))

撰写的时候存在一定的符号乱用,之后的 τ \tau τ即指 τ r ( t ) \tau^{(t)}_r τr(t)

注意到, E ( t + 1 ) = E ∣ η ( t ) ( X + Z ) − X ∣ 2 \mathcal E^{(t+1)} = \mathbb E \left | \eta^{(t)} \left ( X + Z \right) - X \right |^2 E(t+1)=E η(t)(X+Z)X 2是关于随机变量 X , Z X, Z X,Z求期望,这里我们认为 X , Z X, Z X,Z之间相互独立,因此
E ( t + 1 ) = ∫ ∫ p X , Z ( X , Z ) ∣ η ( t ) ( X + Z ) − X ∣ 2 d X d Z \mathcal E^{(t+1)} = \int \int p_{X, Z}(X, Z) \left | \eta^{(t)} \left ( X + Z \right) - X \right |^2 dX dZ E(t+1)=∫∫pX,Z(X,Z) η(t)(X+Z)X 2dXdZ

R = X + Z R = X + Z R=X+Z,不难得到 p X , R ( X , R ) p_{X, R}(X, R) pX,R(X,R)等价于 p X , Z ( X , Z ) p_{X, Z}(X, Z) pX,Z(X,Z)(因为 p X , Z ( X = x 0 , Z = z 0 ) = p X , R ( X = x 0 , R = x 0 + z 0 ) p_{X, Z}(X=x_0, Z=z_0) = p_{X, R}(X=x_0, R=x_0 + z_0) pX,Z(X=x0,Z=z0)=pX,R(X=x0,R=x0+z0)),因此我们可以把 E ( t + 1 ) \mathcal E^{(t+1)} E(t+1)写为(这里我们考虑 η ( t ) \eta^{(t)} η(t)MMSE函数
E ( t + 1 ) = ∫ ∫ p X , R ( X , R ) ∣ η ( t ) ( R ) − X ∣ 2 d X d R = ∫ ∫ p R ( R ) p X ∣ R ( X ∣ R ) ∣ E [ X ∣ R ] − X ∣ 2 d X d R = ∫ p R ( R ) v a r [ X ∣ R ] d R \begin{aligned} \mathcal E^{(t+1)} &= \int \int p_{X, R}(X, R) \left | \eta^{(t)} \left ( R \right) - X \right |^2 dX dR \\ &= \int \int p_R(R) p_{X|R}(X|R) \left | \mathbb E\left [ X|R \right] - X \right |^2 dX dR \\ &= \int p_R(R) \mathrm{var}[X|R] dR \end{aligned} E(t+1)=∫∫pX,R(X,R) η(t)(R)X 2dXdR=∫∫pR(R)pXR(XR)E[XR]X2dXdR=pR(R)var[XR]dR

因为 p X , Z ( X , Z ) = p X ( X ) ⋅ p X ( Z ) = p X ( X ) N ( z ; 0 , τ r ( t ) ) p_{X, Z}(X, Z) = p_X(X) \cdot p_X(Z) = p_X(X) \mathcal N(z;0, \tau^{(t)}_r) pX,Z(X,Z)=pX(X)pX(Z)=pX(X)N(z;0,τr(t)),因此可以得到
p X , R ( X , R ) = p X ( X ) N ( R − X ; 0 , τ r ( t ) ) = p X ( X ) N ( R ; X , τ r ( t ) ) \begin{aligned} p_{X, R}(X, R) &= p_X(X) \mathcal N(R-X;0, \tau^{(t)}_r) \\ &= p_X(X) \mathcal N(R;X, \tau^{(t)}_r) \end{aligned} pX,R(X,R)=pX(X)N(RX;0,τr(t))=pX(X)N(R;X,τr(t))

X的先验为为伯努利分布时

p X ( X ) ≡ ( 1 − ρ ) δ ( X ) + ρ δ ( X − θ ) p_X(X) \equiv (1-\rho) \delta(X) + \rho \delta(X - \theta) pX(X)(1ρ)δ(X)+ρδ(Xθ)

