智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蜻蜓算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蜻蜓算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蜻蜓算法

蜻蜓算法原理请参考:https://blog.csdn.net/u011835903/article/details/107783363
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

蜻蜓算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明蜻蜓算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/174878.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【springboot】宝塔简单部署springboot 配置https

宝塔简单部署springboot配置https 需求步骤1. springboot通过maven组件打成jar包2. 将jar包部署到宝塔上3. 下载安装nginx并创建网站节点4. 设置域名或者IP5. 设置反向代理:代理后端服务的ip和端口7. 配置SSL/TLS 需求 宝塔部署springboot项目,用nginx反向代理后端IP端口&…

深度学习黎明时期的LeNet:揭开卷积神经网络的序幕

在深度学习的历史长河中,Yann LeCun 的 LeNet 是一个里程碑式的研究成果,它为后来的卷积神经网络(Convolutional Neural Networks,CNN)的发展奠定了基础。LeNet 的诞生标志着深度学习黎明时期的到来,为人工…

【已解决】在windows下,gitlab修改了密码导致remote: HTTP Basic: Access denied

背景 网上好多答案遇到此问题都是修改凭证,故写此文。 在控制面板》用户账户》凭据管理器》管理windows凭据》普通凭据 --找到对应的git地址,编辑用户名和密码 本文解决方案适用于windows下没有凭证的情况,因修改密码导致下拉代码出错的情况。 Git是常…

Scrapy框架内置管道之图片视频和文件(一篇文章齐全)

1、Scrapy框架初识(点击前往查阅) 2、Scrapy框架持久化存储(点击前往查阅) 3、Scrapy框架内置管道 4、Scrapy框架中间件(点击前往查阅) Scrapy 是一个开源的、基于Python的爬虫框架,它提供了…

JAVA配置jdk17 Graa1VM

按照网上内容下载好对应的jdk17版本的Graa1VM, 解压后,修改环境变量中的JAVA_HOME为当前的目录,例如 D:\ruanjian\jdk\gra_jdk17\graalvm-ce-java17-22.3.0 。 然后在命令行中输入java -version的时候, 返回的并不是 Graa1VM 相关…

文件权限中 chmod、u+x、u、r、w、x分别代表什么

Linux系统中的每个文件和目录都有访问许可权限,如下面所示: 要说清楚问题,我们截取一些内容: ypyubuntu:~$ ls -l drwxr-xr-- 2 ypy ypy 4096 Nov 30 18:33 Desktop/ drwxr-xr-- 2 ypy ypy 4096 Nov 30 18:33 Documen…

【扩散模型】DDIM从原理到实战

DDIM从原理到实战 1. DDIM简介2. 实战DDIM2.1 载入一个预训练过的pipeline2.2 DDIM采样2.3 反转(invert) 3. 组合封装参考资料 DDPM过程的一个问题是在训练后生成图像的速度。当然,我们可能能够生成令人惊叹的图像,但生成一张图像…

本地训练,立等可取,30秒音频素材复刻霉霉讲中文音色基于Bert-VITS2V2.0.2

之前我们使用Bert-VITS2V2.0.2版本对现有的原神数据集进行了本地训练,但如果克隆对象脱离了原神角色,我们就需要自己构建数据集了,事实上,深度学习模型的性能和泛化能力都依托于所使用的数据集的质量和多样性,本次我们…

【密码学引论】序列密码

第五章 序列密码 1、序列密码 定义: 加密过程:把明文与密钥序列进行异或运算得到密文解密过程:把密文与密钥序列进行异或运算得到明文以字/字节为单位加解密密钥:采用一个比特流发生器随机产生二进制比特流 2、序列密码和分组密…

【docker】docker安装与优化

目录 一、安装Docker 1、关闭防火墙 2、安装依赖包 3、设置阿里云镜像源 4、安装Docker-CE社区版并设置为开机自启动 5、查看Docker信息 二、设置镜像加速 1、申请加速地址 2、实现加速操作 三、网络优化 1、如何网络优化 2、具体操作 四、docker-server端配置文件…

汇编实验2-2 查找匹配字符串笔记

一、数据段 1.字符串结尾:13,10,$ 2.设置格式控制字符串(这样就不用再写clrf函数了) 3.设置存关键字和句子的地址标签,以关键字为例 二、代码段 1.输入字符串 2.字符串比较 2.1 每次的比较长度,KLEN->CL 2.2 设置目标串起始…

【Linux系统编程】操作系统详解(什么是操作系统?为什么会存在操作系统?设计操作系统的目的是什么?)

目录 一、前言 二、 什么是操作系统 💦操作系统的引入 💦操作系统的概念理解 💦操作系统设计的目的与定位 💦总结 二、操作系统之上之下分别有什么 三、深度理解操作系统的“管理” 💦场景理解 💦操…

2023信息技术应用创新论坛|云轴科技ZStack分享云原生超融合在智慧交通的应用

11月25日,2023信息技术应用创新论坛在常州开幕。江苏省工业和信息化厅副厅长池宇、中国电子工业标准化技术协会理事长胡燕、常州市常务副市长李林等领导出席论坛并致辞。中国工程院院士郑纬民出席并作主题报告。来自产学研用金等各界的千余名代表参加本次论坛。 在“…

GitHub上8个强烈推荐的 Python 项目

文章目录 前言1. Manim2. DeepFaceLab3. Airflow4. GPT-25. XSStrike6. 谷歌图片下载7. Gensim8. SocialMapper总结关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③…

【刷题笔记】加油站||符合思维方式

加油站 文章目录 加油站1 题目描述2 思路3 解题方法 1 题目描述 https://leetcode.cn/problems/gas-station/ 在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i1 个加油站需要消…

Element-UI Upload 手动上传文件的实现与优化

文章目录 引言第一部分&#xff1a;Element-UI Upload 基本用法1.1 安装 Element-UI1.2 使用 <el-upload> 组件 第二部分&#xff1a;手动上传文件2.1 手动触发上传2.2 手动上传时的文件处理 第三部分&#xff1a;性能优化3.1 并发上传3.2 文件上传限制 结语 &#x1f38…

Jmeter工具学习三——CSV文件、关联、断言

Jmeter学习三——CSV文件和关联 jmeter做功能测试和做性能测试的区别CSV数据文件设置&#xff08;读取外部文件&#xff0c;进行分数据驱动&#xff09;文件设置字段介绍&#xff1a;文件名文件编码如果出现编码问题导致的乱码&#xff0c;如何解决&#xff1f; 变量名忽略首行…

【MATLAB】LMD分解+FFT+HHT组合算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 LMDFFTHHT组合算法是一种基于局部均值分解&#xff08;LMD&#xff09;、快速傅里叶变换&#xff08;FFT&#xff09;和希尔伯特-黄变换&#xff08;HHT&#xff09;的组合算法。 LMD是…

day65

今日回顾内容 web应用 HTTP协议 web应用 一、什么是web应用程序 Web应用程序是一种可以通过Web访问的应用程序&#xff0c;程序的最大好处是用户很容易访问应用程序&#xff0c;用户只需要有浏览器即可&#xff0c;不需要再安装其他软件 对于传统的应用软件来说&#xff0c;…

【iOS-UIImagePickerController访问相机和相册】

【iOS-UIImagePickerController访问相机和相册】 一. UIImagePickerController的介绍1 . UIImagePickerController的作用2 . UIImagePickerController的功能 二 . UIImagePickerController的测试程序 一. UIImagePickerController的介绍 1 . UIImagePickerController的作用 U…