【MATLAB】LMD分解+FFT+HHT组合算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

LMD+FFT+HHT组合算法是一种基于局部均值分解(LMD)、快速傅里叶变换(FFT)和希尔伯特-黄变换(HHT)的组合算法。

LMD是一种用于处理非线性和非平稳信号的自适应信号分解方法。它通过在信号中加入白噪声,并多次进行经验模态分解(EMD),从而获得原信号的多种本征模态函数(IMF)。这些IMF可以更好地捕捉到信号中的局部特征,特别是对于非线性、非平稳信号。

FFT是一种高效的计算离散傅里叶变换(DFT)和其逆变换的算法。它可以在短时间内计算出信号在频域上的表达,从而提供信号的频率特征。

HHT是一种用于分析非线性和非平稳信号的数学工具。它通过将信号分解成一系列固有模态函数(IMF),并计算每个IMF的瞬时频率,从而提供信号的时频特征。

将LMD、FFT和HHT组合在一起,可以形成一种强大的分析方法。首先,使用LMD将原始信号分解成多个IMF,然后对每个IMF进行FFT计算其频谱,最后使用HHT分析其时频特征。这种组合方法可以综合利用三种方法的优点,对于处理非线性和非平稳信号具有较高的准确性和鲁棒性。

除了上述提到的优点,LMD+FFT+HHT组合算法还具有以下特点:

  1. 局部性分析:LMD具有对信号局部特征的捕捉能力,可以更好地分析信号的局部特性。

  2. 频域分析:FFT可以将信号转换到频域,提供信号的频率特征,帮助我们更好地理解信号的频率成分。

  3. 时频分析:HHT具有时频分析能力,可以同时提供信号的时域和频域信息,更好地描述信号的瞬时变化。

  4. 自适应性:LMD和HHT都具有自适应性,可以更好地适应不同类型和特性的信号。

  5. 组合灵活性:LMD、FFT和HHT可以根据需要灵活组合,可以应用于不同的信号处理任务,满足不同的需求。

总之,LMD+FFT+HHT 组合算法是一种非常强大的信号处理方法,可以应用于许多领域,如机械故障诊断、信号处理、地震勘探、生物医学信号处理等。

除了以上提到的特点和应用领域,LMD+FFT+HHT组合算法还有一些其他的优点和潜在应用。

  1. 降噪能力:LMD和HHT都具有一定的降噪能力,可以在信号处理过程中有效地去除噪声,提高信号的信噪比。

  2. 非线性分析:由于LMD和HHT都是非线性方法,因此它们可以更好地处理非线性信号。例如,在机械故障诊断中,故障信号往往是非线性的,使用LMD和HHT可以更准确地分析故障特征。

  3. 特征提取:通过FFT和HHT的分析结果,我们可以提取信号的特征,如频率成分、瞬时频率等,这些特征可以用于信号分类、识别和预测。

  4. 适应性:LMD、FFT和HHT都是自适应方法,可以更好地适应不同类型和特性的信号,因此在不同的应用领域中具有广泛的应用前景。

  5. 组合优化:在实际应用中,可以根据具体任务的需求,对LMD、FFT和HHT进行组合优化,以提高算法的性能和准确性。

总之,LMD+FFT+HHT组合算法是一种非常有效的信号处理方法,具有广泛的应用前景和潜在价值。随着相关技术的不断发展和完善,这种组合算法将在更多的领域得到应用和发展。

2 出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】LMD分解+FFT+HHT组合算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/174853.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

day65

今日回顾内容 web应用 HTTP协议 web应用 一、什么是web应用程序 Web应用程序是一种可以通过Web访问的应用程序,程序的最大好处是用户很容易访问应用程序,用户只需要有浏览器即可,不需要再安装其他软件 对于传统的应用软件来说,…

【iOS-UIImagePickerController访问相机和相册】

【iOS-UIImagePickerController访问相机和相册】 一. UIImagePickerController的介绍1 . UIImagePickerController的作用2 . UIImagePickerController的功能 二 . UIImagePickerController的测试程序 一. UIImagePickerController的介绍 1 . UIImagePickerController的作用 U…

Java小游戏飞翔的小鸟

游戏界面 运行界面 开发准备 1、eclipse开发工具 二、创建游戏窗口 Mains类作为主类,在mian方法下定义一个m1()方法,设置窗口。 //定义一个初始化的游戏窗口方法 public static void m1() {//获取底层窗口界面的工具类JFrame jf new JFrame();//创建…

「Verilog学习笔记」非整数倍数据位宽转换24to128

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 要实现24bit数据至128bit数据的位宽转换,必须要用寄存器将先到达的数据进行缓存。24bit数据至128bit数据,相当于5个输入数据第6个输入数据的拼接成一…

Nacos 2.X核心架构源码剖析

概述 注册中心并发处理,1.4.x 写时复制,2.1.0 读写分离;nacos 一般使用 AP 架构,即临时实例,1.4.x 为 http 请求,2.1.0 优化为 gRPC 协议;源码中使用了大量的事件通知机制和异步定时线程池&…

SpringBootWeb案例_01

Web后端开发_04 SpringBootWeb案例_01 原型展示 成品展示 准备工作 需求&环境搭建 需求说明: 完成tlias智能学习辅助系统的部门管理,员工管理 环境搭建 准备数据库表(dept、emp)创建springboot工程,引入对应…

