竞赛选题 题目:基于大数据的用户画像分析系统 数据分析 开题

文章目录

  • 1 前言
  • 2 用户画像分析概述
    • 2.1 用户画像构建的相关技术
    • 2.2 标签体系
    • 2.3 标签优先级
  • 3 实站 - 百货商场用户画像描述与价值分析
    • 3.1 数据格式
    • 3.2 数据预处理
    • 3.3 会员年龄构成
    • 3.4 订单占比 消费画像
    • 3.5 季度偏好画像
    • 3.6 会员用户画像与特征
      • 3.6.1 构建会员用户业务特征标签
      • 3.6.2 会员用户词云分析
  • 4 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于大数据的用户画像分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 用户画像分析概述

用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。

标签化就是数据的抽象能力

  • 互联网下半场精细化运营将是长久的主题
  • 用户是根本,也是数据分析的出发点

2.1 用户画像构建的相关技术

我们对构建用户画像的方法进行总结归纳,发现用户画像的构建一般可以分为目标分析、体系构建、画像建立三步。

画像构建中用到的技术有数据统计、机器学习和自然语言处理技术(NLP)等,下如图所示。具体的画像构建方法学长会在后面的部分详细介绍。

在这里插入图片描述

按照数据流处理阶段划分用户画像建模的过程,分为三个层,每一层次,都需要打上不同的标签。

  • 数据层:用户消费行为的标签。打上事实标签,作为数据客观的记录
  • 算法层:透过行为算出的用户建模。打上模型标签,作为用户画像的分类
  • 业务层:指的是获客、粘客、留客的手段。打上预测标签,作为业务关联的结果

2.2 标签体系

目前主流的标签体系都是层次化的,如下图所示。首先标签分为几个大类,每个大类下进行逐层细分。在构建标签时,我们只需要构建最下层的标签,就能够映射到上面两级标签。

上层标签都是抽象的标签集合,一般没有实用意义,只有统计意义。例如我们可以统计有人口属性标签的用户比例,但用户有人口属性标签本身对广告投

在这里插入图片描述

2.3 标签优先级

构建的优先级需要综合考虑业务需求、构建难易程度等,业务需求各有不同,这里介绍的优先级排序方法主要依据构建的难易程度和各类标签的依存关系,优先级如下图所示:

在这里插入图片描述

我们把标签分为三类,这三类标签有较大的差异,构建时用到的技术差别也很大。第一类是人口属性,这一类标签比较稳定,一旦建立很长一段时间基本不用更新,标签体系也比较固定;第二类是兴趣属性,这类标签随时间变化很快,标签有很强的时效性,标签体系也不固定;第三类是地理属性,这一类标签的时效性跨度很大,如GPS轨迹标签需要做到实时更新,而常住地标签一般可以几个月不用更新,挖掘的方法和前面两类也大有不同,如图所示:

在这里插入图片描述

3 实站 - 百货商场用户画像描述与价值分析

3.1 数据格式

在这里插入图片描述

3.2 数据预处理

部分代码

# 作者:丹成学长 Q746876041
import matplotlib
import warnings
import re
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as pltfrom sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import StandardScaler, MinMaxScaler%matplotlib inline
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
matplotlib.rcParams.update({'font.size' : 16})
plt.style.use('ggplot')
warnings.filterwarnings('ignore')df_cum = pd.read_excel('./cumcm2018c1.xlsx')
df_cum
# 先来对会员信息表进行分析
print('会员信息表一共有{}行记录,{}列字段'.format(df_cum.shape[0], df_cum.shape[1]))
print('数据缺失的情况为:\n{}'.format(df_cum.isnull().mean()))
print('会员卡号(不重复)有{}条记录'.format(len(df_cum['会员卡号'].unique())))# 会员信息表去重
df_cum.drop_duplicates(subset = '会员卡号', inplace = True)
print('会员卡号(去重)有{}条记录'.format(len(df_cum['会员卡号'].unique())))# 去除登记时间的缺失值,不能直接dropna,因为我们需要保留一定的数据集进行后续的LRFM建模操作
df_cum.dropna(subset = ['登记时间'], inplace = True)
print('df_cum(去重和去缺失)有{}条记录'.format(df_cum.shape[0]))# 性别上缺失的比例较少,所以下面采用众数填充的方法
df_cum['性别'].fillna(df_cum['性别'].mode().values[0], inplace = True)
df_cum.info()# 由于出生日期这一列的缺失值过多,且存在较多的异常值,不能贸然删除
# 故下面另建一个数据集L来保存“出生日期”和“性别”信息,方便下面对会员的性别和年龄信息进行统计
L = pd.DataFrame(df_cum.loc[df_cum['出生日期'].notnull(), ['出生日期', '性别']])
L['年龄'] = L['出生日期'].astype(str).apply(lambda x: x[:3] + '0')
L.drop('出生日期', axis = 1, inplace = True)
L['年龄'].value_counts()
...()....

