卷积神经网络(Inception-ResNet-v2)交通标志识别

文章目录

  • 一、前言
  • 二、前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
    • 2. 导入数据
    • 3. 查看数据
  • 二、构建一个tf.data.Dataset
    • 1.加载数据
    • 2. 配置数据集
  • 三、构建Inception-ResNet-v2网络
    • 1.自己搭建
    • 2.官方模型
  • 五、设置动态学习率
  • 六、训练模型
  • 七、模型评估
  • 八、模型的保存与加载
  • 九、预测

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别
  • 卷积神经网络(AlexNet)鸟类识别
  • 卷积神经网络(CNN)识别验证码

来自专栏:机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL,pathlib# 设置随机种子尽可能使结果可以重现
import pandas as pd
import numpy  as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,models
# 导入图片数据
pictures_dir = "images"
pictures_dir = pathlib.Path("pictures_dir")# 导入训练数据的图片路径名及标签
train = pd.read_csv("annotations.csv")

3. 查看数据

image_count = len(list(pictures_dir.glob('*.png')))
print("图片总数为:",image_count)
图片总数为: 5998
train.head()
file_namecategory
0000_0001.png0
1000_0002.png0
2000_0003.png0
3000_0010.png0
4000_0011.png0

二、构建一个tf.data.Dataset

1.加载数据

数据集中已经划分好了测试集与训练集,这次只需要进行分别加载就好了。

def preprocess_image(image):image = tf.image.decode_jpeg(image, channels=3)  # 编码解码处理image = tf.image.resize(image, [299,299])        # 图片调整return image/255.0                               # 归一化处理def load_and_preprocess_image(path):image = tf.io.read_file(path)return preprocess_image(image)
AUTOTUNE = tf.data.experimental.AUTOTUNE
common_paths = "images/"# 训练数据的标签
train_image_label = [i for i in train["category"]]
train_label_ds = tf.data.Dataset.from_tensor_slices(train_image_label)# 训练数据的路径
train_image_paths = [ common_paths+i for i in train["file_name"]]
# 加载图片路径
train_path_ds = tf.data.Dataset.from_tensor_slices(train_image_paths)
# 加载图片数据
train_image_ds = train_path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
# 将图片与标签进行对应打包
image_label_ds = tf.data.Dataset.zip((train_image_ds, train_label_ds))
image_label_ds
plt.figure(figsize=(20,4))for i in range(20):plt.subplot(2,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)# 显示图片images = plt.imread(train_image_paths[i])plt.imshow(images)# 显示标签plt.xlabel(train_image_label[i])plt.show()

在这里插入图片描述

2. 配置数据集

BATCH_SIZE = 6# 将训练数据集拆分成训练集与验证集
train_ds = image_label_ds.take(5000).shuffle(1000)  # 前1500个batch
val_ds   = image_label_ds.skip(5000).shuffle(1000)  # 跳过前1500,选取后面的train_ds = train_ds.batch(BATCH_SIZE)
train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)val_ds = val_ds.batch(BATCH_SIZE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
val_ds
# 查看数据 shape 进行检查
for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(6, 299, 299, 3)
(6,)
# 再次查看数据,确认是否被打乱
plt.figure(figsize=(8,8))for images, labels in train_ds.take(1):for i in range(6):ax = plt.subplot(4, 3, i + 1)  plt.imshow(images[i])plt.title(labels[i].numpy())  #使用.numpy()将张量转换为 NumPy 数组plt.axis("off")

在这里插入图片描述

三、构建Inception-ResNet-v2网络

1.自己搭建

下面是本文的重点 InceptionResNetV2 网络模型的构建,可以试着按照上面的图自己构建一下 InceptionResNetV2,这部分我主要是参考官网的构建过程,将其单独拎了出来。

