【1】AR Tag 在ros中的使用

1.定义

AR Tag 是一种用于增强现实(AR)应用中的视觉标记,用于跟踪和定位虚拟物体在现实世界中的位置。 AR Tag由黑白正方形图像表示,图像内部有黑色边框中的某些图案。它与我们经常用到的二维码长得类似,原理其实也一样,但其编码系统和二维码有很大的区别。

AR Tag 要用于做位姿识别,即通过相机图像识别 AR Tag 的位置和姿态,从而实现对AR标记物的定位。与二维码相比,AR Tag 的图案相对简单,仅包含黑白色块以及一些辅助图形,编码信息相对较少,因此其图案识别度更高。相比之下,二维码的图案复杂度较高,需要包含大量的信息,这会使得二维码在图像失真或光线不足等情况下更难以识别。

AR Tag 的类型有很多,他们使用不同的标签系统,每种类型各有优缺,下面展示了几种常见的图案。

ar_track_alvar 有四个主要功能:

  1. 生成不同大小、分辨率和数据的 AR Tag
  2. 识别和跟踪单个 AR Tag,可以选择与 kinect 深度数据集成获得更好的位姿识别效果
  3. 识别和跟踪由多个 AR Tag 组成的 “捆绑包”。以此可以获得更稳定的位姿识别、提高遮挡鲁棒性以及对多边物体的跟踪效果。
  4. 使用相机图像自动计算“捆绑包”中 AR Tag 之间的空间关系

2.使用场景

AR Tag 是一种低成本的位姿识别方式,因为它只需要使用相机和打印的标记(AR Tag)来进行实时跟踪,而不需要使用昂贵的传感器和硬件设备。另外,其算法实现也比其他传感器技术简单得多,所以可以快速而准确地识别位姿。基于其在应用上的便捷,这使得 AR Tag 成为许多实际场景的理想选择,比如:机器人导航、物体跟踪、增强现实和其他计算机视觉任务。

3.安装与生成

在 ROS 中使用 AR Tag 我们需要安装 ar_track_alvar 包,该软件包是一个 ROS 封装 Alvar 的开源 AR 标记跟踪库。

//安装 ar_track_alvar;ar_track_alvar 只支持ROS 1版本,并没有官方的 ROS2 版本。如果想在 ROS2 中使用ar_track_alvar,可能需要自己进行一些修改和适配。

sudo apt-get install ros-melodic-ar-track-alvar

// ar_track_alvar 包安装好后,就可以使用其提供的生成工具进行标签的生成了。一般常用的为数字编码的标签,其图案简单(也是相对的,数字0-9),可识别度相对较高:

rosrun ar_track_alvar createMarker -f 6 -s 10.0

4.在ros中使用

<launch><node pkg="tf" type="static_transform_publisher" name="base_to_camera" args="0.34 0 0.15 0 0 0 base_footprint camera_link 100" /><!-- AR tag 边框宽度 厘米  --><arg name="marker_size" default="4.0" /><arg name="max_new_marker_error" default="0.08" /><arg name="max_track_error" default="0.2" /><arg name="cam_image_topic" default="/camera/depth_registered/points" /><arg name="cam_info_topic" default="/camera/rgb/camera_info" /><arg name="output_frame" default="/camera_link" /><node name="ar_track_alvar" pkg="ar_track_alvar" type="individualMarkers" respawn="false" output="screen"><param name="marker_size"           type="double" value="$(arg marker_size)" /><param name="max_new_marker_error"  type="double" value="$(arg max_new_marker_error)" /><param name="max_track_error"       type="double" value="$(arg max_track_error)" /><param name="output_frame"          type="string" value="$(arg output_frame)" /><remap from="camera_image"  to="$(arg cam_image_topic)" /><remap from="camera_info"   to="$(arg cam_info_topic)" /></node><!-- 开启摄像头  --><include file="$(find astra_camera)/launch/gemini.launch" /></launch>

 launch 文件主要为四个部分:

  1. 定义坐标转换
  2. 配置节点参数
  3. 开启摄像头

首先我们需要定义摄像头的位置,演示示例的摄像机是安装的机器人身上的,所以我们使用了 static_transform_publisher 发布了一个静态坐标转换,指定 camera_link,用于表示相机的位置和方向。使用TF(Transformation)库可以将坐标系之间的变换关系(transform)发布到ROS中,从而可以方便地进行相机的姿态控制和图像处理等操作。指定 camera_link 位姿时,我们使用的是 base_footprint ,其为机器人在地面上的投影位置,一般选择机器人中心。static_transform_publisher 的参数中我们定义了 camera_link 在空间的位置,是在 base_footprint 的前方 34cm 高 15cm 处。