3.3 会员年龄构成

# 使用上述预处理后的数据集L,包含两个字段,分别是“年龄”和“性别”,先画出年龄的条形图
fig, axs = plt.subplots(1, 2, figsize = (16, 7), dpi = 100)
# 绘制条形图
ax = sns.countplot(x = '年龄', data = L, ax = axs[0])
# 设置数字标签
for p in ax.patches:height = p.get_height()ax.text(x = p.get_x() + (p.get_width() / 2), y = height + 500, s = '{:.0f}'.format(height), ha = 'center')
axs[0].set_title('会员的出生年代')
# 绘制饼图
axs[1].pie(sex_sort, labels = sex_sort.index, wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[1].set_title('会员的男女比例')
plt.savefig('./会员出生年代及男女比例情况.png')

在这里插入图片描述

# 绘制各个年龄段的饼图
plt.figure(figsize = (8, 6), dpi = 100)
plt.pie(res.values, labels = ['中年', '青年', '老年'], autopct = '%.2f%%', pctdistance = 0.8, counterclock = False, wedgeprops = {'width': 0.4})
plt.title('会员的年龄分布')
plt.savefig('./会员的年龄分布.png')

在这里插入图片描述

3.4 订单占比 消费画像

# 由于相同的单据号可能不是同一笔消费,以“消费产生的时间”为分组依据,我们可以知道有多少个不同的消费时间,即消费的订单数
fig, axs = plt.subplots(1, 2, figsize = (12, 7), dpi = 100)
axs[0].pie([len(df1.loc[df1['会员'] == 1, '消费产生的时间'].unique()), len(df1.loc[df1['会员'] == 0, '消费产生的时间'].unique())],labels = ['会员', '非会员'], wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[0].set_title('总订单占比')
axs[1].pie([df1.loc[df1['会员'] == 1, '消费金额'].sum(), df1.loc[df1['会员'] == 0, '消费金额'].sum()], labels = ['会员', '非会员'], wedgeprops = {'width': 0.4}, counterclock = False, autopct = '%.2f%%', pctdistance = 0.8)
axs[1].set_title('总消费金额占比')
plt.savefig('./总订单和总消费占比情况.png')

在这里插入图片描述

消费偏好:

我觉得会稍微偏向与消费的频次,相当于消费的订单数,因为每笔消费订单其中所包含的消费商品和金额都是不太一样的,有的订单所消费的商品很少,但金额却很大,有的消费的商品很多,但金额却特别少。如果单纯以总金额来衡量的话,会员下次消费时间可能会很长,消费频次估计也会相对变小(因为这次所购买的商品已经足够用了)。所以我会偏向于认为一个用户消费频次(订单数)越多,就越能带来更多的价值,从另一方面上来讲,用户也不可能一直都是消费低端产品,消费频次越多用户的粘性也会相对比较大

3.5 季度偏好画像

# 前提假设:2015-2018年之间,消费者偏好在时间上不会发生太大的变化(均值),消费偏好——>以不同时间的订单数来衡量
quarters_list, quarters_order = orders(df_vip, '季度', 3)
days_list, days_order = orders(df_vip, '天', 36)
time_list = [quarters_list, days_list]
order_list = [quarters_order, days_order]
maxindex_list = [quarters_order.index(max(quarters_order)), days_order.index(max(days_order))]
fig, axs = plt.subplots(1, 2, figsize = (18, 7), dpi = 100)
colors = np.random.choice(['r', 'g', 'b', 'orange', 'y'], replace = False, size = len(axs))
titles = ['季度的均值消费偏好', '天数的均值消费偏好']
labels = ['季度', '天数']
for i in range(len(axs)):ax = axs[i]ax.plot(time_list[i], order_list[i], linestyle = '-.', c = colors[i], marker = 'o', alpha = 0.85)ax.axvline(x = time_list[i][maxindex_list[i]], linestyle = '--', c = 'k', alpha = 0.8)ax.set_title(titles[i])ax.set_xlabel(labels[i])ax.set_ylabel('均值消费订单数')print(f'{titles[i]}最优的时间为: {time_list[i][maxindex_list[i]]}\t 对应的均值消费订单数为: {order_list[i][maxindex_list[i]]}')
plt.savefig('./季度和天数的均值消费偏好情况.png')