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, Dense, Flatten, Dropout,BatchNormalization,Activation
from tensorflow.keras.layers import MaxPooling2D, AveragePooling2D, Concatenate, Lambda,GlobalAveragePooling2D
from tensorflow.keras import backend as Kdef conv2d_bn(x,filters,kernel_size,strides=1,padding='same',activation='relu',use_bias=False,name=None):x = Conv2D(filters,kernel_size,strides=strides,padding=padding,use_bias=use_bias,name=name)(x)if not use_bias:bn_axis = 1 if K.image_data_format() == 'channels_first' else 3bn_name = None if name is None else name + '_bn'x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)if activation is not None:ac_name = None if name is None else name + '_ac'x = Activation(activation, name=ac_name)(x)return xdef inception_resnet_block(x, scale, block_type, block_idx, activation='relu'):if block_type == 'block35':branch_0 = conv2d_bn(x, 32, 1)branch_1 = conv2d_bn(x, 32, 1)branch_1 = conv2d_bn(branch_1, 32, 3)branch_2 = conv2d_bn(x, 32, 1)branch_2 = conv2d_bn(branch_2, 48, 3)branch_2 = conv2d_bn(branch_2, 64, 3)branches = [branch_0, branch_1, branch_2]elif block_type == 'block17':branch_0 = conv2d_bn(x, 192, 1)branch_1 = conv2d_bn(x, 128, 1)branch_1 = conv2d_bn(branch_1, 160, [1, 7])branch_1 = conv2d_bn(branch_1, 192, [7, 1])branches = [branch_0, branch_1]elif block_type == 'block8':branch_0 = conv2d_bn(x, 192, 1)branch_1 = conv2d_bn(x, 192, 1)branch_1 = conv2d_bn(branch_1, 224, [1, 3])branch_1 = conv2d_bn(branch_1, 256, [3, 1])branches = [branch_0, branch_1]else:raise ValueError('Unknown Inception-ResNet block type. ''Expects "block35", "block17" or "block8", ''but got: ' + str(block_type))block_name = block_type + '_' + str(block_idx)mixed = Concatenate(name=block_name + '_mixed')(branches)up = conv2d_bn(mixed,K.int_shape(x)[3],1,activation=None,use_bias=True,name=block_name + '_conv')x = Lambda(lambda inputs, scale: inputs[0] + inputs[1] * scale,output_shape=K.int_shape(x)[1:],arguments={'scale': scale},name=block_name)([x, up])if activation is not None:x = Activation(activation, name=block_name + '_ac')(x)return xdef InceptionResNetV2(input_shape=[299,299,3],classes=1000):inputs = Input(shape=input_shape)# Stem blockx = conv2d_bn(inputs, 32, 3, strides=2, padding='valid')x = conv2d_bn(x, 32, 3, padding='valid')x = conv2d_bn(x, 64, 3)x = MaxPooling2D(3, strides=2)(x)x = conv2d_bn(x, 80, 1, padding='valid')x = conv2d_bn(x, 192, 3, padding='valid')x = MaxPooling2D(3, strides=2)(x)# Mixed 5b (Inception-A block)branch_0 = conv2d_bn(x, 96, 1)branch_1 = conv2d_bn(x, 48, 1)branch_1 = conv2d_bn(branch_1, 64, 5)branch_2 = conv2d_bn(x, 64, 1)branch_2 = conv2d_bn(branch_2, 96, 3)branch_2 = conv2d_bn(branch_2, 96, 3)branch_pool = AveragePooling2D(3, strides=1, padding='same')(x)branch_pool = conv2d_bn(branch_pool, 64, 1)branches = [branch_0, branch_1, branch_2, branch_pool]x = Concatenate(name='mixed_5b')(branches)# 10次 Inception-ResNet-A blockfor block_idx in range(1, 11):x = inception_resnet_block(x, scale=0.17, block_type='block35', block_idx=block_idx)# Reduction-A blockbranch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid')branch_1 = conv2d_bn(x, 256, 1)branch_1 = conv2d_bn(branch_1, 256, 3)branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid')branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)branches = [branch_0, branch_1, branch_pool]x = Concatenate(name='mixed_6a')(branches)# 20次 Inception-ResNet-B blockfor block_idx in range(1, 21):x = inception_resnet_block(x, scale=0.1, block_type='block17', block_idx=block_idx)# Reduction-B blockbranch_0 = conv2d_bn(x, 256, 1)branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid')branch_1 = conv2d_bn(x, 256, 1)branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid')branch_2 = conv2d_bn(x, 256, 1)branch_2 = conv2d_bn(branch_2, 288, 3)branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid')branch_pool = MaxPooling2D(3, strides=2, padding='valid')(x)branches = [branch_0, branch_1, branch_2, branch_pool]x = Concatenate(name='mixed_7a')(branches)# 10次 Inception-ResNet-C blockfor block_idx in range(1, 10):x = inception_resnet_block(x, scale=0.2, block_type='block8', block_idx=block_idx)x = inception_resnet_block(x, scale=1., activation=None, block_type='block8', block_idx=10)x = conv2d_bn(x, 1536, 1, name='conv_7b')x = GlobalAveragePooling2D(name='avg_pool')(x)x = Dense(classes, activation='softmax', name='predictions')(x)# 创建模型model = Model(inputs, x, name='inception_resnet_v2')return modelmodel = InceptionResNetV2([299,299,3],58)
model.summary()

2.官方模型

# import tensorflow as tf
# # 如果使用官方模型需要将图片shape调整为 [299,299,3],目前图片的shape是 [150,150,3]
# model = tf.keras.applications.inception_resnet_v2.InceptionResNetV2()
# model.summary()