配置 individualMarkers 的节点参数主要是定义 marker_size 黑色方块一侧的宽度,这里使用的单位是厘米,你可以在打印出 AR Tag 后进行测量填入。max_new_marker_error 和 max_track_error 是识别上的一些参数,分别表示在不确定的情况下检测到新标记的阈值和跟踪误差多少时认为标签消失,调整这些参数可以改变识别和跟踪效果,这里我们使用官方示例中的参考值。

另外,我们还需要配置一些摄像机图像数据相关的话题,cam_image_topic 深度摄像机点云数据,cam_info_topic 相机校准参数的主题名称,以便图像可以被校正,output_frame 发布的AR标签的笛卡尔坐标相对于哪个位置。

5.rviz展示效果

启动写好的 launch 后,我们就可以打开 rviz 来查看 AR Tag 的识别效果了。启动 rviz 后,我们首先修改 Global Option 的 Fixed Frame 为 base_footprint

接下来添加 TF 和 Marker 即可在界面中看到识别到的 AR Tag 了。在实际应用中,选择简单易识别的图案效果会更好,简单来说使用数字小的ID会更易识别。这其实取决于多个因素,如标签的大小,分辨率,摄像头的类型,光照条件等。

Reference:桑榆肖物

1.定义介绍» AR Tags and their Applications in Computer Vision Tasks – NUS Information Technology

2.ros使用

ar_track_alvar - ROS Wiki

3.ros小车实验

ar_track_alvar - ROS Wiki

4.launch文件可参考

point_cloud_process/launch/marker_track.launch at master · Hymwgk/point_cloud_process (github.com)

ar_track_alvar/launch/pr2_indiv.launch at indigo-devel · sniekum/ar_track_alvar (github.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/175929.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

elementui的table合并列,三个一组

<el-table :span-method"objectSpanMethod" :cell-style"iCellStyle" :data"tableData" height"63vh" border style"width: 100%; margin-top: 6px"><el-table-column type"index" label"序号"…

5V摄像机镜头驱动IC GC6208,可用于摄像机,机器人等产品中可替代AN41908

GC6208是一个镜头电机驱动IC摄像机和安全摄像机。该设备集成了一个直流电机驱动器的Iris的PID控制系统&#xff0c;也有两个通道的STM电机驱动器的变焦和对焦控制。 芯片的特点: 内置用于Iris控制器的直流电机驱动器 内置2个STM驱动程序&#xff0c;用于缩放和…

Python内置函数与标准库函数的解释示例

一、内置函数与标准库函数的区分 Python 解释器自带的函数叫做内置函数&#xff0c;这些函数可以直接使用&#xff0c;不需要导入某个模块。 Python 解释器也是一个程序&#xff0c;它给用户提供了一些常用功能&#xff0c;并给它们起了独一无二的名字&#xff0c;这些常用功能…

汽车电子 -- 车载ADAS之RCTA(后方横向来车预警 )

国际标准: RCTA: GB/T XXXXX—XXXX 乘用车后部交通穿行提示系统性能要求及试验方法 一、后方横向来车预警RCTA&#xff08; Rear Cross Traffic Assist&#xff09; 在车辆倒车时&#xff0c;实时监测车辆后方横向接近的其它道路使用者&#xff0c;并在可能发生碰撞危险时发…

第20章多线程

创建线程 继承Thread 类 Thread 类时 java.lang 包中的一个类&#xff0c;从类中实例化的对象代表线程&#xff0c;程序员启动一个新线程需要建立 Thread 实例。 Thread 对象需要一个任务来执行&#xff0c;任务是指线程在启动时执行的工作&#xff0c;start() 方法启动线程&am…

什么是yum?

&#x1f388;个人主页:&#x1f388; :✨✨✨初阶牛✨✨✨ &#x1f43b;推荐专栏1: &#x1f354;&#x1f35f;&#x1f32f;C语言初阶 &#x1f43b;推荐专栏2: &#x1f354;&#x1f35f;&#x1f32f;C语言进阶 &#x1f511;个人信条: &#x1f335;知行合一 &#x1f…

C#开发的OpenRA游戏之属性SelectionDecorations(12)

C#开发的OpenRA游戏之属性SelectionDecorations(12) 前面分析了显示选择框的指示器类SelectionBoxAnnotationRenderable,它的作用就是画一个四个角的方角。 这个类是在属性SelectionDecorations里调用的,如下: protected override IEnumerable<IRenderable> Rende…