那么, X , R X,R X,R的联合分布可写为
p X , R ( X , R ) = ( ( 1 − ρ ) δ ( X ) + ρ δ ( X − θ ) ) ⋅ N ( X ; R , τ r ( t ) ) = ( 1 − ρ ) δ ( X ) N ( X ; R , τ r ( t ) ) + ρ δ ( X − θ ) N ( X ; R , τ r ( t ) ) \begin{aligned} p_{X, R}(X, R) &= \left ((1-\rho) \delta(X) + \rho \delta(X - \theta) \right) \cdot \mathcal N(X;R, \tau^{(t)}_r) \\ &= (1-\rho) \delta(X) \mathcal N(X;R, \tau^{(t)}_r) + \rho \delta(X - \theta) \mathcal N(X;R, \tau^{(t)}_r) \end{aligned} pX,R(X,R)=((1ρ)δ(X)+ρδ(Xθ))N(X;R,τr(t))=(1ρ)δ(X)N(X;R,τr(t))+ρδ(Xθ)N(X;R,τr(t))

进一步,我们可以得到关于 R R R的边缘分布
p R ( R ) = ∫ p X , R ( X , R ) d X = ( 1 − ρ ) N ( 0 ; R , τ r ( t ) ) + ρ N ( θ ; R , τ r ( t ) ) = ( 1 − ρ ) N ( R ; 0 , τ r ( t ) ) + ρ N ( R ; θ , τ r ( t ) ) \begin{aligned} p_R(R) &= \int p_{X, R}(X, R) dX \\ &= (1-\rho) \mathcal N(0;R, \tau^{(t)}_r) + \rho \mathcal N(\theta;R, \tau^{(t)}_r) \\ &= (1-\rho) \mathcal N(R; 0, \tau^{(t)}_r) + \rho \mathcal N(R; \theta, \tau^{(t)}_r) \end{aligned} pR(R)=pX,R(X,R)dX=(1ρ)N(0;R,τr(t))+ρN(θ;R,τr(t))=(1ρ)N(R;0,τr(t))+ρN(R;θ,τr(t))

我们计算后验均值 E [ X ∣ R ] \mathbb E[X|R] E[XR]
E [ X ∣ R ] = ∫ X p X ∣ R ( X ∣ R ) d X = 1 p R ( R ) ∫ X p X , R ( X , R ) d X = 1 p R ( R ) ⋅ ρ ⋅ ∫ X δ ( X − θ ) N ( X ; R , τ r ( t ) ) d X = 1 p R ( R ) ⋅ ρ ⋅ θ ⋅ N ( R ; θ , τ r ( t ) ) = θ ⋅ ρ N ( R ; θ , τ r ( t ) ) ( 1 − ρ ) N ( R ; 0 , τ r ( t ) ) + ρ N ( R ; θ , τ r ( t ) ) = θ ⋅ 1 1 + 1 − ρ ρ ⋅ N ( R ; 0 , τ r ( t ) ) N ( R ; θ , τ r ( t ) ) = θ ⋅ 1 1 + 1 − ρ ρ ⋅ exp ⁡ { − 2 θ R − θ 2 2 τ r ( t ) } \begin{aligned} \mathbb E[X|R] &= \int X p_{X|R} (X|R) dX \\ &= \frac{1}{p_R(R)} \int X p_{X,R} (X,R) dX \\ &= \frac{1}{p_R(R)} \cdot \rho \cdot \int X \delta(X - \theta) \mathcal N(X;R, \tau^{(t)}_r) dX \\ &= \frac{1}{p_R(R)} \cdot \rho \cdot \theta \cdot \mathcal N (R; \theta, \tau^{(t)}_r) \\ &= \theta \cdot \frac{ \rho \mathcal N (R; \theta, \tau^{(t)}_r) } {(1-\rho) \mathcal N(R; 0, \tau^{(t)}_r) + \rho \mathcal N(R; \theta, \tau^{(t)}_r) } \\ & = \theta \cdot \frac{ 1 } {1 + \frac{1-\rho}{\rho} \cdot \frac{ \mathcal N(R; 0, \tau^{(t)}_r) }{ \mathcal N(R; \theta, \tau^{(t)}_r) } } \\ &= \theta \cdot \frac{ 1 } {1 + \frac{1-\rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} } \end{aligned} E[XR]=XpXR(XR)dX=pR(R)1XpX,R(X,R)dX=pR(R)1ρXδ(Xθ)N(X;R,τr(t))dX=pR(R)1ρθN(R;θ,τr(t))=θ(1ρ)N(R;0,τr(t))+ρN(R;θ,τr(t))ρN(R;θ,τr(t))=θ1+ρ1ρN(R;θ,τr(t))N(R;0,τr(t))1=θ1+ρ1ρexp{ 2τr(t)2θRθ2}1