五、设置动态学习率

这里先罗列一下学习率大与学习率小的优缺点。

  • 学习率大
    • 优点: 1、加快学习速率。 2、有助于跳出局部最优值。
    • 缺点: 1、导致模型训练不收敛。 2、单单使用大学习率容易导致模型不精确。
  • 学习率小
    • 优点: 1、有助于模型收敛、模型细化。 2、提高模型精度。
    • 缺点: 1、很难跳出局部最优值。 2、收敛缓慢。

注意:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics=['accuracy'])

六、训练模型

Inception-ResNet-v2 模型相对之前的模型较为复杂,故而运行耗时也更长,我这边每一个epoch运行时间是130s左右。我的GPU配置是 NVIDIA GeForce RTX 3080。建议大家先将 epochs 调整为1跑通程序。

epochs = 10history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/10
834/834 [==============================] - 154s 163ms/step - loss: 2.5214 - accuracy: 0.3563 - val_loss: 1.3834 - val_accuracy: 0.6168
Epoch 2/10
834/834 [==============================] - 133s 159ms/step - loss: 0.9230 - accuracy: 0.7522 - val_loss: 0.5457 - val_accuracy: 0.8531
Epoch 3/10
834/834 [==============================] - 133s 159ms/step - loss: 0.3952 - accuracy: 0.9105 - val_loss: 0.3391 - val_accuracy: 0.9064
Epoch 4/10
834/834 [==============================] - 134s 160ms/step - loss: 0.1876 - accuracy: 0.9655 - val_loss: 0.2481 - val_accuracy: 0.9296
Epoch 5/10
834/834 [==============================] - 131s 156ms/step - loss: 0.1071 - accuracy: 0.9862 - val_loss: 0.1265 - val_accuracy: 0.9716
Epoch 6/10
834/834 [==============================] - 128s 153ms/step - loss: 0.0587 - accuracy: 0.9954 - val_loss: 0.0911 - val_accuracy: 0.9794
Epoch 7/10
834/834 [==============================] - 132s 158ms/step - loss: 0.0429 - accuracy: 0.9976 - val_loss: 0.0941 - val_accuracy: 0.9777
Epoch 8/10
834/834 [==============================] - 132s 158ms/step - loss: 0.0306 - accuracy: 0.9980 - val_loss: 0.0955 - val_accuracy: 0.9777
Epoch 9/10
834/834 [==============================] - 133s 158ms/step - loss: 0.0248 - accuracy: 0.9997 - val_loss: 0.0864 - val_accuracy: 0.9794
Epoch 10/10
834/834 [==============================] - 132s 158ms/step - loss: 0.0216 - accuracy: 0.9988 - val_loss: 0.0750 - val_accuracy: 0.9794

七、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

八、模型的保存与加载

# 保存模型
model.save('model/14_model.h5')
# 加载模型
new_model = keras.models.load_model('model/14_model.h5')

九、预测

# 采用加载的模型(new_model)来看预测结果plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in val_ds.take(1):for i in range(6):ax = plt.subplot(2, 3, i + 1)  # 显示图片plt.imshow(images[i])# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测路标predictions = new_model.predict(img_array)plt.title(np.argmax(predictions))plt.axis("off")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/172889.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

rust tokio select!宏详解

rust tokio select!宏详解 简介 本文介绍Tokio中select!的用法,重点是使用过程中可能遇到的问题,比如阻塞问题、优先级问题、cancel safe问题。在Tokio 中,select! 是一个宏,用于同时等待多个异步任务,并在其中任意一…

探索 Vue 中的 bus.$emit:实现组件通信的强大工具

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

运维高级--centos7源码安装Apache

安装必要的依赖项: sudo yum groupinstall "Development Tools" sudo yum install pcre pcre-devel zlib zlib-devel openssl openssl-devel这将安装编译和构建所需的基本工具,以及 Apache HTTP Server 所需的一些依赖项。 下载 Apache HTT…

Pycharm Available Packages显示Noting to show

使用Pycharm安装依赖包时Available packages 页面点击添加按钮后,没有任何包显示,并且无法搜索安装. 在各种网站查看到的方法如下: 1.网络问题,需要添加镜像源 点击Manage Repositories 添加一个可用的镜像源地址即可 2.打开了anaconda(那个绿色圈圈小图标),再点一下把它点…

如何在 Vim 中剪切、复制和粘贴

目录 前言 如何在 Vim 编辑器中复制文本 如何在 Vim 编辑器中剪切文本 如何在 Vim 编辑器中粘贴文本 如何通过选择文本来剪切和复制文本 通过选择文本复制 在 Vim 中选择文本来剪切文本 前言 在本篇 Vim 快速技巧中,你将学习到剪切和复制粘贴的相关知识。 剪…

