Linux - 系统调用(syscall)

说明

  • 基于riscv64 soc + linux_5.10.4平台,通过新增一个系统调用深入了解下系统调用实现原理。

简介

  • Linux 软件运行环境分为用户空间和内核空间,默认情况下,用户进程无法访问内核,既不能访问内核所在的内存空间,也不能调用内核中的函数。
  • 为了给应用层提供系统支持,Linux提供了一组系统调用接口,用户可以通过调用它们访问linux内核的数据和函数。
  • Linux系统调用实现原理是固定,不同平台(arm64,riscv)只是切换至内核态的汇编指令不同,大致原理如下:
  1. 程序将系统调用参数填充到对应的平台通用寄存器。
  2. 调用平台特定的汇编指令,触发同步异常,切换至内核态运行。
  3. 内核初始化时已设置异常向量表,应用层触发同步异常后,CPU会跳到异常向量表对应的异常处理执行(通常是一段平台相关的汇编代码)。
  4. 异常处理代码会检查系统调用号是否超出,未超出,再根据定义的系统调用表(sys_call_table)找到相应的系统调用函数入口地址,执行后,再通过汇编指令返回应用层。
  • 新增系统调用,实现步骤,如下:
  1. 修改系统调用表(syscall_table),新增一项。
  2. 系统调用声明。
  3. 系统调用实现。

修改系统调用表

  • 系统调用表(syscall_table)定义如下:
// file: arch/riscv/kernel/syscall_table.c
#undef __SYSCALL
#define __SYSCALL(nr, call)     [nr] = (call),const void *sys_call_table[__NR_syscalls] = {[0 ... __NR_syscalls - 1] = sys_ni_syscall,
#include <asm/unistd.h> //通过unistd.h导入实际定义
};
  • asm/unistd.h最终定义,如下:
//file: include/uapi/asm-generic/unistd.h 
...
#define __NR_openat2 437     //系统调用openat2 编号
__SYSCALL(__NR_openat2, sys_openat2) //系统调用openat2 syscall_table项定义
#define __NR_pidfd_getfd 438
__SYSCALL(__NR_pidfd_getfd, sys_pidfd_getfd)
#define __NR_faccessat2 439
__SYSCALL(__NR_faccessat2, sys_faccessat2)
#define __NR_process_madvise 440
__SYSCALL(__NR_process_madvise, sys_process_madvise)#undef __NR_syscalls
#define __NR_syscalls 441 //系统调用表 项个数
...
  • 新增一项系统调用(mytest)
diff --git a/include/uapi/asm-generic/unistd.h b/include/uapi/asm-generic/unistd.h
index 15279e8d8..7df066dc5 100644
--- a/include/uapi/asm-generic/unistd.h
+++ b/include/uapi/asm-generic/unistd.h
@@ -860,8 +860,11 @@ __SYSCALL(__NR_faccessat2, sys_faccessat2)#define __NR_process_madvise 440__SYSCALL(__NR_process_madvise, sys_process_madvise)+#define __NR_mytest 441
+__SYSCALL(__NR_mytest, sys_mytest)
+#undef __NR_syscalls
-#define __NR_syscalls 441
+#define __NR_syscalls 442

系统调用声明

  • 新增系统调用需要先声明,否则内核编译时会报错(找不到新增系统调用声明)。
//file: include/linux/syscalls.h
....
asmlinkage long sys_madvise(unsigned long start, size_t len, int behavior);
asmlinkage long sys_process_madvise(int pidfd, const struct iovec __user *vec,size_t vlen, int behavior, unsigned int flags);
....
+asmlinkage long sys_mytest(int id); //新增系统调用声明

