论文复现代码《基于自适应哈夫曼编码的密文可逆信息隐藏算法》导演剪辑版

前言

本篇是论文《基于自适应哈夫曼编码的密文可逆信息隐藏算法》复现代码的精简版本。

内含调试过程的代码在这里:

论文复现代码《基于自适应哈夫曼编码的密文可逆信息隐藏算法》调试版-CSDN博客

论文的解析文章在这里:

论文简述基于自适应哈夫曼编码的密文可逆信息隐藏算法(基于位图压缩的加密图像可逆信息隐藏算法)_zrc007007的博客-CSDN博客

复现代码

import numpy as np
from skimage import io
import matplotlib.pyplot as plt
import math
from math import infclass HuffCode:def compare(self, num1, num2):# 比较像素值的相同比特位数count = 0for i in range(8):divisor = pow(2, 7-i)if int(num1 // divisor) == int(num2 // divisor):count += 1num1 = num1 - divisornum2 = num2 - divisorelse:breakreturn countdef count(self, origindata,  data):# 生成图像相同像素值的比特位数的比较结果result = {}resultMap = np.zeros_like(data)resultMap[0][0] = -1for i in range(1, len(data)):resultMap[i][0] = -1resultMap[0][i] = -1for i in range(1, len(data)):for j in range(1, len(data[0])):num = self.compare(origindata[i][j], data[i][j])resultMap[i][j] = numresult[num] = result.get(num, 0) + 1return resultMap, result# 初始化哈夫曼结点
class Huffmannode(object):def __init__(self):self.parent=0self.left=0self.right=0self.weight=0# 选择最小的结点下标
def select_node(huffman):# 俩个结点直接返回不需要找最小俩个结点if len(huffman)==2:return 0,1min=semin=inf# 初始化成无穷大f=s=-1for i in range(len(huffman)):if huffman[i].parent==0:if min>huffman[i].weight:semin=mins=fmin=huffman[i].weightf=ielif semin>huffman[i].weight:semin=huffman[i].weights=ireturn f,s# 编码
def Huffman_code(origin_dict):# 给结点赋权重n=len(origin_dict)m=2*n-1huffman=[]for i in origin_dict:temp_huffmannode=Huffmannode()temp_huffmannode.weight=origin_dict[i]huffman.append(temp_huffmannode)# 构建Huffman树,选择俩个最小的结点合并for i in range(n,m):f,s=select_node(huffman)temp_huffmannode=Huffmannode()temp_huffmannode.weight=huffman[f].weight+huffman[s].weighttemp_huffmannode.right=f  # 小的放在右边temp_huffmannode.left=shuffman[f].parent=huffman[s].parent=ihuffman.append(temp_huffmannode)# 0,1编码,右0,左1codeing_dict = dict.fromkeys(origin_dict, None)for i in range(0,n):s=''k=iparent=huffman[i].parentwhile parent!=0:if huffman[parent].left==k:s+='1'k=parentparent=huffman[parent].parentelse:s+='0'k=parentparent=huffman[parent].parentcodeing_dict[list(origin_dict.keys())[i]]=list(reversed(s))for k in codeing_dict.items():codeing_dict[k[0]] = ''.join(k[1])return codeing_dictclass MED:# 示例数据def __init__(self):self.data = [[162, 162, 162, 161, 162, 157, 163, 161],[162, 162, 162, 161, 162, 157, 163, 161],[162, 162, 162, 161, 162, 157, 163, 161],[162, 162, 162, 161, 162, 157, 163, 161],[162, 162, 162, 161, 162, 157, 163, 161],[164, 164, 158, 155, 161, 159, 159, 160],[160, 160, 163, 158, 160, 162, 159, 156],[159, 159, 155, 157, 158, 159, 156, 157]]def detect(self, data):# 中值预测result = np.zeros_like(data)result[0][0] = data[0][0]for i in range(1, len(data)):result[i][0] = data[i][0]result[0][i] = data[0][i]for i in range(1, len(data)):for j in range(1, len(data[0])):a = data[i - 1][j - 1]b = data[i - 1][j]c = data[i][j - 1]if a <= min(b, c):result[i][j] = max(b, c)elif a >= max(b, c):result[i][j] = min(b, c)else:result[i][j] = b + c - areturn resultdef crypt(im, miu, x0):'''logistic混沌加密:param im: 图像:param miu: μ参数:param x0: x0参数:return: 返回密文图像'''h, w = im.shapec_ = np.zeros_like(im)c_[0][0] = x0c=[]c.append(x0)result = np.zeros_like(im)result[0][0] = (x0 * pow(2, 48)) % 256for x in range(1, h * w):i = x // wj = x % wc.append(miu * c[x - 1] * (1 - c[x - 1]))c_[i][j] = (c[x] * pow(2, 48)) % 256for i in range(h):for j in range(w):result[i][j] = im[i][j] ^ c_[i][j]return resultdef transform(img):column, row = img.shaperesult = np.zeros_like(img, dtype='int_')for i in