在这里插入图片描述

# 自定义函数来绘制不同年份之间的的季度或天数的消费订单差异
def plot_qd(df, label_y, label_m, nrow, ncol):"""df: 为DataFrame的数据集label_y: 为年份的字段标签label_m: 为标签的一个列表n_row: 图的行数n_col: 图的列数"""# 必须去掉最后一年的数据,只能对2015-2017之间的数据进行分析y_list = np.sort(df[label_y].unique().tolist())[:-1]colors = np.random.choice(['r', 'g', 'b', 'orange', 'y', 'k', 'c', 'm'], replace = False, size = len(y_list))markers = ['o', '^', 'v']plt.figure(figsize = (8, 6), dpi = 100)fig, axs = plt.subplots(nrow, ncol, figsize = (16, 7), dpi = 100)for k in range(len(label_m)):m_list = np.sort(df[label_m[k]].unique().tolist())for i in range(len(y_list)):order_m = []index1 = df[label_y] == y_list[i]for j in range(len(m_list)):index2 = df[label_m[k]] == m_list[j]order_m.append(len(df.loc[index1 & index2, '消费产生的时间'].unique()))axs[k].plot(m_list, order_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i], markersize = 4)axs[k].set_xlabel(f'{label_m[k]}')axs[k].set_ylabel('消费订单数')axs[k].set_title(f'2015-2018年会员的{label_m[k]}消费订单差异')axs[k].legend()plt.savefig(f'./2015-2018年会员的{"和".join(label_m)}消费订单差异.png')

在这里插入图片描述

# 自定义函数来绘制不同年份之间的月份消费订单差异
def plot_ym(df, label_y, label_m):"""df: 为DataFrame的数据集label_y: 为年份的字段标签label_m: 为月份的字段标签"""# 必须去掉最后一年的数据,只能对2015-2017之间的数据进行分析y_list = np.sort(df[label_y].unique().tolist())[:-1]m_list = np.sort(df[label_m].unique().tolist())colors = np.random.choice(['r', 'g', 'b', 'orange', 'y'], replace = False, size = len(y_list))markers = ['o', '^', 'v']fig, axs = plt.subplots(1, 2, figsize = (18, 8), dpi = 100)for i in range(len(y_list)):order_m = []money_m = []index1 = df[label_y] == y_list[i]for j in range(len(m_list)):index2 = df[label_m] == m_list[j]order_m.append(len(df.loc[index1 & index2, '消费产生的时间'].unique()))money_m.append(df.loc[index1 & index2, '消费金额'].sum())axs[0].plot(m_list, order_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i])axs[1].plot(m_list, money_m, linestyle ='-.', c = colors[i], alpha = 0.8, marker = markers[i], label = y_list[i])axs[0].set_xlabel('月份')axs[0].set_ylabel('消费订单数')axs[0].set_title('2015-2018年会员的消费订单差异')axs[1].set_xlabel('月份')axs[1].set_ylabel('消费金额总数')axs[1].set_title('2015-2018年会员的消费金额差异')axs[0].legend()axs[1].legend()plt.savefig('./2015-2018年会员的消费订单和金额差异.png')

在这里插入图片描述

maxindex = order_nums.index(max(order_nums))
plt.figure(figsize = (8, 6), dpi = 100)
plt.plot(x_list, order_nums, linestyle = '-.', marker = 'o', c = 'm', alpha = 0.8)
plt.xlabel('小时')
plt.ylabel('消费订单')
plt.axvline(x = x_list[maxindex], linestyle = '--', c = 'r', alpha = 0.6)
plt.title('2015-2018年各段小时的销售订单数')
plt.savefig('./2015-2018年各段小时的销售订单数.png')