系统调用实现

  • 实现系统调用时,不能像实现普通函数一样,需要使用SYSCALL_DEFINE宏,如:系统调用madvise,定义时使用SYSCALL_DEFINE3宏,宏展开后就是sys_madvise。
//file: mm/madvise.c
SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
{                       return do_madvise(current->mm, start, len_in, behavior);
}int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
{        ....//实际功能实现....
}
  • SYSCALL_DEFINE 宏定义
//file: include/linux/syscalls.h
#ifndef SYSCALL_DEFINE0         
#define SYSCALL_DEFINE0(sname)                                  \SYSCALL_METADATA(_##sname, 0);                          \asmlinkage long sys_##sname(void);                      \ALLOW_ERROR_INJECTION(sys_##sname, ERRNO);              \asmlinkage long sys_##sname(void)
#endif /* SYSCALL_DEFINE0 */#define SYSCALL_DEFINE1(name, ...) SYSCALL_DEFINEx(1, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE2(name, ...) SYSCALL_DEFINEx(2, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE4(name, ...) SYSCALL_DEFINEx(4, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE5(name, ...) SYSCALL_DEFINEx(5, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)#define SYSCALL_DEFINE_MAXARGS  6#define SYSCALL_DEFINEx(x, sname, ...)                          \SYSCALL_METADATA(sname, x, __VA_ARGS__)                 \__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)#define __PROTECT(...) asmlinkage_protect(__VA_ARGS__)
  1. 系统调用最多支持6个参数,1个参数使用SYSCALL_DEFINE1,2个参数使用SYSCALL_DEFINE2,以此类推。
  • 新系统调用
// file: mm/madvise.c ,随便找了一个文件保存代码
SYSCALL_DEFINE1(mytest, int, id)
{return id; //测试将id返回
}

应用层测试

  • 编译并运行新内核后,可运行应用层程序验证。
int main(void) 
{int id = 0;id = syscall(441, 100);printf("result : %d\n", id);return 0;
}~# ./mytest 
result : 100

标准C库

  • 程序中调用的syscall来自标准C库,根据源码可知:应用层系统调用接口是封装的syscall。
  • 当前使用的标准C库(musl)syscall源码如下:
//file: musl-1.2.1/arch/riscv64/syscall_arch.h
...
#define __asm_syscall(...) \__asm__ __volatile__ ("ecall\n\t" \: "=r"(a0) : __VA_ARGS__ : "memory"); \return a0; \static inline long __syscall0(long n)
{register long a7 __asm__("a7") = n;register long a0 __asm__("a0");__asm_syscall("r"(a7))
}
...
static inline long __syscall6(long n, long a, long b, long c, long d, long e, long f)
{register long a7 __asm__("a7") = n;register long a0 __asm__("a0") = a;register long a1 __asm__("a1") = b;register long a2 __asm__("a2") = c;register long a3 __asm__("a3") = d;register long a4 __asm__("a4") = e;register long a5 __asm__("a5") = f;__asm_syscall("r"(a7), "0"(a0), "r"(a1), "r"(a2), "r"(a3), "r"(a4), "r"(a5))
}
  • 可知:
  1. riscv64最终使用汇编指令ecall,触发同步异常,切换至内核态执行。
  2. 使用通用寄存器a7 存储系统调用编号
  3. 和内核定义一致,syscall支持0 ~ 6个参数(__syscall0 ~ __syscall6 ),使用寄存器a0 ~ a5传递参数。
  • ARM64实现原理也是一样,不同的只是触发异常的指令(svc)以及通用寄存器的使用,如下:
#define __asm_syscall(...) do { \__asm__ __volatile__ ( "svc 0" \: "=r"(x0) : __VA_ARGS__ : "memory", "cc"); \return x0; \} while (0)static inline long __syscall0(long n)
{register long x8 __asm__("x8") = n;register long x0 __asm__("x0");__asm_syscall("r"(x8));
}
...
static inline long __syscall6(long n, long a, long b, long c, long d, long e, long f)
{register long x8 __asm__("x8") = n;register long x0 __asm__("x0") = a;register long x1 __asm__("x1") = b;register long x2 __asm__("x2") = c;register long x3 __asm__("x3") = d;register long x4 __asm__("x4") = e;register long x5 __asm__("x5") = f;__asm_syscall("r"(x8), "0"(x0), "r"(x1), "r"(x2), "r"(x3), "r"(x4), "r"(x5));
}

总结

  1. 系统调用是安全的,执行时,应用层没有访问内核空间。
  2. 系统调用执行时,应用层暂停,切换至内核空间执行。
  3. 系统调用执行时,是通过平台相关的特定汇编指令触发同步异常,riscv64是使用ecall,aarch64是使用svc 0,Intel CPU由中断0x80实现。
  • CPU会跳转到对应的异常处理,源码如下:
//file: arch/riscv/kernel/entry.S
....
ENTRY(handle_exception) //对应的异常处理....
check_syscall_nr:/* Check to make sure we don't jump to a bogus syscall number. */li t0, __NR_syscallsla s0, sys_ni_syscall/** Syscall number held in a7.* If syscall number is above allowed value, redirect to ni_syscall.*/bgeu a7, t0, 3f
#ifdef CONFIG_COMPATREG_L s0, PT_STATUS(sp)srli s0, s0, SR_UXL_SHIFTandi s0, s0, (SR_UXL >> SR_UXL_SHIFT)li t0, (SR_UXL_32 >> SR_UXL_SHIFT)sub t0, s0, t0bnez t0, 1f/* Call compat_syscall */la s0, compat_sys_call_tablej 2f
1:
#endif/* Call syscall */la s0, sys_call_table
2:slli t0, a7, RISCV_LGPTRadd s0, s0, t0REG_L s0, 0(s0)
3:jalr s0ret_from_syscall:
....
  1. 内核态调用对应的系统调用函数,执行完后,会退出内核态切换至用户态,如上 ret_from_syscall。
  • 此过程 aarch64平台是由eret汇编指令实现,和arm trustzone机制 bl31切换至非安全world(REE)以及切换至安全world(bl32)实现流程是一样的,riscv64 平台,具体指令暂不明。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/171833.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从范式标准谈一下OLTP和OLAP的区别