range(column):for j in range(row):result[i][j] = int(img[i][j] * 255)return resultdef int2bin(num, leng):'''整数int转二进制格式binTransform a integer to a string whose length is leng.:param num: numbers waiting for transforming:param leng: the length of hoped result string:return: a string of leng length'''if leng < 1:raise Exception("Length isn't positive integer!")place = 1result = ''while place <= leng:result = str(num % 2) + resultnum = num // 2if num == 0:return (leng - place) * '0' + resultplace += 1raise Exception("Length of binary string isn't enough!")def bin2int(string, leng):'''二进制格式bin转整数intTransfer a string of length of leng to a positive integer:param string: string waiting to be transferred:param leng: the length of reading:return: a positive integer less than 2^leng'''if leng < 1:raise Exception("Length isn't positive integer!")if len(string) < leng:raise Exception("Length of string under transferring isn't enough!")place = 1result = 0while place <= leng:result += int(string[place - 1]) * pow(2, leng - place)place += 1return resultdef binstrcomplmt(string, length, complement):'''给二进制格式补位,补到前面。比如补0就给complement传0,补1就传1Complement strings with which we decide.:param string: string waiting to be complemented:param length: what we hope it to length:param complement: using what character to complement it:return: string already complemented'''return (length - len(string)) * complement + stringdef binstrbackcomplmt(string, length, complement):'''给二进制格式补位,补到后面Complement strings with which we decide on its backhand.:param string: string waiting to be complemented:param length: what we hope it to length:param complement: using what character to complement it:return: string already complemented'''return string + (length - len(string)) * complementdef generatec(dict):'''生成嵌入信息中的c1到c8generate c info:param dict: Huffman code diction:return:'''result = ''c = []for i in range(9):c.append(0)c[i] = len(dict.get(i, ''))result += int2bin(c[i], 4)return resultdef generateh(dict):'''生成嵌入信息中的h1到h8generate h info:param dict: Huffman code diction:return:'''result = ''h = []for i in range(9):h.append('')h[i] = binstrcomplmt(dict.get(i, '0'), 8, '0')result += h[i]return resultdef countLm(countDict, lenDict):'''生成论文中说的Lm,变成Eta还需要转换一下Counting Lm:param countDict: diction of Huffman codes' appearance:param lenDict: Huffman code diction:return:'''count = 0for i in range(9):count += countDict.get(i, 0) * len(lenDict.get(i, ''))return countdef generatef(Lm, shapeOfImg):'''生成嵌入信息中的fgenerate f, which is Lm's bits' num's binary format:param Lm::param shapeOfImg::return:'''return int2bin(Lm, math.ceil(np.log2(shapeOfImg[0])) + math.ceil(np.log2(shapeOfImg[1])) + 2)def generateEta(dic, labelmap):'''生成嵌入信息中的EtaTransferred label map's binary format:param dic::param labelmap::return:'''result = ''for i in range(1, labelmap.shape[0]):for j in range(1, labelmap.shape[1]):result += dic[labelmap[i][j]]return resultdef generatelabelinfo(HuffDict, CountDict, LabelMap):'''生成总的嵌入信息Generate embedding information of label map:param HuffDict: Huffman code diction:param CountDict: Length of Huffman codes' diction:param LabelMap: The label map:return: Embedding information of label map'''return generatec(HuffDict) + generateh(HuffDict) + generatef(countLm(CountDict,HuffDict), LabelMap.shape)\+ generateEta(HuffDict, LabelMap)def embedinfo(LabelInfo, EncryptedImg, LabelMap, data):# 嵌入位图信息ReferencePixels = ''result = np.array(EncryptedImg)for i in range(EncryptedImg.shape[0]):ReferencePixels += int2bin(EncryptedImg[0][i], 8)result[0][i] = bin2int(LabelInfo, 8)LabelInfo = LabelInfo[8:]  # 截掉8个for i in range(1, EncryptedImg.shape[1]):ReferencePixels += int2bin(EncryptedImg[i][0], 8)result[i][0] = bin2int(LabelInfo, 8)LabelInfo = LabelInfo[8:]EmbeddingInfo = LabelInfo + ReferencePixels + datacount = 0row = count // (EncryptedImg.shape[1] - 1) + 1column = count % (EncryptedImg.shape[1] - 1) + 1t = LabelMap[row][column]maximum = (EncryptedImg.shape[0] - 1) * (EncryptedImg.shape[1] - 1)while len(EmbeddingInfo) > 0:if 0 <= t <= 6:result[row][column] = EncryptedImg[row][column] % pow(2, 7 - t)\+ bin2int(binstrbackcomplmt(EmbeddingInfo[:t+1], 8, '0'), 8)EmbeddingInfo = EmbeddingInfo[t+1:]elif 7 <= t <= 8:result[row][column] = bin2int(binstrbackcomplmt(EmbeddingInfo[:8], 8, '0'), 8)EmbeddingInfo = EmbeddingInfo[8:]count += 1if count >= maximum:raise Exception("There's no room for embedding!")row = count // (EncryptedImg.shape[1] - 1) + 1column = count % (EncryptedImg.shape[1] - 1) + 1t = LabelMap[row][column]return resultdef HuffDecode(HuffDict, info):# 哈夫曼解码for i in range(9):if info[:len(HuffDict.get(i, ''))] == HuffDict.get(i, -1):return i, len(HuffDict[i])raise Exception("No string matches!")def extractpixel(pixel, t):# 根据t值,恢复像素位数if 0 <= t <= 7:return int2bin(pixel, 8)[:t+1]elif t == 8:return int2bin(pixel, 8)else:raise Exception("T out of range!")def calctcut(t):# 根据t值,返回像素数if 0 <= t <= 7:return t + 1elif t == 8:return 8else:raise Exception("T out of range!")def extract1(encrypted):# 提取第一行、第一列info = ''LenDict = {}HuffDict = {}for i in range(encrypted.shape[0]):info += int2bin(encrypted[0][i], 8)for i in range(1, encrypted.shape[1]):info += int2bin(encrypted[i][0], 8)for i in range(9):LenDict[i] = bin2int(info[:4], 4)info = info[4:]for i in range(9):if LenDict[i] != 0:HuffDict[i] = info[8-LenDict[i]:8]info = info[8:]return HuffDict, infodef extract_exp(encrypted, HuffDict, info, datalen, Label):  # Label是用来测试位图和算出来的是不是一样的,可以删掉# 提取位图LabelMap = np.zeros_like(encrypted)decrypted1 = np.array(encrypted)LmLen = math.ceil(np.log2(encrypted.shape[0])) + math.ceil(np.log2(encrypted.shape[1])) + 2Lm = bin2int(info[:LmLen], LmLen)info = info[LmLen:]infoLen = Lm + ((encrypted.shape[0] - 1) + (encrypted.shape[1] - 1) - 1) * 8 + datalencount = len(info)  # 已提取到的信息长度place = 0pursuit = 0gonext = 0count1 = 1while count < infoLen:row = place // (encrypted.shape[1] - 1) + 1column = place % (encrypted.shape[1] - 1) + 1if count1 == 1 and count < Lm:t, CodeLen = HuffDecode(HuffDict, info)LabelMap[row][column] = tinfo = info[CodeLen:] + extractpixel(encrypted[row][column], t)count += calctcut(t)place += 1else:pursuit = 1count1 = 0if pursuit == 1 and gonext == 0:record = placewhile place < (encrypted.shape[0] - 1) * (encrypted.shape[1] - 1):row = place // (encrypted.shape[1] - 1) + 1column = place % (encrypted.shape[1] - 1) + 1t, CodeLen = HuffDecode(HuffDict, info)LabelMap[row][column] = tinfo = info[CodeLen:] + extractpixel(encrypted[row][column], t)place += 1place = recordrow = place // (encrypted.shape[1] - 1) + 1column = place % (encrypted.shape[1] - 1) + 1gonext = 1if gonext == 1 and count - Lm < (encrypted.shape[0] - 1) * (encrypted.shape[1] - 1) * 8 + datalen:info += extractpixel(encrypted[row][column], LabelMap[row][column])count += calctcut(LabelMap[row][column])place += 1for i in range(encrypted.shape[0]):LabelMap[0][i] = -1decrypted1[0][i] = bin2int(info[:8], 8)info = info[8:]for i in range(1, encrypted.shape[1]):LabelMap[i][0] = -1decrypted1[i][0] = bin2int(info[:8], 