JOSEF 综合继电器 HJZZ-32/2 AC220V 合闸延时整定0.02-9.99S

系列型号&#xff1a; HJZZ-91分闸、合闸、电源监视综合装置&#xff1b; HJZZ-92/1分闸、合闸、电源监视综合装置&#xff1b; HJZZ-92/2分闸、合闸、电源监视综合装置&#xff1b; HJZZ-92/2A分闸、合闸、电源监视综合装置&#xff1b; HJZZ-92/3分闸、合闸、电源监视综…

【机器学习】决策树

一、原理 典型的决策树 分类树与回归树 如何用训练样本建立决策树 分裂规则 不纯度 各种不纯度指标定义 对于数值型特征和分类型特征分别详述确定分裂阈值和分裂特征的过程 对于分类树和回归树如何确定叶子节点的值 对于样本特征向量属性缺失情况如何处理 对于属性缺失情况&am…

android自定义桌面应用

android自定义桌面应用 这篇文章主要讲下自定义桌面应用. 效果主要是调用packageManager来获取当前所有的程序,并在自定义桌面程序中展示,并支持跳转. 主要的代码如下: 1.manifest声明 <activity android:name".MainActivity"><intent-filter><ac…

【uniapp】微信运行报错TypeError_ Cannot read property ‘FormData‘ of undefined

文章目录 一、报错详情&#xff1a;二、解决&#xff1a; 一、报错详情&#xff1a; 二、解决&#xff1a; npm install axios0.27.2 #或者 npm install axios1.3.4

<JavaEE> Java中线程有多少种状态(State)?状态之间的关系有什么关系?

目录 一、系统内核中的线程状态 二、Java中的线程状态 一、系统内核中的线程状态 状态说明就绪状态线程已经准备就绪&#xff0c;随时可以接受CPU的调度。阻塞状态线程处于阻塞等待&#xff0c;暂时无法在CPU中执行。 二、Java中的线程状态 相比于系统内核&#xff0c;Java…

内测分发平台是否支持应用的微服务化部署

内测分发平台的微服务化部署支持是现代应用开发和部署的一个重要特性。首先我们得知道什么是微服务化部署都有哪些关键功能&#xff0c;如何实施微服务化的部署。下文以我自己理解总结了几点。 图片来源:news.gulufenfa.com 微服务是一种基于独立运行的小型服务来构建应用程序…

ILSVRC2012数据集处理

ILSVRC2012数据集处理 解压图像处理标签和图像 解压图像 先解压 tar -xvf ILSVRC2012_img_train.tar 解压之后其实还是1000个tar压缩包&#xff08;对应1000个类别&#xff09;&#xff0c;需要再次解压&#xff0c;解压脚本unzip.sh如下&#xff08;PS&#xff1a;可能需要自…

智能优化算法应用:基于教与学算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于教与学算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于教与学算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.教与学算法4.实验参数设定5.算法结果6.参考文献7.…

深度学习【二】

1.运行时错误 1.1 ModuleNotFoundError: No module named ‘torch_scatter’ 参考 https://blog.csdn.net/weixin_42421914/article/details/132875571 pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-1.13.1%2Bcpu.html

Day49:647. 回文子串、516.最长回文子序列

文章目录 647. 回文子串思路代码实现 516.最长回文子序列思路代码实现 647. 回文子串 题目链接 思路 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 布尔类型的dp[i][j]&#xff1a;表示区间范围[i,j] &#xff08;注意是左闭右闭&#xff09;的子串是否是回文…

亚马逊策略:通过影响者营销改造您的亚马逊商店

亚马逊卖家面临着从人群中脱颖而出的持续挑战 - 如果您是那些寻求变革性方法来接触目标受众、建立信任并将您的销售推向新高度的卖家之一&#xff0c;那么影响力营销就是您的答案。 您可能遇到过令人难以置信的成功故事&#xff0c;产品一夜之间流行起来&#xff0c;仅仅是因为…

集群 CPU 利用率均值达 45% ,揭秘小红书规模化混部技术实践

根据 Gartner 预测数据显示&#xff1a;2024 年全球 IT 支出预计将达到 5.1 万亿美元&#xff0c;比 2023 年增长 8 %。然而&#xff0c;该机构的另一项调查数据显示&#xff1a;全球数据中心服务器平均 CPU 利用率普遍低于 20%&#xff0c;存在巨大的资源浪费。据测算&#xf…

“全球金牌课程”1 月 13-14 日 · CSM 认证在线面授周末班【模块化教学】CST 导师亲授

课堂互动练习 CSM 认证在线培训&#xff08;周末班&#xff09; 2024 年 1 月 13-14 日 Zoom 在线面授&#xff0c;全国招生 讲师: Jim Wang 王军 10 年以上 CSM/CSPO 认证课程教学交付经验&#xff0c; 5 年以上 A-CSM/CSP-SM 认证课程教学交付经验&#xff0c; 国际 Scr…