背景 在传统的OLAP和OLTP数据库的主要差别中&#xff0c;我们从数据组积的抽象层面看下两者的区别 范式上的区别 传统的OLTP数据库和OLAP数据库的在范式上重要的差异&#xff0c;传统的OLTP数据库是为进行事务处理服务的&#xff0c;其表结构遵循E-R关系模型&#xff0c;并且…

深入了解Java中SQL优化的关键技巧与实践

引言 介绍SQL优化对于Java应用性能的重要性&#xff0c;并概述本文将要讨论的内容。 1. 编写高效的SQL语句 - **索引的类型与使用&#xff1a;** 解释B-Tree索引、哈希索引等类型的区别&#xff0c;以及如何根据查询需求合理创建和使用索引。 - **查询优化器&#xff1a;** 说明…

【全栈开发】全栈开发框架/库

blitz https://github.com/blitz-js/blitzNext.js缺少的Fullstack工具包Blitz继承了Next.js的不足&#xff0c;为全球应用程序的交付和扩展提供了经过战斗测试的库和约定。 Redwoodjs https://github.com/redwoodjs/redwood初创企业应用程序框架Redwood是一个固执己见的、全…

python 点云las生成深度图

一、代码实现 import laspy import cv2 import numpy as np import matplotlib.pyplot as plt# 相机内参 CAM_WID, CAM_HGT = 475, 475 # 深度图尺寸 CAM_FX, CAM_FY = 5.2640790081811531e+02, 5.2616047137164196e+02 # fx/fy

DDD落地:从阿里单据系统,看DDD在大厂如何落地?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格&#xff0c;遇到很多很重要的面试题&#xff1a; 谈谈你的DDD落地经验&#xff1f; 谈谈你对DDD的理解&#x…

职场份子钱随不随?这20个真相你需要知道!

职场份子钱随不随&#xff1f;这20个真相你需要知道&#xff01; 1.千万不要在老婆面前夸小姨子水灵。 2.盖世功劳&#xff0c;当不得一个矜字&#xff1b;弥天罪过&#xff0c;当不得一个悔字。 3.愚蠢的人永远只会根据答案判断难度。 4.改变自己的是神&#xff0c;企图改…

【数据库】表的连接在执行时的算法解析,嵌套循环连接算法的几种实现,多表连接中表的数量会影响什么

嵌套循环连接 ​专栏内容&#xff1a; 手写数据库toadb 本专栏主要介绍如何从零开发&#xff0c;开发的步骤&#xff0c;以及开发过程中的涉及的原理&#xff0c;遇到的问题等&#xff0c;让大家能跟上并且可以一起开发&#xff0c;让每个需要的人成为参与者。 本专栏会定期更新…

[论文阅读]CBAM——代码实现和讲解

CBAM 论文网址&#xff1a;CBAM 论文代码&#xff1a;CBAM 本文提出了一种卷积块注意力模块&#xff08;CBAM&#xff09;&#xff0c;它是卷积神经网络&#xff08;CNN&#xff09;的一种轻量级、高效的注意力模块。该模块沿着通道和空间两个独立维度依次推导注意力图&#x…

每日一题2023.11.26——打印沙漏【PTA】

题目要求&#xff1a; 本题要求你写个程序把给定的符号打印成沙漏的形状。例如给定17个“*”&#xff0c;要求按下列格式打印 ************ *****所谓“沙漏形状”&#xff0c;是指每行输出奇数个符号&#xff1b;各行符号中心对齐&#xff1b;相邻两行符号数差2&#xff1b;…

