Spark学习–spark算子介绍
1.基本概念
spark算子:为了提供方便的数据处理和计算,spark提供了一系列的算子来进行数据处理。一般算子分为action(执行算子)算子Transformation(懒执行)算子。
2.Transformation算子基本介绍
简介:transformation被称为懒执行算子,如果没有action算子,则代码是不会执行的,一般分为:
- map算子:map算子是将rdd中的数据一条一条传递给后面的函数,将函数的返回值构建成一个新的rdd。map算子是不会生成shuffle。后面的分区数等于map算子的分区数。
object Demo2Map {def main(args: Array[String]): Unit = {//saprk代码的入口val conf = new SparkConf()conf.setMaster("local").setAppName("map")val sc = new SparkContext(conf)/*** 构建rdd的方法* 1.读取文件* 2.基于scala的集合构建rdd ---- 用于测试**/val listRDD: RDD[Int]= sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9),2)/*** map算子* 将rdd中的数据一条一条传递给后面的函数,将函数的返回值构建成一个新的rdd* map 不会产生shuffle,map之后的分区数等于map之前rdd的分区数**如果一个算子是一个新的rdd,那么这个算子就是转换算子。*/val mapRDD: RDD[Int] = listRDD.map{i => i * 2}//一次遍历整个分区的数据,将每一个分区的数据传递给后面的函数,函数需要返回一个迭代器,再构建一个新的rdd。val mapPartitionRDD: RDD[Int] = listRDD.mapPartitions {case iter: Iterator[Int] =>iter}val mapPartitionRDD2: RDD[Int] = listRDD.mapPartitions {case iter: Iterator[Int] =>val iterator: Iterator[Int] = iter.map(i => i * 2)//最后一行作为返回值iterator}mapPartitionRDD2.foreach(println)mapPartitionRDD.foreach(println)val mapPartitionsWithIndexRDD: RDD[Int] = listRDD.mapPartitionsWithIndex((index: Int, iter: Iterator[Int]) => {println(s"mapPartitionsWithIndexRDD的分区为:$index")iter})mapPartitionsWithIndexRDD.foreach(println)}
}
- flat算子:对RDD中的数据进行过滤,通过返回true保留数据,函数返回false过滤数据。转换算子,懒执行
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo4Filter {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setMaster("local").setAppName("filter")val sc = new SparkContext(conf)val ListRDD: RDD[Int] = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9, 0), 2)/*** filter: 对RDD中的数据进行过滤,通过返回true保留数据,函数返回false过滤数据** filter: 转换算子,懒执行*/val filterRDD: RDD[Int] = ListRDD.filter(i => {i % 2 == 1})filterRDD.foreach(println)}
}
- flatmap算子:将rdd的数据一条一条传递给后面的函数,函数的返回值是一个集合,最后将这个集合拆分出来,构建成新的rdd
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDDobject Demo5Flatmap {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setMaster("local").setAppName("filter")val sc = new SparkContext(conf)val listRDD: RDD[String] = sc.parallelize(List("java,spark,java","spark,scala,hadoop"))/*** 将rdd的数据一条一条传递给后面的函数,函数的返回值是一个集合,* 最后将这个集合拆分出来,构建成新的rdd*/val wordsRDD: RDD[String] = listRDD.flatMap(line => {val arr: Array[String] = line.split(",")//返回值可以是一个数组,list,set map,必须是scala中的集合arr.toList})wordsRDD.foreach(println)}
}
- Sample算子:抽样,withReplacement:是否放回。fraction:抽样比例。
package com.zjlimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo6Sample {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setMaster("local").setAppName("Demo6Sample")val sc = new SparkContext(conf)val listRDD: RDD[Int] = sc.parallelize(List(1, 2, 3, 4, 45, 6, 7, 8, 9, 0))val studentRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\data\\students.txt")/*** sample:抽样。* withReplacement:是否放回。* fraction:抽样比例。*/val sampleRDD: RDD[String] = {studentRDD.sample(false, 0.1)}}
}
- groupByKey算子:按照key进行分组,必须是kv格式的才能用,将同一个key的value放在迭代器中。相对比groupBy,指定一个分组的罗列,返回的RDD的value包含所有的列。shuffle过程中需要传输的数据量groupByKey要多,性能差一点
package com.zjlimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo8GroupByKey {def main(args: Array[String]): Unit = {val conf: SparkConf = {new SparkConf()}conf.setMaster("local").setAppName("groupByKey")val sc: SparkContext = new SparkContext(conf)val linesRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\spark\\data\\words.txt")val wordsRDD: RDD[String] = linesRDD.flatMap(i => i.split(","))val mapWordRDD: RDD[(String, Int)] = wordsRDD.map(word => (word, 1))/*** 按照key进行分组,必须是kv格式的才能用,将同一个key的value放在迭代器中*/val groupByKeyRDD: RDD[(String, Iterable[Int])] = mapWordRDD.groupByKey()groupByKeyRDD.map({case(words:String, ints:Iterable[Int]) =>ints.sum})groupByKeyRDD.foreach(println)/*** groupBy:指定一个分组的罗列,返回的RDD的value包含所有的列* shuffle过程中需要传输的数据量groupByKey要多,性能差一点*/val groupByRDD: RDD[(String, Iterable[(String, Int)])] = mapWordRDD.groupBy(kv => kv._1)groupByRDD.foreach(println)}}
