MATLAB中FFT频谱分析使用详解

文章目录

  • 语法
  • 说明
  • 语法一:Y = fft(X)
    • fft(X)返回X长度的傅里叶变换
  • 语法二:Y = fft(X,N)
    • 如果 X的长度小于 N,则为 X补上尾零以达到长度 N(FFT插值)
      • 双边谱转换为单边谱
    • 如果 X 的长度大于 N,则对 X 进行截断以达到长度 N。
  • 语法三:Y = fft(X,N,dim)
  • 相位
  • 补充
    • 向量的离散傅里叶变换
    • 频谱泄露的解释


本文对matlab中fft的使用作出详细说明,并对频谱的双边、单边幅度谱与相位谱加以说明。

语法

Y = fft(X)
Y = fft(X,N)
Y = fft(X,N,dim)

说明

FFT是DFT的快速算法,当FFT点数为2的整数次幂时,MATLAB可以使用FFT的快速算法;如果不是2的整数次幂,那么只能使用公式的算法,实质上未使用上快速算法,两者在计算时间上有差异。

1.Y = fft(X) 用快速傅里叶变换 (FFT) 算法计算 X 的离散傅里叶变换 (DFT)。

  • 如果 X 是向量,则 fft(X) 返回该向量的傅里叶变换。即对于 Y = fft(X) 或 Y = fft(X,[],dim),Y的大小等于 X 的大小。
  • 如果 X 是矩阵,则 fft(X)X 的各列视为向量,并返回每列的傅里叶变换。
  • 如果 X 是一个多维数组,则 fft(X) 将沿大小不等于 1 的第一个数组维度的值视为向量,并返回每个向量的傅里叶变换。

2.Y = fft(X,N) 返回 N 点 DFT。即对于 Y = fft(X,n,dim),size(Y,dim)的值等于 n,而所有其他维度的大小保持与在 X中相同。

  • 如果 X 是向量且 X 的长度小于 N,则为 X 补上尾零以达到长度 N。(下文有举例)
  • 如果 X 是向量且 X 的长度大于 N,则对 X 进行截断以达到长度 N。(下文有举例)
  • 如果 X 是矩阵,则每列的处理与在向量情况下相同。
  • 如果 X 为多维数组,则大小不等于 1 的第一个数组维度的处理与在向量情况下相同。

3.Y = fft(X,N,dim) 返回沿维度 dim 的傅里叶变换。例如,如果 X 是矩阵,则 fft(X,N,2) 返回每行的 N 点傅里叶变换。(下文有举例)


接下来对上述三种用法进行举例,实际绘制频谱中频谱分为单边谱和双边谱的绘制,在三种用法举例中顺带将这两种绘制方式一并列出了。

语法一:Y = fft(X)