同理可得,
E [ X 2 ∣ R ] = θ ⋅ E [ X ∣ R ] \mathbb E[X^2|R] = \theta \cdot \mathbb E[X|R] E[X2R]=θE[XR]

因此
v a r [ X ∣ R ] = E [ X 2 ∣ R ] − E [ X ∣ R ] 2 \mathrm{var}[X|R] = \mathbb E[X^2|R] - \mathbb E[X|R]^2 var[XR]=E[X2R]E[XR]2

ψ ( R ) = 1 − ρ ρ ⋅ exp ⁡ { − 2 θ R − θ 2 2 τ r ( t ) } \psi(R) =\frac{1-\rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} ψ(R)=ρ1ρexp{ 2τr(t)2θRθ2},则 v a r [ X ∣ R ] \mathrm{var}[X|R] var[XR]可写为
v a r [ X ∣ R ] = θ 2 1 2 + ψ ( R ) + 1 ψ ( R ) = θ 2 1 2 + 1 − ρ ρ ⋅ exp ⁡ { − 2 θ R − θ 2 2 τ r ( t ) } + ρ 1 − ρ exp ⁡ { 2 θ R − θ 2 2 τ r ( t ) } \begin{aligned} \mathrm{var}[X|R] &= \theta^2 \frac{1}{ 2+ \psi(R) + \frac{1}{\psi(R) }} \\ &= \theta^2 \frac{1} { 2 + \frac{1- \rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} +\frac{\rho}{1-\rho} \exp \left \{\ \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \}} \end{aligned} var[XR]=θ22+ψ(R)+ψ(R)11=θ22+ρ1ρexp{ 2τr(t)2θRθ2}+1ρρexp{ 2τr(t)2θRθ2}1

进一步, E ( t + 1 ) \mathcal E^{(t+1)} E(t+1)可以表征为
E ( t + 1 ) = ∫ p R ( R ) v a r [ X ∣ R ] d R = θ 2 ∫ 1 2 + 1 − ρ ρ ⋅ exp ⁡ { − 2 θ R − θ 2 2 τ r ( t ) } + ρ 1 − ρ ⋅ exp ⁡ { 2 θ R − θ 2 2 τ r ( t ) } ( ( 1 − ρ ) N ( R ; 0 , τ r ( t ) ) + ρ N ( R ; θ , τ r ( t ) ) ) d R \begin{aligned} \mathcal E^{(t+1)} &= \int p_R(R) \mathrm{var}[X|R] dR \\ &= \theta^2 \int \frac{1} { 2 + \frac{1- \rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} + \frac{\rho}{1-\rho} \cdot \exp \left \{\ \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \}} \left ( (1-\rho) \mathcal N(R; 0, \tau^{(t)}_r) + \rho \mathcal N(R; \theta, \tau^{(t)}_r) \right ) dR \end{aligned} E(t+1)=pR(R)var[XR]dR=θ22+ρ1ρexp{ 2τr(t)2θRθ2}+1ρρexp{ 2τr(t)2θRθ2}1((1ρ)N(R;0,τr(t))+ρN(R;θ,τr(t)))dR