在这里插入图片描述

3.6 会员用户画像与特征

3.6.1 构建会员用户业务特征标签

# 取DataFrame之后转置取values得到一个列表,再绘制对应的词云,可以自定义一个绘制词云的函数,输入参数为df和会员卡号
"""
L: 入会程度(新用户、中等用户、老用户)
R: 最近购买的时间(月)
F: 消费频数(低频、中频、高频)
M: 消费总金额(高消费、中消费、低消费)
P: 积分(高、中、低)
S: 消费时间偏好(凌晨、上午、中午、下午、晚上)
X:性别
"""# 开始对数据进行分组
"""
L(入会程度):3个月以下为新用户,4-12个月为中等用户,13个月以上为老用户
R(最近购买的时间)
F(消费频次):次数20次以上的为高频消费,6-19次为中频消费,5次以下为低频消费
M(消费金额):10万以上为高等消费,1万-10万为中等消费,1万以下为低等消费
P(消费积分):10万以上为高等积分用户,1万-10万为中等积分用户,1万以下为低等积分用户
"""
df_profile = pd.DataFrame()
df_profile['会员卡号'] = df['id']
df_profile['性别'] = df['X']
df_profile['消费偏好'] = df['S'].apply(lambda x: '您喜欢在' + str(x) + '时间进行消费')
df_profile['入会程度'] = df['L'].apply(lambda x: '老用户' if int(x) >= 13 else '中等用户' if int(x) >= 4 else '新用户')
df_profile['最近购买的时间'] = df['R'].apply(lambda x: '您最近' + str(int(x) * 30) + '天前进行过一次购物')
df_profile['消费频次'] = df['F'].apply(lambda x: '高频消费' if x >= 20 else '中频消费' if x >= 6 else '低频消费')
df_profile['消费金额'] = df['M'].apply(lambda x: '高等消费用户' if int(x) >= 1e+05 else '中等消费用户' if int(x) >= 1e+04 else '低等消费用户')
df_profile['消费积分'] = df['P'].apply(lambda x: '高等积分用户' if int(x) >= 1e+05 else '中等积分用户' if int(x) >= 1e+04 else '低等积分用户')
df_profile

在这里插入图片描述

3.6.2 会员用户词云分析

# 开始绘制用户词云,封装成一个函数来直接显示词云
def wc_plot(df, id_label = None):"""df: 为DataFrame的数据集id_label: 为输入用户的会员卡号,默认为随机取一个会员进行展示"""myfont = 'C:/Windows/Fonts/simkai.ttf'if id_label == None:id_label = df.loc[np.random.choice(range(df.shape[0])), '会员卡号']text = df[df['会员卡号'] == id_label].T.iloc[:, 0].values.tolist()plt.figure(dpi = 100)wc = WordCloud(font_path = myfont, background_color = 'white', width = 500, height = 400).generate_from_text(' '.join(text))plt.imshow(wc)plt.axis('off')plt.savefig(f'./会员卡号为{id_label}的用户画像.png')plt.show()

在这里插入图片描述
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/175321.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity Meta Quest 一体机开发(八):实现 Hand Grab 扔物体功能

文章目录 📕教程说明📕设置刚体和碰撞体📕给物体添加 Physics Grabbable 脚本📕给手部添加 Hand Velocity Calculator 物体 此教程相关的详细教案,文档,思维导图和工程文件会放入 Seed XR 社区。这是一个高…

Open Feign 源码解析(一) --- FactoryBean的妙用

什么是Open Feign? OpenFeign 是 Spring Cloud 全家桶的组件之一, 其核心的作用是为 Rest API 提供高效简洁的 RPC 调用方式 搭建测试项目 服务接口和实体 项目名称 cloud-feign-api 实体类 public class Order implements Serializable {private Long id;p…

Vue3的项目创建到启动

Vue3的项目创建 检查node版本创建 npm init vuelatest 安装依赖 项目启动 启动成功

java学习part15单例模式

107-面向对象(高级)-单例设计模式与main()的理解_哔哩哔哩_bilibili 1.单例 就是说在某些开发场景中,某个类只要有一个对象就足够使用了,不需要重复创建。 (理解:比如说是数据库对象,使用时创建一个可以处理所有的数…

苍穹外卖项目笔记(5)——Redis

1 入门 1.1 Redis 简介 Redis 是一个基于内存的 key-value 结构数据库,官网链接(中文):https://www.redis.net.cn 特点: 基于内存存储,读写性能高适合存储热点数据(热点商品、资讯、新闻&am…

C语言进阶-程序环境和预处理

目录 ​编辑 翻译环境 编译过程 预定义符号 #define #define 定义标识符 #define 定义宏 注意 例1 例2 提醒 #和## ##的作用 ​编辑 #的作用 ​编辑 带副作用的宏参数 预处理结果 输出结果 宏和函数对比 宏的缺点 命名约定 #undef 文件包含 本地文件包含 库文件包含…

C#,《小白学程序》第九课:堆栈(Stack),先进后出的数据型式

1 文本格式 /// <summary> /// 《小白学程序》第九课&#xff1a;堆栈&#xff08;Stack&#xff09; /// 堆栈与队列是相似的数据形态&#xff1b;特点是&#xff1a;先进后出&#xff1b; /// 比如&#xff1a;狭窄的电梯&#xff0c;先进去的人只能最后出来&#xff1…

oracle第一部分答疑

基础知识&#xff1a;第一章 视频总结&#xff1a; 1.体系结构&#xff1a; 1.1 oracle server 包括 instance/database instance包括&#xff1a; 2.内存结构&#xff1a; sga pga 3.进程结构&#xff1a; databse包括&#xff1a; 1.参数文件&#xff1a; pfile spfile 2…