fft(X)返回X长度的傅里叶变换

使用傅里叶变换求噪声中隐藏的信号的频率分量,其中使用单边谱的绘制方式呈现频谱图。

例:指定信号的参数,采样频率为 1 kHz,信号持续时间为 1.5 秒(即1500个信号点)。

clear all;close all;clc; %清理工作区,关闭所有窗口,清空文本Fs = 1000;            % Sampling frequency                    
T = 1/Fs;             % Sampling period       
L = 1500;             % Length of signal
t = (0:L-1)*T;        % Time vector%构造一个信号,其中包含幅值为 0.7 的 50 Hz 正弦量和幅值为 1 的 150 Hz 正弦量。
S = 0.7*sin(2*pi*50*t) + sin(2*pi*150*t);
X = S + 2*randn(size(t));%用均值为零、方差为 4 的白噪声扰乱该信号。%% 绘制时域信号图
%在时域中绘制含噪信号。通过查看信号 X(t) 很难确定频率分量。
subplot(141);
plot(t,X);
title("Signal Corrupted with Zero-Mean Random Noise")
xlabel("t (seconds)")
ylabel("X(t)")subplot(143);
plot(t,S);
title("Original Signal")
xlabel("t (seconds)")
ylabel("X(t)")%% 计算加噪声信号的傅里叶变换
Y = fft(X);%此用法的fft点数为X的点数即1500
N = L;%fft点数为信号长度
%计算双侧频谱 P2。然后基于 P2 和偶数信号长度 L 计算单侧频谱 P1。
P2 = abs(Y/N);%/N是对幅度的修正
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);%第一个点为直流分量,是真实的幅值,保持不变;从第二个开始*2,由于DFT具有对称性看单边需要*2
f = (0:(N/2))*Fs/N;%其中Fs/N为频率分辨率%定义频域 f 并绘制单侧幅值频谱 P1。与预期相符,由于增加了噪声,幅值并不精确等于 0.7 和 1。一般情况下,较长的信号会产生更好的频率逼近值。
subplot(142);
plot(f,P1) 
title("Single-Sided Amplitude Spectrum of X(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")%% 现在,采用原始的、未破坏信号的傅里叶变换并检索精确幅值 0.7 和 1.0。
Y = fft(S);
P2 = abs(Y/N);
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);subplot(144);
plot(f,P1) 
title("Single-Sided Amplitude Spectrum of S(t)")
xlabel("f (Hz)")
ylabel("|P1(f)|")

使用fft(X)求得频谱绘制的单边谱如下:
在这里插入图片描述

语法二:Y = fft(X,N)

如果 X的长度小于 N,则为 X补上尾零以达到长度 N(FFT插值)

通过填充零来对信号的傅里叶变换进行插值。

例:指定信号的参数,采样频率为 80 Hz,信号持续时间为 0.8 秒。

clear all;close all;clc; %清理工作区,关闭所有窗口,清空文本
Fs = 80;
T = 1/Fs;
L = 65;
t = (0:L-1)*T;%创建一个 2 Hz 正弦信号及其高次谐波的叠加。该信号包含一个 2 Hz 余弦波、一个 4 Hz 余弦波和一个 6 Hz 正弦波。
X = 3*cos(2*pi*2*t) + 2*cos(2*pi*4*t) + sin(2*pi*6*t);%在时域中绘制该信号。
subplot(131);
figure(1);
plot(t,X)
title("Signal superposition in time domain")
xlabel("t (ms)")
ylabel("X(t)")%计算信号的傅里叶变换。
Y = fft(X);%不补零时%计算信号的单侧幅值频谱。
f1 = Fs*(0:(L-1)/2)/L;
P2 = abs(Y/L);
P1 = P2(1:(L+1)/2);
P1(2:end) = 2*P1(2:end);%在频域中绘制单侧频谱。由于信号的时间采样相当短,傅里叶变换的频率分辨率不够精确,不足以显示 4 Hz 附近的峰值频率。
subplot(132);
plot(f1,P1,"-o") 
title("Single-Sided Spectrum of Original Signal")
xlabel("f (Hz)")
ylabel("|P1(f)|")%% 为了更好地评估峰值频率,您可以通过用零填充原始信号来增加分析窗的长度。这种方法以更精确的频率分辨率自动对信号的傅里叶变换进行插值。
%从原始信号长度确定是下一个 2 次幂的新输入长度。用尾随零填充信号 X 以扩展其长度。计算填零后的信号的傅里叶变换。
N = 2^nextpow2(L);
Y = fft(X,N);
%计算填零后的信号的单侧幅值频谱。由于信号长度 n 从 65 增加到 128,频率分辨率变为 Fs/n,即 0.625 Hz。f2 = Fs*(0:(N/2))/N;
P4 = abs(Y/L);
P3 = P4(1:N/2+1);
P3(2:end-1) = 2*P3(2:end-1);
%绘制填零后的信号的单侧频谱。此新频谱在 0.625 Hz 的频率分辨率内显示 2 Hz、4 Hz 和 6 Hz 附近的峰值频率。
subplot(133);
plot(f2,P3,"-o") 
title("Single-Sided Spectrum of Padded Signal")
xlabel("f (Hz)")
ylabel("|P3(f)|")

填充零来对信号的傅里叶变换进行插值效果对比如下图:
在这里插入图片描述
需要注意的是:

1.由于进行fft点数的不同,将双边谱转换为单边谱的计算有所区别。如代码中25行以及43行所示。

2.补零后,频率分辨率由原来的Fs/L变为Fs/N,补零以后能改善栅栏效应,使原先不清晰的谱线显现。虽然数据长度在补零后增长到N,但其有效长度还应该是L,且计算幅值是要以有效长度来计算的。参看代码23行和41行。参看FFT中的补零问题_fft补零的效果更加明显。

双边谱转换为单边谱

解释如下(注意MATLAB中的向量索引从1开始,以下解释为0开始):
假设序列{y}的DFT序列{Y}长度也为N,表示为:
在这里插入图片描述
根据傅立叶变换的理论,这个序列中的后半部分实际上表示的是负频率信息。实序列的傅立叶变换的元素间存在共轭关系:
在这里插入图片描述
其中,常数s为:
img
这样,当N是奇数时,可以将序列{Y}表示为:
img
单边谱是长度为(N+1)/2的序列
img
N是偶数时,序列{Y}可以表示为:
img
单边谱是长度为(N/2)+1的序列
img
此处权系数取法是w1=1,w2=2。
具体参看:信号处理:单边、双边频谱间的相互转换

作者拙见,供参考:DFT序列Y0为直流分量,余下的序列存在共轭关系。点数N为奇数时,除去Y0,余下序列为偶数均能成对共轭,各占了一半,转换为单边谱时乘2;点数N为偶数时,除去Y0,余下序列为奇数,中间空下一个不能成对被共用,不必乘2,成对的转换为单边谱需要乘2。

如果 X 的长度大于 N,则对 X 进行截断以达到长度 N。

如果 n 小于信号的长度,则 fft 忽略第 n 个条目之后的其余信号值,并返回截断后的结果。
使用傅里叶变换求两种频率分量拼的信号,其中使用双边谱的绘制方式呈现频谱图。

例:前1024个点为幅值为2,频率为50的信号;后1024个点为幅值为2,频率为100的信号;共2048个点。

fft(X,N)中的N取1000时可以看到频谱只有一个50的频率,由于是双边谱所以幅值各占一半。为什么只有一个频率啦,由于X信号的长度大于 N,所以将信号进行了截断,取前1000个点周期延拓求频谱。

clear all;close all;clc; %清理工作区,关闭所有窗口,清空文本% 参数设置
fs = 1000;         % 采样率
f_signal1 = 50;    % 正弦信号频率1
f_signal2 = 100;    % 正弦信号频率2
t1 = 0:1/fs:(1024-1)/fs; 
t2 = 1024/fs:1/fs:(2048-1)/fs; 
% 生成正弦信号
signal1 = 2*sin(2*pi*f_signal1*t1);
signal2 = 2*sin(2*pi*f_signal2*t2);%合并两不同频率信号 
t = [t1 t2];
signal = [signal1 signal2];N = 1000;        %fft点数 
% 计算频率轴
fshift = (-N/2:N/2-1)*(fs/N);%注意范围
% 进行FFT
fft_signal =(abs(fft(signal,N)))/N;%此用法设置FFT点数为N
fft_signal_shift = fftshift(fft_signal);% 绘制时域图和频谱图
figure(1);
% 时域图 - 原始信号
subplot(1, 2, 1);
plot(t, signal);
title('Original Signal in Time Domain');
xlabel('Time (s)');
ylabel('Amplitude');% 频谱图 - 原始信号
subplot(1, 2, 2);
plot(fshift, fft_signal_shift);
title('Original Signal Spectrum');
xlabel('Frequency (Hz)');
ylabel('Magnitude');

N取1000时的时域和频谱图:
在这里插入图片描述
N取2048时的频谱图:
可以看出由于频率分辨率和截断(此处相当于加矩形窗)带来的频谱泄露的问题。此时出现两个频率分量。