初识Spring (Spring 核心与设计思想)

文章目录 什么是 Spring什么是容器什么是 IoC理解 Spring IoCDI 概念 什么是 Spring Spring 官网 官方是这样说的: Spring 让每个人都能更快、更轻松、更安全地进行 Java 编程。春天的 专注于速度、简单性和生产力使其成为全球最受欢迎Java 框架。 我们通常所说的 Spring 指的…

C++类与对象(6)—初始化列表、explicit关键字、static成员

目录 一、初始化列表 1、定义 2、注意事项 3、尽量使用初始化列表初始化 4、初始化顺序 二、 explicit关键字 1、定义 2、特点 三、static成员 1、定义 2、特性 3、例题 一、初始化列表 下面这段代码可以正常编译: class A { private:int _a1;//成员…

CGAN原理讲解与源码

1.CGAN原理 生成器,输入的是c和z,z是随机噪声,c是条件,对应MNIST数据集,要求规定生成数字是几。 输出是生成的虚假图片。 判别器的输入是 1.生成器输出的虚假图片x; 2.对应图片的标签c 来自真实数据集,且…

【深度学习】概率图模型(一)概率图模型理论简介

文章目录 一、概率图模型1. 联合概率表2. 条件独立性假设3. 三个基本问题 二、模型表示1. 有向图模型(贝叶斯网络)2. 无向图模型(马尔可夫网络) 三、学习四、推断 概率图模型(Probabilistic Graphical Model&#xff0…

ROS知识:卡尔曼滤波

https://en.wikipedia.org/wiki/Kalman_filter 一、提要 在卡尔曼滤波的相关技术文献中,其数学表达看起来都非常晦涩和不透明。这很糟糕,如果您以正确的方式看待卡尔曼滤波器,它实际上非常简单易懂。这里的叙述简单,先决条件也很简单;您所需要的只是对概率和矩阵的基本了解…

【C++】友元

1. 友元的概念 友元的目的就是让一个函数或者类 访问另一个类中私有成员。 友元的三种实现&#xff1a; 全局函数做友元类做友元成员函数做友元 2. 友元的实现方式 2.1 全局函数做友元 #include <iostream> using namespace std; class Building {// 告诉编译器 go…

【Android Gradle】之一小时 Gradle及 wrapper 入门

&#x1f604;作者简介&#xff1a; 小曾同学.com,一个致力于测试开发的博主⛽️&#xff0c;主要职责&#xff1a;测试开发、CI/CD 如果文章知识点有错误的地方&#xff0c;还请大家指正&#xff0c;让我们一起学习&#xff0c;一起进步。 &#x1f60a; 座右铭&#xff1a;不…

PC删除数据,并提示删除成功

<template<el-button size"mini" type"text">分配权限</el-button><el-button size"mini" type"text" click"btnEditRow(row)">编辑</el-button ><el-popconfirmtitle"这是一段内容确定…

计算机毕业设计springboot+vue高校田径运动会报名管理系统61s38

高校田径运动会管理采用java技术&#xff0c;基于springboot框架&#xff0c;mysql数据库进行开发&#xff0c;实现了首页、个人中心、运动员管理、裁判员管理、场地信息管理、项目类型管理、比赛项目管理、比赛报名管理、比赛成绩管理、通知公告管理、留言板管理、交流论坛、系…

微软发布了Orca 2,一对小型语言模型,它们的性能超越了体积更大的同类产品

尽管全球目睹了OpenAI的权力斗争和大规模辞职&#xff0c;但作为AI领域的长期支持者&#xff0c;微软并没有放慢自己的人工智能努力。今天&#xff0c;由萨提亚纳德拉领导的公司研究部门发布了Orca 2&#xff0c;这是一对小型语言模型&#xff0c;它们在零样本设置下对复杂推理…

数据结构---顺序表

文章目录 线性表线性表的定义线性表分类 顺序表顺次表的存储结构实现顺序表的主要接口函数初始化顺序表顺序表尾插顺序表尾删顺序表头插顺序表头删在指定位置插入数据在指定的位置删除数据头插&#xff0c;头删&#xff0c;尾插&#xff0c;尾删新写法打印顺序表销毁顺序表 线性…

基于halo框架采用docker-compose快速部署个人博客

halo快速部署个人博客 技术方案 dockerdocker-composenginxmysql halo简介 Halo是一款现代化的开源博客/CMS系统&#xff0c;所有代码开源在GitHub上且处于积极维护状态。它是基于 Java Spring Boot 构建的&#xff0c;易于部署&#xff0c;支持REST API、模板系统、附件系…

关于微服务的思考

目录 什么是微服务 定义 特点 利弊 引入时机 需要哪些治理环节 从单体架构到微服务架构的演进 单体架构 集群和垂直化 SOA 微服务架构 如何实现微服务架构 服务拆分 主流微服务解决方案 基础设施 下一代微服务架构Service Mesh 什么是Service Mesh&#xff1f…

python实现自动刷平台学时

背景 前一阵子有个朋友让我帮给小忙&#xff0c;因为他每学期都要看视频刷学时&#xff0c;一门平均需要刷500分钟&#xff0c;一学期有3-4门需要刷的。 如果是手动刷的话&#xff0c;比较麻烦&#xff0c;能否帮他做成自动化的。搞成功的话请我吃饭。为了这顿饭&#xff0c;咱…