8)info = info[8:]data = info[:datalen]return LabelMap, decrypted1, datadef reverse(char):# 反转0和1if char == '0':return '1'elif char == '1':return '0'else:raise Exception("Not 0 or 1!")def detect(data, i, j):'''测试用预测函数:param data::return:'''a = data[i - 1][j - 1]b = data[i - 1][j]c = data[i][j - 1]if a <= min(b, c):result = max(b, c)elif a >= max(b, c):result = min(b, c)else:result = b + c - areturn resultdef recovery(img, LabelMap):# 恢复图像result = np.zeros_like(img)for i in range(img.shape[0]):result[0][i] = img[0][i]for i in range(1, img.shape[1]):result[i][0] = img[i][0]for i in range(1, img.shape[0]):for j in range(1, img.shape[1]):px = detect(result, i, j)t = LabelMap[i][j]if t == 8:result[i][j] = pxelif 0 <= t <= 7:result[i][j] = bin2int(int2bin(px, 8)[:t] + '0' * (8 - t), 8)\+ int(reverse(int2bin(px, 8)[t:t+1])) * pow(2, 7 - t) + img[i][j] % pow(2, 7 - t)else:raise Exception("T out of range!")return resultif __name__ == "__main__":MED = MED()# origindata = MED.dataorigindata = io.imread("../img/lena_grey.tif")origindata = transform(origindata)origindata = np.array(origindata)MEDdata = MED.detect(origindata)print("The origin data is:")print(np.array(origindata))print("The predicted data is:")print(MEDdata)print(HuffCode().compare(159, 160))resultMap, countingResult = HuffCode().count(origindata, MEDdata)print("The label map is:")print(resultMap)print("The counting result of Huffman coding is:", countingResult)code_dict = Huffman_code(countingResult)print(code_dict)generatec(code_dict)print(generatec(code_dict))print(len(generatec(code_dict)))print(generateh(code_dict), len(generateh(code_dict)))lm = countLm(countingResult, code_dict)print("Lm is:", lm)f = generatef(lm, MEDdata.shape)print("f is:", f)print("length of f is:", len(f))Eta = generateEta(code_dict, resultMap)print("The length of Eta is:", len(Eta))print("Eta is:")print(Eta)labelInfo = generatelabelinfo(code_dict, countingResult, resultMap)print("The length of labelInfo is:", len(labelInfo))print("Label info:")print(labelInfo)secret = '0110010000' * 50  # 用于测试的秘密信息embedded = embedinfo(labelInfo, crypt(origindata, 3.6, 0.5), resultMap, secret)print(embedded)huff_code, info1 = extract1(embedded)print("The length of rest of info waiting for extracting is:", len(info1))print(int2bin(100, 8))print(extractpixel(100, 0))# resultMap2, decrypted1, data= extract2(embedded, huff_code, info1, 4)resultMap2, decrypted1, data = extract_exp(embedded, huff_code, info1, len(secret), resultMap)  # 嵌入秘密信息print("The encrypted img is:\n", crypt(origindata, 3.6, 0.5))print("The decrypted1 img is:\n", decrypted1)print(resultMap2)print(resultMap)print(data)if secret == data:print("THE extract is successful!")img1 = crypt(decrypted1, 3.6, 0.5)print("img1 is:\n", img1)'''print("Origin:")print(origindata)print("Detect img:")print(detect(img1))print("Detected origin data:")print(detect(origindata))'''res = img1 - origindataprint("result compare with origin data:\n")print(res)img2 = recovery(img1, resultMap2)print(img2)res = img2 - origindataprint("img2 compares to origin:\n", res)plt.set_cmap(cmap='gray')plt.subplot(221)plt.imshow(origindata)plt.title("Origin imagery")plt.subplot(222)plt.imshow(embedded)plt.title("Embedded imagery")plt.subplot(223)plt.imshow(img1)plt.title("Preliminary decrypted imagine")plt.subplot(224)plt.imshow(img2)plt.title("Fully recovered imagine")plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/173697.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解析实人认证API的工作原理与应用场景

