机器学习的复习笔记4-岭回归与多项式回归

一、岭回归

在简单的线性回归中,一味追求平方误差最小化,R2值尽可能大,可能会受到噪声的严重干扰。噪声,即偶发的错误的值。

如图,若为满足所有点的拟合(虚线),表面上看R2值小,但为了右下角两个噪声点严重偏离了大部分点群,这是得不偿失的。因此设置阈值来过滤少数噪声点的影响,反而会使拟合效果更加合理。而增加阈值的回归,被称为“岭回归”。

from sklearn import linear_model
ridge_regressor=linear_model.Ridge(alpha=100,fit_intercept=True,max_iter=10000)
  • alpha即为复杂度控制器,值为非负整数,值为0时,等同于使用最小二乘法的普通线性回归。如要屏蔽噪声值,则需加大该值。

二、多项式回归

多项式回归是一种回归分析方法,它通过拟合一个多项式函数来描述自变量与因变量之间的关系。在多项式回归中,自变量和因变量可以是连续变量或离散变量。

from sklearn.preprocessing import PolynomialFeatures#设置多项式的次幂的初始值
ploynomial=PolynomialFeatures(degree=3)#多项式形式的输入
X_train_transformed=ploynomial.fit_transform(X_train)#拟合
poly_linear_model=linear_model.LinearRegression()
poly_linear_model.fit(X_train_transformed,y_train)

多项式回归的主要步骤如下:

  1. 确定多项式的阶数(degree):多项式的阶数决定了拟合函数的复杂程度。阶数越高,拟合函数越复杂,但过高的阶数可能导致过拟合。

  2. 收集数据:收集与自变量和因变量相关的数据,这些数据通常呈现线性或非线性关系。

  3. 拟合多项式:利用数据集拟合一个多项式函数,该函数可以表示为:y = a0 + a1x1 + a2x2 + ... + anxn。其中,ai 是多项式的系数,x1、x2、...、xn 是自变量,y 是因变量。

  4. 分析结果:根据拟合的多项式,分析自变量与因变量之间的关系,以及多项式系数对应的含义。

  5. 评估模型:使用拟合的多项式进行预测,并评估模型的预测性能。过高的阶数可能导致过拟合,因此需要权衡模型的复杂程度与预测性能。

多项式回归的应用广泛,例如在经济学、社会科学、自然科二、多项式回归学等领域。然而,它也存在一定的局限性,如过拟合、计算复杂度较高等问题。在实际应用中,可以根据实际情况选择适当的多项式阶数,以达到较好的拟合效果。此外,还可以通过优化算法、增加数据量等方法来提高多项式回归模型的性能。

【在生产经济学中,柯布-道格拉斯生产函数(C-D生产函数)与多项式回归的思想相近。】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/174975.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习回顾:七种网络

一、说明 本文 揭开CNN、Seq2Seq、Faster R-CNN 和 PPO ,以及transformer和humg-face— 编码和创新之路。对于此类编程的短小示例,用于对照观察,或做学习实验。 二、CNN网络示例 2.1 CNN用mnist数据集 CNN 专为图像处理而设计,包…

力扣 hot100 最小覆盖子串 滑动窗口 字符计数

&#x1f468;‍&#x1f3eb; 题目地址 &#x1f37b; AC code class Solution {public String minWindow(String s, String t){int n s.length();int m t.length();if (n < m)return "";char[] tt t.toCharArray();int[] cnt new int[128];// 字符计数数组…

【Proteus仿真】【Arduino单片机】蔬菜大棚温湿度控制系统设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器&#xff0c;使用PCF8574、LCD1602液晶、DHT11温湿度传感器、按键、继电器、蜂鸣器、加热、水泵电机等。 主要功能&#xff1a; 系统运行后&#xff0c;LCD160…

innovus如何在floorplan view显示所有module

我正在「拾陆楼」和朋友们讨论有趣的话题&#xff0c;你⼀起来吧&#xff1f; 拾陆楼知识星球入口 如题&#xff0c;innovus的图形界面在floorplan view下默认只能显示instance数量超过100个的module&#xff0c;如果要显示更小的module&#xff0c;需要在VIEW-Set Perference…

蓝桥杯-动态规划-子数组问题

目录 一、乘积最大数组 二、乘积为正数的最长子数组长度 三、等差数列划分 四、最长湍流子数组 心得&#xff1a; 最重要的还是状态表示&#xff0c;我们需要根据题的意思&#xff0c;来分析出不同的题&#xff0c;不同的情况&#xff0c;来分析需要多少个状态 一、乘积最…

2021年全国a级景区数据,shp+csv数据均有

大家好~这周将和大家分享关于文化旅游和城乡建设相关的数据&#xff0c;希望大家喜欢~ 今天分享的是2021年全国a级景区数据&#xff0c;数据格式有shpcsv&#xff0c;几何类型为点&#xff0c;已经经过清洗加工&#xff0c;可直接使用&#xff0c;以下为部分字段列表&#xff…

Linux中fork的进一步加深及信号基础

1.通过题目理解fork 1.打印结果?产生了几个进程? #include <stdio.h> #include <unistd.h> #include <stdlib.h> int main() { int i0; for(;i<2;i) { fork(); printf("A\n"); } exit(0); } 所以打印…