- reduceByKey算子:按照key进行聚合计算,会在map端进行预聚合,只能做简单的聚合计算。
package com.zjlimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo9ReduceByKey {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("reduceByKey").setMaster("local")val sc: SparkContext = new SparkContext(conf)val linesRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\spark\\data\\words.txt")val wordsRDD: RDD[String] = linesRDD.flatMap(i => i.split(","))val mapRDD: RDD[(String, Int)] = wordsRDD.map(i => (i, 1))/*** reduceByKey:按照key进行聚合计算,会在map端进行预聚合* 只能做简单的聚合计算*///统计单词数量val reducrByKeyRDD: RDD[(String, Int)] = mapRDD.reduceByKey((x: Int, y: Int) => x + y)reducrByKeyRDD.foreach(println)}}
- union算子:合并两个rdd,两个rdd的数据类型要一致,但是只是代码层面的合并,底层没有合并。这个属于并集,如果取交集可以使用intersection算子。
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo10Union {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("union")val sc: SparkContext = new SparkContext(conf)val rdd1: RDD[Int] = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9))val rdd2: RDD[Int] = sc.parallelize(List( 4, 5, 6, 7, 8, 9,10))/*** union:合并两个rdd,两个rdd的数据类型要一致* union只是代码层面的合并,底层没有合并* union不会产生shuffle*/val unionRDD: RDD[Int] = rdd1.union(rdd2)unionRDD.foreach(println)/*** distinctRDD去重,会产生shuffle* distinct:会先在map端局部去重,再到reduce端全局去重*/val distinctRDD: RDD[Int] = unionRDD.distinct()distinctRDD.foreach(println)/*** 所有会产生shuffle的算子都可以指定分区数。反过来也成立。*//*** intersection:取两个rdd的交集*/val interRDD: RDD[Int] = rdd1.intersection(rdd2)interRDD.foreach(println)}
}
- join算子:inner join:通过rdd的key进行关联,必须是kv格式的rdd;left join:以左表为主,如果右表没有数据,就会补一个null;right join和left join相反;full join:两边都可能没有关联上,如果是没关联上,补null
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo11Join {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("join")val sc: SparkContext = new SparkContext(conf)val nameRDD: RDD[(String, String)] = sc.makeRDD(List(("001", "张三"), ("002", "李四"), ("003", "王五")))val ageRDD: RDD[(String, String)] = sc.makeRDD(List(("001", "23"), ("002", "35"), ("004", "19")))/*** inner join:通过rdd的key进行关联,必须是kv格式的rdd*/
// //关联之后处理数据方法1--下划线方法val innerJoinRDD: RDD[(String, (String, String))] = nameRDD.join(ageRDD)
// innerJoinRDD.map(i=>{
// val id: String = i._1
// val name: String = i._2._1
// val age: String = i._2._1
// })//关联之后处理数据2--模式匹配val rdd1: RDD[(String, String, Int)] = innerJoinRDD.map(i => {case (id: String, (name: String, age: String)) =>(id, name, age)})rdd1.foreach(println)/*** left join:以左表为主,如果右表没有数据,就会补一个null* 数据中右表没有003,所有会补一个null* Option[String]:没有值就是None* right join:和left join相反*/val leftRDD: RDD[(String, (String, Option[Int]))] = nameRDD.leftOuterJoin(ageRDD)leftRDD.foreach(println)//整理数据val rdd2: RDD[(String, String, Int)] = leftRDD.map({//匹配关联成功的数据case (id: String, (name: String, Some(age))) =>(id, name, age)//匹配未关联成功的数据case (id: String, (name: String, None)) =>(id, name, 0)})rdd2.foreach(println)/*** full join:两边都可能没有关联上,如果是没关联上,补null*/val fullRDD: RDD[(String, (Option[String], Option[Int]))] = nameRDD.fullOuterJoin(ageRDD)//整理数据val rdd3: RDD[(String, String, Int)] = fullRDD.map {case (id: String, (Some(name), Some(age))) =>(id, name, age)case (id: String, (None, Some(age))) =>(id, 0, age)case (id: String, (Some(name), None)) =>(id, name, 0)case (id: String, (None, None)) =>(id, 0, 0)}}}