引言 随着数字化时代的不断发展&#xff0c;实人认证技术在各个领域中发挥着越来越重要的作用。其中&#xff0c;实人认证API作为一种先进的技术手段&#xff0c;通过输入姓名、身份证号码和一张人脸照片&#xff0c;与公安库身份证头像进行权威比对&#xff0c;从而返回比对分…

Clion取消double shift(按两下shift键)全局搜索

Clion 取消 double shift&#xff08;按两下 shift 键&#xff09;全局搜索。 如下图所示打开 setting。 点击 advanced setting&#xff0c;搜索 disable&#xff0c;取消勾选左侧复选框&#xff0c;点击 ok。

瑞数五代ast反混淆笔记一

第一部分 瑞数五代ast反混淆笔记一 文章目录 前言一、分析第一层js文件二、转换为switch-case三、效果图总结 前言 瑞数五代的反混淆做了很久了&#xff0c;当时写的很复杂&#xff0c;也没有记笔记&#xff0c;现在看代码都看不懂了&#xff0c;重新归顺下逻辑思路 一、分析第…

数据结构之栈与队列的实现与详细解析

个人主页&#xff1a;点我进入主页 专栏分类&#xff1a;C语言初阶 C语言程序设计————KTV C语言小游戏 C语言进阶 C语言刷题 数据结构初阶 欢迎大家点赞&#xff0c;评论&#xff0c;收藏。 一起努力&#xff0c;一起奔赴大厂。 目录 1.前言 2.栈 2…

ISO27000认证实施意义

在信息化时代&#xff0c;信息安全对于企业至关重要。ISO27000认证作为信息安全管理体系的标准&#xff0c;其实施意义愈发凸显。本文将围绕ISO27000认证&#xff0c;详细解答其实施意义&#xff0c;并探讨ISO27001认证范围、价格、含义以及与ISO27000的关系等。 一、ISO27000…

怎么做excel表格的二维码?文件快速做二维码的教程

Excel表格怎么做成二维码来扫码插看呢&#xff1f;Excel是工作中常用的一种文件格式&#xff0c;想要将表格内容分享给其他人查看&#xff0c;那么将表格生成二维码的方法会更加的方便快捷&#xff0c;其他人只需要扫描二维码就可以查看或者下载文件。表格excel二维码可以通过文…

如何找出excel中两列数据中不同的值(IF函数的用法)

第一部分&#xff0c;举例&#xff1a; 例1&#xff1a; 如下图所示&#xff0c;A列和B列是需要比较的数据&#xff0c;C列为对比规则&#xff1a;IF(A2B2,"是","否") 示例图 例2&#xff1a;给B列的成绩评等级 C列的规则&#xff1a; IF(B2>85,&qu…

【一周安全资讯1125】《工业和信息化领域数据安全行政处罚裁量指引 (试行)》公开征求意见;中国台湾大江生医泄露236GB数据

要闻速览 1、《工业和信息化领域数据安全行政处罚裁量指引 (试行)》公开征求意见 2、年度最大安全事件&#xff1a;MOVEit黑客攻击波及2600多家企业 3、美国核研究实验室遭黑客入侵&#xff0c;数十万个人数据泄漏 4、大英图书馆遭受勒索攻击&#xff0c;业务完全恢复需要数周…

Matplotlib画图接口_Python数据分析与可视化

Matplotlib画图接口 导入matplotlib显示图像画图接口 导入matplotlib 和numpy,pandas一样&#xff0c;在导入matplotlib时我们也可以用一些常用的简写形式&#xff1a; import matplotlib as mpl import matplotlib.pyplot as pltpyplot是最常用的画图模块接口&#xff0c;功…