西南科技大学电路分析基础实验A1(元件伏安特性测试 )

目录 一、实验目的 二、实验设备 三、预习内容(如:基本原理、电路图、计算值等) 1、测定线性电阻的伏安特性 2、二极管伏安特性测试 3、测定实际电压源的伏安特性 四、实验数据及结果分析(预习写必要实验步骤和表格) 1、测定线性电阻的伏安特性 2、二极管伏安特性测…

Linux环境配置Seata开机自启脚本(在MySQL和Nacos启动后启动)

之前给seata配置了一个开机启动脚本&#xff0c;但是经常出现启动失败&#xff0c;查询日志要么MySQL没有连接上要么nacos连接不上&#xff0c;原因都是因为服务器重启的时候这两个服务都还没有完全启动&#xff0c;所以正常的做法应该是启动前先等前置服务启动好了再启动seata…

大语言模型:以Amazon Titan等大语言模型为例介绍

大语言模型&#xff08;Large Language Model&#xff09;是一种人工智能技术&#xff0c;通过对海量文本数据进行训练&#xff0c;学习语言的结构、规则和语义&#xff0c;从而可以生成具有自然语言风格的文本或回答自然语言的问题。大语言模型一般基于神经网络技术&#xff0…

华为云CDN刷新与查询余量的Go实现及在Jenkins中的部署

引言 在华为云上&#xff0c;对CDN缓存内容进行刷新是一个常见的需求&#xff0c;以确保最新的内容能尽快被用户访问到。通过使用Go语言&#xff0c;我们可以开发一个自动化的工具来实现这一需求&#xff0c;并将其集成到Jenkins中以实现持续部署。下面我们将分步骤讲解如何实…

Bypass open_basedir的方法

文章目录 open_basedir概念绕过方法命令执行绕过symlink 绕过 &#xff08;软连接&#xff09;利用chdir()与ini_set()组合绕过 例题 [suctf 2019]easyweb open_basedir概念 open_basedir是php.ini的设置 在open_basedir设置路径的话 那么网站访问的时候 无法访问除了设置以外的…

KaiwuDB 亮相中国 5G + 工业互联网大会,助力新型工业化

11月19-21日&#xff0c;由各相关政府部门共同主办的“2023 中国 5G工业互联网大会”在湖北武汉盛大举行。作为我国“5G工业互联网”领域的国家级顶会&#xff0c;本届大会以“数实融合&#xff0c;大力推进新型工业化”为主题&#xff0c;聚焦新型基础设施、产业转型升级、技术…

笔记62:注意力汇聚 --- Nadaraya_Watson 核回归

本地笔记地址&#xff1a;D:\work_file\&#xff08;4&#xff09;DeepLearning_Learning\03_个人笔记\3.循环神经网络\第10章&#xff1a;动手学深度学习~注意力机制 a a a a a a a a a a a a a a a a

【一维数组】交换数组

题目 将数组A中的内容和数组B中的内容进行交换。&#xff08;数组一样大&#xff09; 解题方式通过函数封装可以实现任意类型的数组元素交换 思路来源&#xff1a;qsort函数的模拟实现 void Change_arr2(void* ch1, void* ch2, size_t num, size_t sz) {for (int i 0; i < …

Docker配置Halo搭建个人博客-快速入门

Docker配置Halo搭建个人博客-快速入门 1 官方文档2 安装Halo2.1 创建Halo主目录2.2 远程下载配置文件2.3 编辑配置文件2.4 拉取最新镜像2.6 查看容器2.7 开放服务器的防火墙 3 运行3.1 运行项目3.2 停止项目 4 常见问题4.1 没有权限4.2 ommand netstart not found, did you mea…

8.0 泛型

通过之前的学习&#xff0c;读者可以了解到&#xff0c;把一个对象存入集合后&#xff0c;再次取出该对象时&#xff0c;该对象的编译类型就变成了Object类型&#xff08;尽管其在运行时类型没有改变&#xff09;。集合设计成这样&#xff0c;提高了它的通用性&#xff0c;但是…

Git的原理与使用(一):Git的基本操作(包含:版本回退)

Git原理与使用一 一.Git的初识与安装1.什么是Git2.如何安装Git1.git命令与git help(Git下的"man手册")2.centos下安装Git3.ubantu下安装Git 二.Git的前置操作与前置知识1.创建Git本地仓库2.配置Git3.理解Git的分区1.工作区2.暂存区3.版本库4.分区关系总结 三.添加文件…

springboot启动Table ‘xxx‘ already exists

jpa.generate-ddl和jpa.hibernate.ddl-auto都可以控制是否执行datasource.schema脚本&#xff0c;来初始化数据库结构&#xff0c;只要有一个为可执行状态就会执行&#xff0c;比如jpa.generate-ddl:true或jpa.generate-ddl:update&#xff0c;并没有相互制约上下级的关系。 要…

Android修行手册 - 使用ViewPager2实现画廊效果

Unity3D特效百例案例项目实战源码Android-Unity实战问题汇总游戏脚本-辅助自动化Android控件全解手册再战Android系列Scratch编程案例软考全系列Unity3D学习专栏蓝桥系列ChatGPT和AIGC &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分…