PgSQL技术内幕-Analyze做的那些事-pg_stat_all_tables

PgSQL技术内幕-Analyze做的那些事-pg_stat_all_tables pg_stat_all_tables视图中记录有analyze信息,比如何时做的analyze、表元组个数(活元组、死元组)等。重启后发现该视图中表的统计信息重置不见了,发生了什么? 1、p…

HarmonyOS开发者工具DevEco Studio-汉化

HarmonyOS DevEco Studio 简介 下载安装及汉化 打开开发者工具 安装语言包重启 然后设置页搜索“chinese”,选中中文语言包,点击后面的install; 或者 汉化按照IDEA的汉法风格,需要安装插件重启就可以汉化,步骤为&…

在云服务器上搭建个人版chatGPT及后端Spring Boot集成chat GPT

原创/朱季谦 本文分成两部分,包括【国内服务器上搭建chat GPT】和【后端Spring Boot集成chat GPT】。 无论是在【国内服务器上搭建chat GPT】和【后端Spring Boot集成chat GPT】,两个方式都需要魔法访问,否则是无法正常使用的,即…

Linux uname命令教程:如何打印linux操作系统名称和硬件的基本信息(附实例教程和注意事项)

Linux uname命令介绍 uname命令是一个在Linux中常用的命令行工具,用于打印有关操作系统名称和系统硬件的基本信息。uname这个名字来源于"UNIX name"。它最常用于确定处理器架构,系统主机名和系统上运行的内核版本。 Linux uname命令适用的Li…

基于SSM的企业订单跟踪管理系统(有报告)。Javaee项目

演示视频: 基于SSM的企业订单跟踪管理系统(有报告)。Javaee项目 项目介绍: 采用M(model)V(view)C(controller)三层体系结构,通过Spring SpringM…

Python---函数的数据---拆包的应用案例(两个变量值互换,*args, **kwargs调用时传递参数用法)

案例: 使用至少3种方式交换两个变量的值 第一种方式:引入一个临时变量 c1 10 c2 2# 引入临时变量temp temp c2 c2 c1 c1 tempprint(c1, c2) 第二种方式:使用加法与减法运算交换两个变量的值(不需要引入临时变量&#xff09…

python--获取每张切片的不同PEF区间值的百分比

在全直径数字岩心中,如何获取每张切片的不同PEF区间值的百分比? import os import datetime from PIL import Image import numpy as np import csv import easygui as gclass Table(object):def __init__(self, table_data_path):self.table_data_path…

ClickHouse中的物化视图

技术主题 技术原理 物化视图(Materialized View)是一种预先计算并缓存结果的视图,存储在磁盘上自动更新,空间换时间的思路。物化视图是一种优化技术,本质上就是为了加速查询操作,降低系统负载&#xff0c…

5、Qt:项目中包含多个子项目(.pro)/子模块(.pri)

一、说明: 在进行项目开发过程中,会涉及子项目/子模块的问题 Qt中使用TEMPLATE subdirs添加多个子项目;子项目可以单独编译生成可执行文件(exe)或者动态链接库(dll)等,供其他模块…

C#学习-9课时

P11 IF判断(上) P11 IF判断(中 ) bool→true or false; 为:变量赋值 为:等于(判断) !为:≠ 优先级:大于 using System; using System.Collections.Generic; using System.Linq; using System.Text; usin…

论文笔记——FasterNet

为了设计快速神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,作者观察到FLOPs的这种减少不一定会带来延迟的类似程度的减少。这主要源于每秒低浮点运算(FLOPS)效率低下。 为了实现更快的网络,作者重新回顾了FLOPs的运算符,并证明了如此低的FLOPS主要是由…

路径规划之D*算法

系列文章目录 路径规划之Dijkstra算法 路径规划之Best-First Search算法 路径规划之A*算法 路径规划之D *算法 路径规划之D*算法 系列文章目录前言一、D*算法1.1 起源1.2 思想1.3 阶段1.4 个人理解1.5 应用 前言 之前说过A是目前应用最广泛的寻路算法,但是A算法存…

深度学习第2天:RNN循环神经网络

☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 介绍 记忆功能对比展现 任务描述 导入库 处理数据 前馈神经网络 循环神经网络 编译与训练模型 模型预测 可能的问题 梯度消失 梯…

【古诗生成AI实战】之一——实战项目总览

[1] 总览 【古诗生成AI实战】系列共五篇文章: 【古诗生成AI实战】之一——实战项目总览   【古诗生成AI实战】之二——项目架构设计   【古诗生成AI实战】之三——任务加载器与预处理器   【古诗生成AI实战】之四——模型包装器与模型的训练   【古诗生成AI…

【双指针】三数之和

三数之和 在做这道题之前,建议建议先将两数之和做完再做,提升更大~ 文章目录 三数之和题目描述算法原理解法一解法二思路如下:处理细节问题: 代码编写Java代码编写C代码编写 15. 三数之和 - 力扣(LeetCode&#xff0…