卷积神经网络(CNN)车牌识别

文章目录

  • 一、前言
  • 二、前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
    • 2. 导入数据
    • 3. 查看数据
    • 3.数据可视化
    • 4.标签数字化
  • 二、构建一个tf.data.Dataset
    • 1.预处理函数
    • 2.加载数据
    • 3.配置数据
  • 三、搭建网络模型
  • 四、设置动态学习率
  • 五、编译
  • 六、训练
  • 八、保存和加载模型
  • 九、预测

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别
  • 卷积神经网络(AlexNet)鸟类识别
  • 卷积神经网络(CNN)识别验证码
  • 卷积神经网络(Inception-ResNet-v2)交通标志识别

来自专栏:机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

数据集链接

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL,random,pathlib# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)
data_dir = "015_licence_plate"
data_dir = pathlib.Path(data_dir)pictures_paths = list(data_dir.glob('*'))
pictures_paths = [str(path) for path in pictures_paths]
pictures_paths[:3]

3. 查看数据

image_count = len(list(pictures_paths))print("图片总数为:",image_count)
图片总数为: 13056
# 获取数据标签
all_label_names = [path.split("_")[-1].split(".")[0] for path in pictures_paths]
all_label_names[:3]
['川W9BR26', '沪E264UD', '浙E198UJ']

3.数据可视化

plt.figure(figsize=(10,5))
plt.suptitle("数据示例",fontsize=15)for i in range(20):plt.subplot(5,4,i+1)plt.xticks([])plt.yticks([])plt.grid(False)# 显示图片images = plt.imread(pictures_paths[i])plt.imshow(images)# 显示标签plt.xlabel(all_label_names[i],fontsize=13)plt.show()

在这里插入图片描述

4.标签数字化

char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\"豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"]number   = [str(i) for i in range(0, 10)]    # 0 到 9 的数字
alphabet = [chr(i) for i in range(65, 91)]   # A 到 Z 的字母char_set       = char_enum + number + alphabet
char_set_len   = len(char_set)
label_name_len = len(all_label_names[0])# 将字符串数字化
def text2vec(text):vector = np.zeros([label_name_len, char_set_len])for i, c in enumerate(text):idx = char_set.index(c)vector[i][idx] = 1.0return vectorall_labels = [text2vec(i) for i in all_label_names]

二、构建一个tf.data.Dataset

1.预处理函数

def preprocess_image(image):image = tf.image.decode_jpeg(image, channels=1)image = tf.image.resize(image, [50, 200])return image/255.0def load_and_preprocess_image(path):image = tf.io.read_file(path)return preprocess_image(image)

2.加载数据

构建 tf.data.Dataset 最简单的方法就是使用 from_tensor_slices 方法。

AUTOTUNE = tf.data.experimental.AUTOTUNEpath_ds  = tf.data.Dataset.from_tensor_slices(pictures_paths)
image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE)
label_ds = tf.data.Dataset.from_tensor_slices(all_labels)image_label_ds = tf.data.Dataset.zip((image_ds, label_ds))
image_label_ds
train_ds = image_label_ds.take(5000).shuffle(5000)  # 前1000个batch
val_ds   = image_label_ds.skip(5000).shuffle(1000)  # 跳过前1000,选取后面的

3.配置数据

BATCH_SIZE = 16train_ds = train_ds.batch(BATCH_SIZE)
train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)val_ds = val_ds.batch(BATCH_SIZE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)
val_ds

三、搭建网络模型

目前这里主要是带大家跑通代码、整理一下思路,大家可以自行优化网络结构、调整模型参数。后续我也会针对性的出一些调优的案例的。

from tensorflow.keras import datasets, layers, modelsmodel = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(50, 200, 1)),#卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样layers.Flatten(),                              #Flatten层,连接卷积层与全连接层
#     layers.Dense(1000, activation='relu'),         #全连接层,特征进一步提取layers.Dense(1000, activation='relu'),         #全连接层,特征进一步提取layers.Dropout(0.3),  layers.Dense(label_name_len * char_set_len),layers.Reshape([label_name_len, char_set_len]),layers.Softmax()                               #输出层,输出预期结果
])
# 打印网络结构
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 48, 198, 32)       320       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 24, 99, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 22, 97, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 11, 48, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 33792)             0         
_________________________________________________________________
dense (Dense)                (None, 1000)              33793000  
_________________________________________________________________
dropout (Dropout)            (None, 1000)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 483)               483483    
_________________________________________________________________
reshape (Reshape)            (None, 7, 69)             0         
_________________________________________________________________
softmax (Softmax)            (None, 7, 69)             0         
=================================================================
Total params: 34,295,299
Trainable params: 34,295,299
Non-trainable params: 0
_________________________________________________________________