- mapValue算子:只对value进行处理,key不变
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo12MapValues {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("mapValues")val sc: SparkContext = new SparkContext()//使用mapval ageRDD: RDD[(String, Int)] = sc.makeRDD(List(("001", 23), ("002", 35), ("004", 19)))val linesRDD: RDD[(String, Int)] = ageRDD.map {case (id: String, age: Int) =>(id, age + 1)}/***mapValue:只对value进行处理,key不变*///使用mapValueval mapValuesRDD: RDD[(String, Int)] = ageRDD.mapValues(v => v + 1)}}
- sort算子:指定一个排序的列,默认是升序,ascending是控制排序方式。
package com.zjlimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo13Sort {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("sort")val sc: SparkContext = new SparkContext(conf)val studentsRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\data\\students.txt")/*** sortBy:指定一个排序的列,默认是升序* ascending:控制排序方式*/val sortByRDD: RDD[String] = studentsRDD.sortBy(student => {val age: Int = student.split(",")(2).toIntage},false)val ageRDD: RDD[(String, String)] = sc.makeRDD(List(("001", "23"), ("002", "35"), ("004", "19")))val dataRDD: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4, 5, 6))val kvRDD: RDD[(Int, Int)] = dataRDD.map(i => (i, 1))kvRDD.foreach(println)/*** 通过key排序,默认升序*/val sortByKeyRDD: RDD[(Int, Int)] = kvRDD.sortByKey()sortByKeyRDD.foreach(println)}}
- .AGG算子
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo14Agg {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("Agg")val sc: SparkContext = new SparkContext(conf)val linesRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\spark\\data\\words.txt")val wordsRDD: RDD[String] = linesRDD.flatMap(i => i.split(","))val mapRDD: RDD[(String, Int)] = wordsRDD.map(i => (i, 1))/*** reduceByKey:在map端进行预聚合,聚合函数会应用在map端和reduce端(聚合函数会应用在分区内的聚合和分区间的聚合)*/val reduceByKeyRDD: RDD[(String, Int)] = mapRDD.reduceByKey((x, y) => x + y)val aggRDD: RDD[(String, Int)] = mapRDD.aggregateByKey(0)( //初始值(u: Int, i: Int) => u + i, //分区键的聚合函数(map端的聚合函数)(u1: Int, u2: Int) => u1 + u2 //分区间的聚合(reduce的聚合函数))aggRDD.foreach(println)}}
- 求平均年龄案例:使用aggregateByKey
package com.zjlimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDDobject Demo15AggAvgAge {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("Agg")val sc: SparkContext = new SparkContext(conf)val linesRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\spark\\data\\students.txt")/*** 计算班级的平均年龄*///val studentsRDD: RDD[String] = linesRDD.flatMap(i => i.split(","))val classAndAge: RDD[(String,Double)] = linesRDD.map(student => {val split: Array[String] = student.split(",")( split(4),split(2).toDouble)})classAndAge.foreach(println)/*** 使用groupbykey*/val groupByKeyRDD: RDD[(String, Iterable[Double])] = classAndAge.groupByKey()val avgAgeRDD: RDD[(String,Double)] = groupByKeyRDD.map({case (clazz: String, age: Iterable[Double]) =>val avgAge: Double = age.sum / age.size(clazz, avgAge)})/*** 大数据计算中,最耗时间的就是shuffle,shuffle过程中数据是落地到磁盘中的。* aggregateByKey:会在map端做预聚合,性能高* 1.初始值可以有多个* 2.map端的聚合函数* 3.reduce端的聚合函数*/val avgAge: RDD[(String, (Double, Int))] = classAndAge.aggregateByKey((0.0, 0))((u:(Double,Int), age:Double) => (u._1 + age, u._2 + 1),//map端的聚合函数(u1:(Double,Int), u2:(Double,Int)) => (u1._1 + u2._1, u1._2 + u2._2)//reduce端的聚合函数)avgAge.foreach(println)//计算平均年龄val avgAgeMapRDD: RDD[(String, Double)] = avgAge.map({case (clazz: String, (totalAge: Double, sumPerpon: Int)) =>(clazz, totalAge / sumPerpon)})avgAgeMapRDD.foreach(println)while(true){}}
}
- cartesian算子:笛卡尔积,很少使用。