哈希表、哈希冲突解决办法

文章目录 一、什么是哈希表&#xff1f;二、什么是哈希冲突&#xff1f;怎样解决&#xff1f;三、哈希表的大小为什么是质数&#xff1f;四、链表法五、开放地址法线性探测法平方探测法双哈希(Double Hashing) 六、哈希表满了怎么办&#xff1f;七、完美哈希八、一些使用哈希解…

机器学习基础Matplotlib绘图

一、运行环境 学习工具&#xff1a;jupyter-notebookpython版本&#xff1a;311系统&#xff1a;Win11 二、什么是matplotlib&#xff1f; matplotlib是基于python生态开发的一个可视化绘图库&#xff0c;它的出现让python在数据分析及机器学习方面占了重要的一部分&#…

springBoot的实现原理;SpringBoot是什么;使用SpringBoot的核心功能;springBoot核心注解以及核心配置文件

文章目录 springBootspringBoot的实现原理什么是 Spring Boot&#xff1f;SpringBoot是什么为什么要使用springBootSpring Boot的核心功能Spring Boot 主要有如下优点&#xff1a; SpringBoot启动过程-流程Spring Boot 的核心注解是哪个&#xff1f;什么是 JavaConfig&#xff…

echarts 通用线性渐变堆叠面积图

echarts 通用线性渐变堆叠面积图 getLineData2() {const myChart echarts.init(this.$refs.chartDom);const option {tooltip: {trigger: axis,},legend: {show: false,textStyle: {fontSize: 14, //字体大小color: #ffffff, //字体颜色},data: [AAA, BBB],},grid: {show: tr…

汽车功能安全ISO26262

一、功能安全基本概念及功能安全管理 什么是功能安全 相关标准&#xff1a; 现状&#xff1a; 功能安全的目的和范围&#xff1a; 总体框架&#xff1a; 基本定义&#xff1a;

TypeError: ‘_io.TextIOWrapper’ object is not subscriptable

TypeError: ‘_io.TextIOWrapper’ object is not subscriptable表示文件不能用下标进行索引。改正代码如下即可正常运行&#xff1a; 错误代码示范&#xff1a; file_name /test.txt with open(file_name,r, encodingutf-8) as name:a name[1] #取name的第二行数据 改正之…

下载文件并重命名

//下载文件并重命名 // 无需数字化归档模版下载 function nodigitalMeth(){ let filenameunescape("/projectapp/ghsjy/template/noNeedDigital.docx")//原文件为英文名字 downloadFileRename(filename,"无需成果数据汇交模版") } // 需要数字化归档模版下…

有哪些可信的SSL证书颁发机构?

目前市面上所显示的SSL证书颁发机构可所谓不计其数&#xff0c;类型也是多样&#xff0c;就好比我们同样是买一件T恤&#xff0c;却有百家不同类型的店铺一个道理。根据CA里面看似很多&#xff0c;但能拿到99%浏览器及设备信任度的寥寥无几&#xff0c;下面小编整理出几家靠谱可…

MySQL 教程 1.3

上期网友笔记整理 记录 MySQL 学习过程遇到的问题。 系统&#xff1a;win32 位 MySQL 版本&#xff1a;5.7.17-log MySQL 语法对大小写不敏感&#xff0c;但是大写更容易看出。 一、启动关闭MySQL服务 1【开始菜单】搜索 services.msc 打开 windows【服务管理器】&#xf…

docker (简介、dcoker详细安装步骤、常用命令)- day01

一、 为什么出现 Docker是基于Go语言实现的云开源项目。 Docker的主要目标是“Build&#xff0c;Ship and Run Any App,Anywhere”&#xff0c;也就是通过对应用组件的封装、分发、部署、运行等生命周期的管理&#xff0c;使用户的APP&#xff08;可以是一个WEB应用或数据库应…

【代码】考虑电解槽变载启停特性与阶梯式碳交易机制的综合能源系统优化调度matlab-yalmip-cplex/gurob

程序名称&#xff1a;考虑电解槽变载启停特性与阶梯式碳交易机制的综合能源系统优化调度 实现平台&#xff1a;matlab-yalmip-cplex/gurobi 代码简介&#xff1a;提出了一种考虑 变载启停特性的电解槽混合整数线性模型&#xff0c;根据电 氢负荷可以实时调整设备工作状态&…