总结

t = 1 t=1 t=1时, E ( t ) = E [ X 2 ] \mathcal E^{(t)} = \mathbb E [X^2] E(t)=E[X2],SE的迭代式为
τ r ( t ) = σ 2 + 1 δ E ( t ) E ( t + 1 ) = E ∣ η ( t ) ( X + Z ) − X ∣ 2 , Z ∼ N ( 0 , τ r ( t ) ) \begin{aligned} \tau^{(t)}_r &= \sigma^2 + \frac{1}{\delta} \mathcal E^{(t)} \\ \mathcal E^{(t+1)} &= \mathbb E \left | \eta^{(t)} \left ( X + Z \right) - X \right |^2, \ Z \sim \mathcal N(0, \tau^{(t)}_r) \end{aligned} τr(t)E(t+1)=σ2+δ1E(t)=E η(t)(X+Z)X 2, ZN(0,τr(t))

X X X的先验是伯努利时: X ∼ ( 1 − ρ ) δ ( X ) + ρ δ ( X − θ ) X \sim (1-\rho) \delta(X) + \rho \delta(X - \theta) X(1ρ)δ(X)+ρδ(Xθ),可以把SE表征为
t = 1 t=1 t=1时, E ( t ) = E [ X 2 ] = ρ ν \mathcal E^{(t)} = \mathbb E [X^2]= \rho \nu E(t)=E[X2]=ρν,SE的迭代式为
τ r ( t ) = σ 2 + 1 δ E ( t ) E ( t + 1 ) = θ 2 ∫ 1 2 + 1 − ρ ρ ⋅ exp ⁡ { − 2 θ R − θ 2 2 τ r ( t ) } + ρ 1 − ρ ⋅ exp ⁡ { 2 θ R − θ 2 2 τ r ( t ) } ( ( 1 − ρ ) N ( R ; 0 , τ r ( t ) ) + ρ N ( R ; θ , τ r ( t ) ) ) d R \begin{aligned} \tau^{(t)}_r &= \sigma^2 + \frac{1}{\delta} \mathcal E^{(t)} \\ \mathcal E^{(t+1)} &= \theta^2 \int \frac{1} { 2 + \frac{1- \rho}{\rho} \cdot \exp \left \{\ - \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \} + \frac{\rho}{1-\rho} \cdot \exp \left \{\ \frac{ 2 \theta R - \theta^2 }{2 \tau^{(t)}_r } \right \}} \left ( (1-\rho) \mathcal N(R; 0, \tau^{(t)}_r) + \rho \mathcal N(R; \theta, \tau^{(t)}_r) \right ) dR \end{aligned} τr(t)E(t+1)=σ2+δ1E(t)=θ22+ρ1ρexp{ 2τr(t)2θRθ2}+1ρρexp{ 2τr(t)2θRθ2}1((1ρ)N(R;0,τr(t))+ρN(R;θ,τr(t)))dR

SE部分的MATLAB代码

Iteration = 40;
sigma2 = 0.2632;
rho = 0.1; % sparsity
v_g = 1 / rho; % variance/energy of the non-zero element (prior)
theta = sqrt(v_g);
delta = 0.6; % under-determined ratio
lim = inf;SE_MSE = zeros(Iteration, 1);
SE_tau2 = zeros(Iteration, 1);SE_MSE(1) = rho * v_g;
SE_tau2(1) = sigma2 + 1/delta * SE_MSE(1);bound = 500;
fb = @(b) (b > bound) .* bound + (b < -bound) .* (-bound) + (abs(b) <= bound) .* b;  % bound < f(b) < bound
for it = 2: Iterationtau = SE_tau2( it - 1 );f = @(r) 1 ./ ...( 2 + (1-rho)./rho .* exp( fb(-0.5 * ( 2 * theta .* r - theta .* theta) / tau ) )  + rho./(1-rho) .* exp( fb(0.5 * ( 2 * theta .* r - theta .* theta) / tau  )) ) ....* ( (1-rho) .* normpdf(r, 0, sqrt(tau)) +  rho .* normpdf(r, theta, sqrt(tau)) );SE_MSE(it) = theta^2 * integral(f,-lim,lim);SE_tau2(it) = sigma2 + 1/delta * SE_MSE(it);
end