在这里插入图片描述

语法三:Y = fft(X,N,dim)

dim — 沿其运算的维度 为正整数标量
沿其运算的维度,指定为正整数标量。如果不指定维度,则默认为第一个大于 1 的数组维度。

fft(X,[],1) 沿 X 的各列进行运算,并返回每列的傅里叶变换。
在这里插入图片描述
fft(X,[],2) 沿 X 的各行进行运算,并返回每行的傅里叶变换。
在这里插入图片描述
如果 dim 大于 ndims(X),则 fft(X,[],dim) 返回 X。当指定 n 时,fft(X,n,dim) 将对 X 进行填充或截断,以使维度 dim 的长度为 n。

即dim=1,指定参数沿 X 的列使用 fft; dim =2 ,指定参数沿 X 的行使用 fft。(此处以dim =2 的行运算举例):

clear all;close all;clc; %清理工作区,关闭所有窗口,清空文本
Fs = 1000;                    % Sampling frequency
T = 1/Fs;                     % Sampling period
L = 1000;                     % Length of signal
t = (0:L-1)*T;                % Time vector%创建一个矩阵,其中每一行代表一个频率经过缩放的余弦波。结果 X 为 3×1000 矩阵。第一行的波频为 50,第二行的波频为 150,第三行的波频为 300。
x1 = cos(2*pi*50*t);          % First row wave
x2 = cos(2*pi*150*t);         % Second row wave
x3 = cos(2*pi*300*t);         % Third row waveX = [x1; x2; x3];%X为3*1000double型%在单个图窗中按顺序绘制 X 的每行的前 100 个项,并比较其频率。
figure(1);
for i = 1:3subplot(3,1,i)plot(t(1:100),X(i,1:100))title("Row " + num2str(i) + " in the Time Domain")
end%指定 dim 参数沿 X 的行(即对每个信号)使用 fft。
dim = 2;
%计算信号的傅里叶变换。
Y = fft(X,L,dim);
%计算每个信号的双侧频谱和单侧频谱。
P2 = abs(Y/L);
P1 = P2(:,1:L/2+1);
P1(:,2:end-1) = 2*P1(:,2:end-1);%在频域内,为单个图窗中的每一行绘制单侧幅值频谱。
figure(2);
for i=1:3subplot(3,1,i)plot(0:(Fs/L):(Fs/2-Fs/L),P1(i,1:L/2))title("Row " + num2str(i) + " in the Frequency Domain")
end

时域波形:
在这里插入图片描述
单边幅值频谱图:
在这里插入图片描述

相位

创建一个由频率为 15 Hz 和 40 Hz 的两个正弦波组成的信号。第一个正弦波是相位为 −π/4 的余弦波,第二个正弦波是相位为 π/2 的余弦波。以 100 Hz 的频率对信号进行 1 秒钟的采样。

clear all;close all;clc; %清理工作区,关闭所有窗口,清空文本
Fs = 100;
t = 0:1/Fs:1-1/Fs;
x = cos(2*pi*15*t - pi/4) + cos(2*pi*40*t + pi/2);%计算信号的傅里叶变换。将变换幅值绘制为频率函数。
y = fft(x);
z = fftshift(y);
figure(1);
ly = length(y);
f = (-ly/2:ly/2-1)/ly*Fs;
stem(f,abs(z))
title("Double-Sided Amplitude Spectrum of x(t)")
xlabel("Frequency (Hz)")
ylabel("|y|")
grid%计算变换的相位,删除小幅值变换值。将相位绘制为频率函数。
tol = 1e-6;
z(abs(z) < tol) = 0;%删除小幅值变换值theta = angle(z);figure(2);
stem(f,theta/pi)
title("Phase Spectrum of x(t)")
xlabel("Frequency (Hz)")
ylabel("Phase/\pi")
grid

幅度和相位谱:
在这里插入图片描述

补充

向量的离散傅里叶变换

Y = fft(X)X = ifft(Y) 分别实现傅里叶变换和傅里叶逆变换。对于长度为 nXY,这些变换定义如下:
在这里插入图片描述

频谱泄露的解释

文章FFT中的补零问题_fft补零3.1 频谱泄漏仿真分析处及之后部分。

参考:

快速傅里叶变换 - MATLAB fft - MathWorks 中国

matlab信号频谱分析FFT详解_fft频谱图怎么看

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/174731.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Postman如何使用(四):接口测试

一.接口 1.程序内部接口&#xff1a;方法与方法之间&#xff0c;模块与模块之间的交互&#xff0c;程序内部抛出的接口&#xff0c;比如bbs系统&#xff0c;有登录模块&#xff0c;发帖模块等等&#xff0c;那你要发帖就必须先登录&#xff0c;那么这两个模块就得有交互&#…

什么是数据增强,为什么会让模型更健壮?

在做一些图像分类训练任务时&#xff0c;我们经常会遇到一个很尴尬的情况&#xff0c;那就是&#xff1a; 明明训练数据集中有很多可爱猫咪的照片&#xff0c;但是当我们给训练好的模型输入一张戴着头盔的猫咪进行测试时&#xff0c;模型就不认识了&#xff0c;或者说识别精度…

栈和队列OJ题目——C语言

目录 LeetCode 20、有效的括号 题目描述&#xff1a; 思路解析&#xff1a; 解题代码&#xff1a; 通过代码&#xff1a; LeetCode 225、用队列实现栈 题目描述&#xff1a; 思路解析&#xff1a; 解题代码&#xff1a; 通过代码&#xff1a; LeetCode 232、用栈…

Harmony入门-HelloWorld

HarmonyOS 已经出来一些时间了。也有了OpenHarmony&#xff0c;作为HarmonyOS抽离的基础架构OpenHarmony&#xff0c;贡献给开源了&#xff0c;后续独立出来&#xff0c;那可真是就要独立生态啦&#xff0c;咱们顺水行舟&#xff0c;学习学习。 1.IDE 安装 https://hmxt.org/d…

MySQL学习day03

一、SQL图形化界面工具 常用比较常用的图形化界面有sqlyog、mavicat、datagrip datagrip工具使用相当方便&#xff0c;功能比前面两种都要强大。 DataGrip工具的安装和使用请查看这篇文档&#xff1a;DataGrip 安装教程 DML-介绍 DML全称是Data Manipulation Language(数据…

【Java数据结构 -- 包装类和泛型】

包装类和泛型 1. 包装类1.1 基本数据类型和对应的包装类1.2 装箱和拆箱1.3 自动装箱和自动拆箱1.4 自动装箱实际上是调用了valueOf&#xff08;&#xff09;1.5 Integer包装类赋值注意点 2 什么是泛型3 引出泛型4 泛型的使用4.1 语法4.2 类型推导 5 裸类型6 泛型如何编译6.1 擦…

IP代理的巨大潜力,为什么跨境业务需要它?

IP说简单不简单&#xff0c;说复杂也不复杂&#xff0c;打个比方&#xff0c;IP就好比我们上网的一个门牌号&#xff0c;每家每户都会有一个门牌号&#xff0c;而且是唯一的地址。而代理IP&#xff08;代理服务器&#xff09;是一个位于中间的服务器&#xff0c;充当客户端和目…

【活动回顾】ABeam 德硕| 艾宾信息技术开发(西安)西北高校行——与西北三所高校签订校企合作协议

前言 INTRODUCTION 10月下旬&#xff0c;ABeam旗下艾宾信息技术开发&#xff08;西安&#xff09;校招团队来到宁夏大学、青海大学、兰州大学这三所高校&#xff0c;就校企合作达成多项共识并举行了隆重的签约仪式。ABeam大中华区董事长兼总经理中野洋辅先生也特意留出时间莅临…

使用conan包 - 安装依赖项

使用conan包 - 安装依赖项 主目录 conan Using packages1 Requires2 Optional user/channel3 Overriding requirements4 Generators5 Options 本文是基于对conan官方文档Installing dependencies的翻译而来&#xff0c; 更详细的信息可以去查阅conan官方文档。 This section s…