西南科技大学(数据结构A)期末自测练习一

一、填空题(每空0.5分,共5分) 1、数据结构是指( A )。 A、数据元素的组织形式 B、数据类型 C、数据存储结构 D、数据定义 2、数据结构被形式地定义为(D,R),其中D是( B )的有限集合,R是D上( D )的有限集合。 (1)A.算法B.数据元素C.数据操作D.逻辑结构 (2)A.操作B.…

C++二分查找或并集查找:交换得到字典序最小的数组

作者推荐 利用广度优先或模拟解决米诺骨牌 本文涉及的基础知识点 二分查找算法合集 题目 给你一个下标从 0 开始的 正整数 数组 nums 和一个 正整数 limit 。 在一次操作中&#xff0c;你可以选择任意两个下标 i 和 j&#xff0c;如果 满足 |nums[i] - nums[j]| < limi…

Sass基础知识详细讲解【附带表图】

文章目录 前言使用 SassRack / Rails / Merb插件缓存选项语法选择编码 Sass CSS扩展Sass 注释输出 Sass 脚本Sass -规则和指令Sass 控制指令和表达式 Sass 混入指令Sass 功能指令命名约定Sass 输出样式:nested:expanded:compact:compressedSass 扩展缓存存储自定义导入 后言 前…

Python爬虫之代理IP与访问控制

目录 前言 一、代理IP 1.1.使用代理IP的步骤 1.2.寻找可用的代理IP 1.3.设置代理IP 1.4.验证代理IP的可用性 二、访问控制 2.1.遵守Robots协议 2.2.设置访问时间间隔 2.3.多线程爬取 总结 前言 在进行Python爬虫过程中&#xff0c;代理IP与访问控制是我们经常需要处…

贪吃蛇小游戏基本简单布局

代码&#xff1a; <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>Layui贪吃蛇小游戏</title> <link rel"stylesheet" href"https://cdn.bootcdn.net/ajax/libs/layui/2.5.7/css/layui.…

如何与死锁斗争!!!

其他系列文章导航 Java基础合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、死锁场景现场 二、死锁是如何产生的 三、死锁排查思路 四、sql模拟死锁复现 五、死锁的解决方案 前言 为避免影响业务&#xff0c;应尽可能避…

Django回顾【一】

一、Web应用程序 Web应用程序是一种可以通过Web访问的应用程序&#xff0c;程序的最大好处是用户很容易访问应用程序&#xff0c;用户只需要有浏览器即可&#xff0c;不需要再安装其他软件。应用程序有两种模式C/S、B/S。 C/S&#xff1a;客户端<----->服务端 例如My…

分类预测 | Matlab实现NGO-KELM北方苍鹰算法优化核极限学习机分类预测

分类预测 | Matlab实现NGO-KELM北方苍鹰算法优化核极限学习机分类预测 目录 分类预测 | Matlab实现NGO-KELM北方苍鹰算法优化核极限学习机分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现NGO-KELM北方苍鹰算法优化核极限学习机分类预测&#xff08;完…

App的测试,和传统软件测试有哪些区别?应该增加哪些方面的测试用例?

从上图可知&#xff0c;测试人员所测项目占比中&#xff0c;App测试占比是最高的。 这就意味着学习期间&#xff0c;我们要花最多的精力去学App的各类测试。也意味着我们找工作前&#xff0c;就得知道&#xff0c;App的测试点是什么&#xff0c;App功能我们得会测试&#xff0…

Unreal Engine 学习笔记 (4)—— 多方向动画

1.创建混合空间 1.设置水平方向命名为Direction表示行进方向 -45,300表示向左前方45度方向行走-90,300表示向正左方90度方向行走-135,300表示向左后方45度方向行走-180,300表示向正后方行走右侧方向动画与上述左侧使用同样方法设置Run动画与Walk动画使用同样方法设置 2. 设置…

Java游戏 王者荣耀

GameFrame类 所需图片&#xff1a; package 王者荣耀;import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyAdapter; import java.awt.event.KeyEvent; import java.io.File; import java.util.ArrayList…

某思路等考通一级MSOffice的分析

看到有朋友寻求2021版的等级考试一级软件&#xff0c;秉承授人以鱼不如授人以渔的理念&#xff0c;特写这个帖子。 某思路等考通一级MSOffice&#xff0c;版本6.5。 用到的软件&#xff0c;ScanId&#xff0c;de4dot,dnSpy。 第一步&#xff1a;分析 软件启动后有在线激活提示&…