当N=40000时,AMP的MSE性能与SE一致

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/177175.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM运行时数据区域、对象内存分配、内存溢出异常总结

深入理解java虚拟机第二章 二、运行时数据区域2.2.1 程序计数器2.2.2 Java虚拟机栈2.2.3 本地方法栈2.2.4 Java堆2.2.5 方法区2.2.6 运行时常量池2.2.7 直接内存 三、HotSpot虚拟机对象解密2.3.1 对象的创建对象如何分配内存&#xff1f;对象的创建如何处理并发问题&#xff1f…

vue3父子组件通过$parent与ref通信

父组件 <template><div><h1>ref与$parents父子组件通信 {{ parentMoney }}</h1><button click"handler">点击我子组件的值会减20</button><hr><child ref"children"></child></div> </te…

深度学习之图像分类(十五)DINAT: Dilated Neighborhood Attention Transformer详解(一)

Dilated Neighborhood Attention Transformer Abstract Transformers 迅速成为跨模态、领域和任务中应用最广泛的深度学习架构之一。在视觉领域&#xff0c;除了对普通Transformer的持续努力外&#xff0c;分层Transformer也因其性能和易于集成到现有框架中而受到重视。这些模…

GPIO的使用--操作PF09 PF10 PF08实现呼吸灯、跑马灯、警报闪烁灯

先来个呼吸灯演示 呼吸灯 目录 一、GPIO的介绍 1.含义 2.控制原理 3.控制流程 二、LED控制 1.呼吸灯 操作代码 烧录结果 2.蜂鸣器红绿灯交替 操作代码 3.红绿灯交替闪烁 操作代码 一、GPIO的介绍 1.含义 GPIO(general porpose intput output),通用输入输出端口。…

AI超级个体:ChatGPT与AIGC实战指南

目录 前言 一、ChatGPT在日常工作中的应用场景 1. 客户服务与支持 2. 内部沟通与协作 3. 创新与问题解决 二、巧用ChatGPT提升工作效率 1. 自动化工作流程 2. 信息整合与共享 3. 提高决策效率 三、巧用ChatGPT创造价值 1. 优化产品和服务 2. 提高员工满意度和留任率…

Slf4j使用Logback时,Logback如何初始化

前言 Slf4j SLF4J&#xff0c;全称 Simple Logging Facade for Java&#xff0c;是一个用于Java编程语言的日志系统抽象层。它为多种现有日志框架&#xff08;例如Log4j、java.util.logging等&#xff09;提供了统一的接口, 但自身并不实现日志功能。 SLF4J 允许用户在部署时…

ArkUI 如何将$r(’app.string.xxx‘) 转成string字符串

一、正常引用字符串资源文件内容 在 ArkUI 中&#xff0c;string.json 中的字符串资源正常情况下使用如下方式引用&#xff1a; Entry Component struct LoginPage {build() {Column() {Text($r(app.string.title))}}}二、资源转string类型 上面的代码没问题是因为 Text(con…

如何通过内网穿透实现公网远程ssh连接kali系统

文章目录 1. 启动kali ssh 服务2. kali 安装cpolar 内网穿透3. 配置kali ssh公网地址4. 远程连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 简单几步通过[cpolar 内网穿透](cpolar官网-安全的内网穿透工具 | 无需公网ip | 远程访问 | 搭建网站)软件实现ssh远程连接kali 1…