package com.zjlimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo16Cartesian {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("Agg")val sc: SparkContext = new SparkContext(conf)val nameRDD: RDD[(String, String)] = sc.makeRDD(List(("001", "张三"), ("002", "李四"), ("003", "王五")))val ageRDD: RDD[(String, String)] = sc.makeRDD(List(("001", "23"), ("002", "35"), ("004", "19")))/*** 笛卡尔积*/val cartesianRDD: RDD[((String, String), (String, String))] = nameRDD.cartesian(ageRDD)}}
- reduce算子:全局聚合是个action算子。
package com.zjlimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object Demo17Reduce {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("Agg")val sc: SparkContext = new SparkContext(conf)val LinesRDD: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4, 5, 6, 7, 8, 9, 0))/*** sum:求和,只能用于int或者double或者null类型的求和,action算子*/val sumRDD: Double = LinesRDD.sum()/*** reduce:全局聚合,action算子* reduceByKey:通过key进行聚合*/val reducrRDD: Int = LinesRDD.reduce((x, y) => (x + y))}}
- take算子:取top值,是一个action算子。如果是取第一条数据,使用first。
package com.zjlimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDDobject Demo18Take {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("Agg")val sc: SparkContext = new SparkContext(conf)val linesRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\spark\\data\\words.txt")/*** take:取top,是一个action算子*/val top100: Array[String] = linesRDD.take(100)//获取第一条数据val first: String = linesRDD.first()}}
17.案例 :统计总分大于年级平均分的学生
package com.zjlimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDDobject Demo19Student1 {def main(args: Array[String]): Unit = {val conf: SparkConf = new SparkConf()conf.setMaster("local").setAppName("Agg")val sc: SparkContext = new SparkContext(conf)val linesRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\spark\\data\\score.txt")/*** 统计总分大于年级平均分的学生*///1、计算学生的总分val total: RDD[(String, Double)] = linesRDD.map(student => {val splitRDD: Array[String] = student.split(",")(splitRDD(0), splitRDD(2).toDouble)})total.foreach(println)val totalScore: RDD[(String, Double)] = total.reduceByKey((x, y) => (x + y))totalScore.foreach(println)val totalAllRDD: RDD[Double] = totalScore.map(kv => kv._2)val avgScore: Double = totalAllRDD.sum() / totalAllRDD.count()//取出总分大于平均分val endRDD: RDD[(String, Double)] = totalScore.filter {case (id: String, score: Double) =>score > avgScore}}}
3.action算子基本介绍
action算子:在Spark中,action 算子是一类触发 Spark 作业执行的操作。action 算子会导致计算结果被返回到驱动程序,或者将计算结果保存到外部存储系统。与 transformation 算子不同,action 算子会触发 Spark 作业的执行,而不仅仅是定义计算逻辑。
- foreach:遍历rdd
- count:统计rdd的行数
- sum:求和
- collect:将rdd转换成scala的集合
object Demo7Action {
//spark代码的入口def main(args: Array[String]): Unit = {/*** spark任务的层级关系:* application ---> job ---> stages --->task*/val conf: SparkConf = {new SparkConf()}conf.setMaster("local").setAppName("action")val sc: SparkContext = new SparkContext(conf)/*** action 算子 --触发任务执行,每一个action算子都会触发一个job任务* 1、foreach:遍历rdd* 2、saveAsTextFile:保存数据* 3、count:统计rdd的行数* 4、sum:求和* 5、collect:将rdd转换成scala的集合*/val studentRDD: RDD[String] = sc.textFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\spark\\data\\students.txt")//一次遍历一个数据studentRDD.foreach(println)//一次遍历一个分区studentRDD.foreachPartition((iter:Iterator[String]) => println(iter.toList))//保存数据/*** saveAsTextFile:将数据保存到hdfs中* 1、输出的目录不能存在* 2、rdd一个分区对应一个文件*/studentRDD.saveAsTextFile("D:\\data\\data\\ideadata\\idea-project\\big_data\\spark\\data")//统计行数val count: Long = studentRDD.count()println(s"studentRDD的行数:$count")//将rdd的数据拉取到内存中,如果数据量很大会出现内存溢出val studentArr: Array[String] = studentRDD.collect()}}