四、设置动态学习率

这里先罗列一下学习率大与学习率小的优缺点。

  • 学习率大
    • 优点: 1、加快学习速率。 2、有助于跳出局部最优值。
    • 缺点: 1、导致模型训练不收敛。 2、单单使用大学习率容易导致模型不精确。
  • 学习率小
    • 优点: 1、有助于模型收敛、模型细化。 2、提高模型精度。
    • 缺点: 1、很难跳出局部最优值。 2、收敛缓慢。

注意:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

# 设置初始学习率
initial_learning_rate = 1e-3lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=50,      # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.96,     # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

五、编译

model.compile(optimizer=optimizer,loss='categorical_crossentropy',metrics=['accuracy'])

六、训练

epochs = 50history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)

八、保存和加载模型

# 保存模型
model.save('model/15_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/15_model.h5')

九、预测

def vec2text(vec):"""还原标签(向量->字符串)"""text = []for i, c in enumerate(vec):text.append(char_set[c])return "".join(text)plt.figure(figsize=(10, 8))            # 图形的宽为10高为8for images, labels in val_ds.take(1):for i in range(6):ax = plt.subplot(5, 2, i + 1)  # 显示图片plt.imshow(images[i])# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测验证码predictions = model.predict(img_array)plt.title(vec2text(np.argmax(predictions, axis=2)[0]),fontsize=15)plt.axis("off")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/172092.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

6.1 Windows驱动开发:内核枚举SSDT表基址

SSDT表(System Service Descriptor Table)是Windows操作系统内核中的关键组成部分,负责存储系统服务调用的相关信息。具体而言,SSDT表包含了系统调用的函数地址以及其他与系统服务相关的信息。每个系统调用对应SSDT表中的一个表项…

PWM(PulseWidthModulation)控制

PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值);面积等效原理是PWM技术的重要基础理论&#xff1…

软件工程简明教程

软件工程简明教程 何为软件工程? 1968 年 NATO(北大西洋公约组织)提出了软件危机(Software crisis)一词。同年,为了解决软件危机问题,“软件工程”的概念诞生了。一门叫做软件工程的学科也就应…

电源控制系统架构(PCSA)之电源控制框架概览

目录 6 电源控制框架 6.1 电源控制框架概述 6.1.1 电源控制框架低功耗接口 6.1.2 电源控制框架基础设施组件 6 电源控制框架 电源控制框架是标准基础设施组件、接口和相关方法的集合,可用于构建SoC电源管理所需的基础设施。 本章介绍框架的主要组件和低功耗接…

vue3通过v-model实现父子组件通信

单一值传递 父组件 <template><div ><h1>v-model实现父子组件通讯</h1><hr><child1 v-model"num"></child1><!-- 上下两个是等价的 --><child1 :modelValue"num" update:modelValue"handle&quo…

聚类笔记:HDBSCAN

1 算法介绍 DBSCAN/OPTICS层次聚类主要由以下几步组成 空间变换构建最小生成树构建聚类层次结构(聚类树)压缩聚类树提取簇 2 空间变换 用互达距离来表示两个样本点之间的距离 ——>密集区域的样本距离不受影响——>稀疏区域的样本点与其他样本点的距离被放大——>…

速记:一个TL431应用电路

一个TL431应用电路 仿真结果 输出电压为&#xff1a;5V 负载电阻为&#xff1a; R4 50Ω 如果负载R4加重 显然负载加重&#xff0c;输出就达不到5V. 三极管T1 的作用 没有三极管的情况 同样是保持负载 R 50Ω 可见三极管的作用就是用来放大电流

MYSQL基础之【正则表达式,事务处理】

文章目录 前言MySQL 正则表达式MySQL 事务事务控制语句事务处理方法PHP中使用事务实例 后言 前言 hello world欢迎来到前端的新世界 &#x1f61c;当前文章系列专栏&#xff1a;Mysql &#x1f431;‍&#x1f453;博主在前端领域还有很多知识和技术需要掌握&#xff0c;正在不…

文档向量化工具(二):text2vec介绍

目录 前言 text2vec开源项目 核心能力 文本向量表示模型 本地试用 安装依赖 下载模型到本地&#xff08;如果你的网络能直接从huggingface上拉取文件&#xff0c;可跳过&#xff09; ​运行试验代码 前言 在上一篇文章中介绍了&#xff0c;如何从不同格式的文件里提取…