销售流程中如何有效开发客户

在销售的海洋中&#xff0c;如何游刃有余地开发客户是一大关键。这需要深入了解你的目标客户&#xff0c;制定一份精细的销售计划&#xff0c;选择最合适的沟通方式&#xff0c;建立信任和信誉&#xff0c;并持续不断地跟进。 每一个潜在的客户都是一颗璀璨的星辰&#xff0c;…

【密码学引论】Hash密码

第六章 Hash密码 md4、md5、sha系列、SM3 定义&#xff1a;将任意长度的消息映射成固定长度消息的函数功能&#xff1a;确保数据的真实性和完整性&#xff0c;主要用于认证和数字签名Hash函数的安全性&#xff1a;单向性、抗若碰撞性、抗强碰撞性生日攻击&#xff1a;对于生日…

Ubuntu 设置Nginx开机自启

1.建立自启动服务文件 vim /usr/lib/systemd/system/nginx.service Descriptionnginx - high performance web server Afternetwork.target remote-fs.target nss-lookup.target [Service] Typeforking ExecStart/usr/local/nginx/sbin/nginx -c /usr/local/nginx/conf/nginx…

【libGDX】Mesh立方体贴图(6张图)

1 前言 本文通过一个立方体贴图的例子&#xff0c;讲解三维纹理贴图的应用&#xff0c;案例中使用 6 张不同的图片给立方体贴图&#xff0c;图片如下。 读者如果对 libGDX 不太熟悉&#xff0c;请回顾以下内容。 使用Mesh绘制三角形使用Mesh绘制矩形使用Mesh绘制圆形使用Mesh绘…

Current request is not a multipart request问题排查

概述 在应用工程里看到如下被标记为deprecated的代码&#xff0c;这对有代码洁癖的我而言是无法忍受的&#xff1a; row.getCell(10).setCellType(Cell.CELL_TYPE_STRING); String hospital row.getCell(0).getStringCellValue();对应的poi版本号&#xff1f;是的&#xff…

MySQL安装与配置教程

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

初刷leetcode题目(9)——数据结构与算法

&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️Take your time ! &#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️…

Feign调用的两种方式

一、 先看一下项目结构 ply模块是主要的业务模块&#xff0c;upms是用户管理模块 他们都分为api和biz 其中api就是一些实体类&#xff0c;工具类&#xff0c;biz就是业务逻辑代码。 首先在upms-api中建立feign的文件夹&#xff0c;然后新建一个接口CustomApi CustomApi 然…

(Linux2.6内核)进程调度队列与切换

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 我们首先来了解几个概念 1. 进程在CPU上运行的时候&#xff0c;一定要运行完才行吗&#xff1f;答案是否定的&#xff0c;我们大部分的操作系统&#xff0c;主流就是分时操作系统&#xff0c;即基于时间片进程轮转执行的。 …

Nginx Openresty通过Lua+Redis 实现动态封禁IP

需求 为了封禁某些爬虫或者恶意用户对服务器的请求&#xff0c;我们需要建立一个动态的 IP 黑名单。对于黑名单中的 IP &#xff0c;我们将拒绝提供服务。并且可以设置封禁失效时间 环境准备 linux version: centos7 / ubuntu 等 redis version: 5.0.5 nginx version: nginx…

智能优化算法应用:基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.正余弦算法4.实验参数设定5.算法结果6.参考文献7.…

学习知识回顾随笔

文章目录 如何远程连接MySQL数据库1.创建用户来运行&#xff0c;此用户从任何主机连接到mysql数据库2.使用IP地址来访问MySQL数据库 如何远程访问Django项目Web应用什么是Web应用应用程序的两种模式Web应用程序的优缺点 HTTP协议&#xff08;超文本传输协议&#xff09;简介HTT…