初级JVM

1、对象在哪块内存分配&#xff1f; 数组和对象在堆内存分配&#xff1b;某些对象没有逃逸出方法&#xff0c;可能被优化为在栈上分配 2、谈谈 JVM 中的常量池 JDK 1.8 开始 字符串常量池&#xff1a;存放在堆中&#xff0c;包括 String 对象执行 intern() 方法后存的地方、…

设计一个算法,将链表中所有结点的链接方向“原地”逆转,即要求仅利用原表的存储空间,换句话说,要求算法的空间复杂度为O(1)

设计一个算法&#xff0c;将链表中所有结点的链接方向“原地”逆转&#xff0c;即要求仅利用原表的存储空间&#xff0c;换句话说&#xff0c;要求算法的空间复杂度为O&#xff08;1&#xff09; 代码思路&#xff1a; 这里要求不用额外空间&#xff0c;那么就要考虑链表自身的…

Liunx系统使用超详细(一)

目录 一、Liunx系统的认识 二、Liunx和Windows区别 三、Liunx命令提示符介绍 四、Liunx目录结构 一、Liunx系统的认识 Linux系统是一种开源的、类Unix操作系统内核的实现&#xff0c;它基于Unix的设计原理和思想&#xff0c;并在全球范围内广泛应用。以下是对Linux系统的详…

解决多选删除页面不同步问题

多选删除一般有两种情况&#xff1a; 1&#xff0c;删除接口支持传多个id&#xff0c;这是最理想的方法&#xff0c;建议大家积极与后端进行沟通解决。之后只需要判断接口回调刷新页面即可&#xff01; 2&#xff0c;删除接口不支持传多个id&#xff0c;这就是接下来我们要处…

MVCC多版本并发控制相关面试题整理

多版本并发控制是一种用于支持并发事务的数据库管理系统技术&#xff0c;它允许多个事务同时访问数据库&#xff0c;而不会相互干扰或导致数据不一致。MVCC通过在数据库中维护不同版本的数据来实现这一目标&#xff0c;从而允许每个事务看到一致的数据库快照。 并发导致的问题…

【数据结构】树与二叉树(廿二):树和森林的遍历——后根遍历(递归算法PostOrder、非递归算法NPO)

文章目录 5.1 树的基本概念5.1.1 树的定义5.1.2 森林的定义5.1.3 树的术语 5.2 二叉树5.3 树5.3.1 树的存储结构1. 理论基础2. 典型实例3. Father链接结构4. 儿子链表链接结构5. 左儿子右兄弟链接结构 5.3.2 获取结点的算法5.3.3 树和森林的遍历1. 先根遍历&#xff08;递归、非…

LuatOS-SOC接口文档(air780E)--protobuf - ProtoBuffs编解码

示例 -- 加载 pb 文件, 这个是从pbtxt 转换得到的 -- 转换命令: protoc.exe -operson.pb --cpp_outcpp person.pbtxt -- protoc.exe 下载地址: https://github.com/protocolbuffers/protobuf/releases protobuf.load(io.readFile("/luadb/person.pb")) local tb {n…

qt5.15.2及6.0以上版本安装

文章目录 下载在线安装器安装打开软件 下载在线安装器 因为从qt5.15开始不支持离线下载安装了&#xff0c;只能通过在线安装的方式进行安装。 下载在线安装下载器&#xff1a; 这个在线安装下载器网上也都是可以找到。 这里是其放到网盘上的下载地址&#xff1a; 链接&#x…

DL Homework 8

目录 习题5-2 证明宽卷积具有交换性&#xff0c; 即公式(5.13)&#xff0e; 习题5-4 对于一个输入为100 100 256的特征映射组&#xff0c; 使用3 3的卷积核&#xff0c; 输出为100 100 256的特征映射组的卷积层&#xff0c; 求其时间和空间复杂度&#xff0e; 如果引入一…

Openwrt linux 启动流程

OpenWRT 启动流程 内核启动过程&#xff1a;【/init/mian.c】 Uboot --> start_kernel() --> rest_init() --> kernel_thread(kernel_init) --> kernel_init_freeable() 初始化过程&#xff1a; Linux Kernel(kernel_init) --> /etc/preinit --> /sbin/in…

视频号小店入驻需要多少资金?入驻费用详解!

我是电商珠珠 视频号团队在22年7月的时候&#xff0c;开始发展自己的电商平台-视频号小店。 这一消息在电商圈不胫而走&#xff0c;我也是从10月开始转向视频号小店&#xff0c;目前已经拥有了属于自己的视频号小店运营团队。 很多想要做视频号小店的新手&#xff0c;都会跑…