【leetcode每日一题】565数组嵌套

思路流程&#xff1a; 思路v1.0 先学会写 s[0] ,用一个ans数组接收元素&#xff0c;每次往ans里添加的时候&#xff0c;先判断一下 这个index会不会超出数组的长度。ans里有没有这个元素。 s[0] 写完&#xff0c;就是用一个for循环&#xff0c;算出所有的 s[i],每次算出来的时…

野火霸天虎 STM32F407 学习笔记(六)系统时钟详解

STM32 中级 前言 仍然是学习自野火F407网课。 启动文件详解 作用&#xff1a; 初始化堆栈指针 SP_initial_sp初始化 PC 指针 Reset_Handler初始化中断向量表配置系统时钟调用 C 库函数 _main 初始化用户堆栈&#xff0c;从而最终调用 main 函数去到 C 的世界 栈&#xff…

School training competition ( Second )

A. Medium Number 链接 : Problem - 1760A - Codeforces 就是求三个数的中位数 : #include<bits/stdc.h> #define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0); #define endl \nusing namespace std; typedef long long LL; const int N 2e510;inline void …

Java线程同步

认识线程同步 解决方案 方法一&#xff1a;同步代码块 package com.itheima.d3;public class ThreadTest {public static void main(String[] args) {Accout acc new Accout("ICBC-110",100000);new DrawThread(acc,"小明").start();//小明new DrawThread…

Python实现DDos攻击实例详解

文章目录 SYN 泛洪攻击Scapy3k 基本用法代码实现DDos 实现思路argparse 模块socket 模块代码实现Client 端程序测试后记关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案…

Kotlin学习——kt里的集合,Map的各种方法之String篇

Kotlin 是一门现代但已成熟的编程语言&#xff0c;旨在让开发人员更幸福快乐。 它简洁、安全、可与 Java 及其他语言互操作&#xff0c;并提供了多种方式在多个平台间复用代码&#xff0c;以实现高效编程。 https://play.kotlinlang.org/byExample/01_introduction/02_Functio…

【算法萌新闯力扣】:回文链表

力扣题目&#xff1a;回文链表 开篇 今天是备战蓝桥杯的第23天。我加入的编程导航算法通关村也在今天开营啦&#xff01;那从现在起&#xff0c;我的算法题更新会按照算法村的给的路线更新&#xff0c;更加系统。大家也可以关注我新开的专栏“算法通关村”。里面会有更全面的知…

操作系统的中断与异常(408常考点)

为了进行核心态和用户态两种状态的切换&#xff0c;引入了中断机制。 中断是计算机系统中的一种事件&#xff0c;它会打断CPU当前正在执行的程序&#xff0c;转而执行另一个程序或者执行特定的处理程序。中断可以来自外部设备&#xff08;如键盘、鼠标、网络等&#xff09;、软…

振南技术干货集:FFT 你知道?那数字相敏检波 DPSD 呢?(1)

注解目录 1 、DPSD 的基础知识 1.1 应用模型 1.2 原理推导 1.3 硬件 PSD &#xff08;相敏检波&#xff0c;就是从繁乱复杂的信号中将我们关心的信号检出来&#xff0c;同时对相位敏感。 数学原理&#xff0c;逃不掉的&#xff0c;硬着头皮看吧。&#xff09; 2 、DPSD …

【电路笔记】-电阻器颜色代码与阻值计算

电阻器颜色代码与阻值计算 文章目录 电阻器颜色代码与阻值计算1、概述2、计算电阻器颜色代码值3、贴片电阻器 电阻器颜色编码使用色带轻松识别电阻器的电阻值及其百分比容差。 1、概述 由于有许多不同类型的电阻器可用&#xff0c;我们需要形成电阻器颜色代码系统以便能够识别…

Java 注解在 Android 中的使用场景

Java 元注解有 5 种&#xff0c;常用的是 Target 和 Retention 两个。 其中 Retention 表示保留级别&#xff0c;有三种&#xff1a; RetentionPolicy.SOURCE - 标记的注解仅保留在源码级别中&#xff0c;并被编译器忽略RetentionPolicy.CLASS - 标记的注解在编译时由编译器保…