4.整数输入,并输出变量类型【2023.11.26】

1.问题描述 使用 input 函数读入一个整数&#xff0c;并将该整数输出&#xff0c;并在下一行输出变量类型 2.解决思路 使用 type 函数获取变量类型 输入的内容从 input() 函数获取时&#xff0c;它们是字符串类型。但是&#xff0c;我们需要将其转换为整数类型&#xff0c;以…

Unity-类-Vector

Vector矢量 是一个基本的数学概念,它允许你描述方向和大小。在游戏和应用中,矢量通常用于描述一些基本属性,如角色的位置、物体移动的速度或两个物体之间的距离。 矢量算术是计算机编程很多方面(如图形、物理和动画)的基础,深入了解这一主题对于充分发挥 Unity 的功能很有…

【STM32单片机】自动售货机控制系统设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用STM32F103C8T6单片机控制器&#xff0c;使用OLED显示模块、矩阵按键模块、LED和蜂鸣器、继电器模块等。 主要功能&#xff1a; 系统运行后&#xff0c;OLED显示系统初始界面&#xff0c;可通过…

JavaEE进阶学习:读取和存储对象

到了学习 JavaEE 这块要有一个思想,实现一个功能的时候,先考虑下有没有实现对应功能的注解. 在 Spring 中想要更简单的存储和读取对象的核心是使用注解&#xff0c;也就是我们接下来要学习 Spring 中的相关注解&#xff0c;来存储和读取 Bean 对象 1.存储 Bean 对象 之前我们…

跟着chatgpt一起学|1.spark入门之MLLib

chatgpt在这一章表现的不好&#xff0c;所以我主要用它来帮我翻译文章提炼信息 1.前言 首先找到spark官网里关于MLLib的链接 spark内一共有2种支持机器学习的包&#xff0c; 一种是spark.ml,基于DataFrame的&#xff0c;也是目前主流的 另一种则是spark.mllib,是基于RDD的…

王者荣耀java版

主要功能 键盘W,A,S,D键&#xff1a;控制玩家上下左右移动。按钮一&#xff1a;控制英雄发射一个矩形攻击红方小兵。按钮二&#xff1a;控制英雄发射魅惑技能&#xff0c;伤害小兵并让小兵停止移动。技能三&#xff1a;攻击多个敌人并让小兵停止移动。普攻&#xff1a;对小兵造…

乘法原理 LeetCode 828. 统计子串中的唯一字符

我们定义了一个函数 countUniqueChars(s) 来统计字符串 s 中的唯一字符&#xff0c;并返回唯一字符的个数。 例如&#xff1a;s "LEETCODE" &#xff0c;则其中 "L", "T","C","O","D" 都是唯一字符&#xff0c;…

坚鹏:广州银行清华大学消费金融发展趋势与创新培训圆满结束

广州银行自1996年9月成立以来&#xff0c;依托中国经济腾飞的大好形势&#xff0c;成为国内具有一定知名度与地方特色的商业银行。截至2022年12月末&#xff0c;已开业机构174家&#xff0c;包括总行1家&#xff0c;分行级机构15家(含信用卡中心)、支行152家、信用卡分中心6家&…

通达信视频教程的下载地址

百度网盘 请输入提取码百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固&#xff0c;支持教育网加速&#xff0c;支持手机端。注册使用百度网盘即可享受免费存储空间https://pan.baidu.com/s/12yNV62ROERRzmyqm9u22aQ?pwdgmdx

2023-11-26 事业-代号s-跨境物流-记录

摘要: 2023-11-26 事业-代号s-跨境物流-记录 跨境物流: 【结论】 中小卖家&#xff08;最低适合1个人经营的卖家&#xff09;首选以下两种物流&#xff0c;目前已知的是以下两种&#xff0c;后续有新的发现再更新。 1、云途物流&#xff08;YunExpress&#xff09;&#xff…

【GPT-3.5】通过python调用ChatGPT API与ChatGPT对话交流

文章目录 一、引言二、AIGC简介三、OpenAI介绍四、GPT-3.5介绍五、获得OpenAI API Key六、调用ChatGPT API实现与ChatGPT对话七、参考链接 一、引言 ChatGPT 的火爆&#xff0c;成功带火了AIGC&#xff0c;让它进入大众的视野。 ChatGPT 和Whisper API 开发者现在可以通过API将…