一篇文章完成Hbase入门

文章目录

    • 一、简介
      • 1、数据模型结构
      • 2、物理存储结构
      • 3、数据模型
      • 4、基本架构
    • 二、安装
      • 1、下载解压安装包
      • 2、修改配置文件
      • 3、启动服务(单机、集群)
      • 4、配置高可用(HA)
    • 三、命令行操作
      • 1、建表
      • 2、新增/更新数据
      • 3、查看表数据
      • 4、删除数据
      • 5、修改默认保存的数据版本
    • 四、架构
      • 1、RegionServer 架构
      • 2、写流程
      • 3、MemStore Flush
      • 4、读流程
      • 5、Region Split(Region切分)
    • 五、API
      • 1、获取链接
      • 2、获取Table对象
      • 3、Put
      • 4、Get
      • 5、Scan
      • 6、Delete删除
      • 7、完整代码
    • 六、HBase使用设计
      • 1、预分区
      • 2、RowKey设计
      • 3、内存优化
      • 4、基础优化


一、简介

HBase是一种分布式、可扩展、支持海量数据存储的NoSQL数据库。

1、数据模型结构

逻辑上,HBase的数据模型同关系型数据库很类似,数据存储在一张表中,有行有列。但从HBase的底层物理存储结构(K-V)来看,HBase更像是一个multi-dimensional map(多维地图)

HBase逻辑结构

在这里插入图片描述

2、物理存储结构

在这里插入图片描述

3、数据模型

  • Name Space:命名空间
  • Table:表
  • Row:行
  • RowKey:
  • Column Family:列簇
  • Column Qualifier
  • Time Stamp:版本(时间戳)
  • Cell:单元格
  • Region:若干行(按行划分存储)

1)Name Space

命名空间,类似于关系型数据库的database概念,每个命名空间下有多个表。HBase两个自带的命名空间,分别是hbase和default,hbase中存放的是HBase内置的表,default表是用户默认使用的命名空间。一个表可以自由选择是否有命名空间,如果创建表的时候加上了命名空间后,这个表名字以<Namespace>:<Table>作为区分。

2)Table

类似于关系型数据库的表概念。不同的是,HBase定义表时只需要声明列族即可,不需要声明具体的列。这意味着,往HBase写入数据时,字段可以动态、按需指定。因此,和关系型数据库相比,HBase能够轻松应对字段变更的场景。

3)Row

HBase表中的每行数据都由一个RowKey和多个Column(列)组成,数据是按照RowKey的字典顺序存储的,并且查询数据时只能根据RowKey进行检索,所以RowKey的设计十分重要。

4) RowKey

Rowkey由用户指定的一串不重复的字符串定义,是一行的唯一标识!数据是按照RowKey的字典顺序存储的,并且查询数据时只能根据RowKey进行检索,所以RowKey的设计十分重要。

如果使用了之前已经定义的RowKey,那么会将之前的数据更新掉。

5)Column Family

列族是多个列的集合。一个列族可以动态地灵活定义多个列。表的相关属性大部分都定义在列族上,同一个表里的不同列族可以有完全不同的属性配置,但是同一个列族内的所有列都会有相同的属性。

列族存在的意义是HBase会把相同列族的列尽量放在同一台机器上,所以说,如果想让某几个列被放到一起,你就给他们定义相同的列族。

官方建议一张表的列族定义的越少越好,列族太多会极大程度地降低数据库性能,且目前版本Hbase的架构,容易出BUG。

6) Column Qualifier

Hbase中的列是可以随意定义的,一个行中的列不限名字、不限数量,只限定列族。因此列必须依赖于列族存在!列的名称前必须带着其所属的列族!例如info:name,info:age。

因为HBase中的列全部都是灵活的,可以随便定义的,因此创建表的时候并不需要指定列!列只有在你插入第一条数据的时候才会生成。其他行有没有当前行相同的列是不确定,只有在扫描数据的时候才能得知。

7)Time Stamp

用于标识数据的不同版本(version),每条数据写入时,系统会自动为其加上该字段,其值为写入HBase的时间。在读取单元格的数据时,版本号可以省略,如果不指定,Hbase默认会获取最后一个版本的数据返回。

8)Cell

由{rowkey, column Family:column Qualifier, time Stamp} 唯一确定的单元。cell中的数据全部是字节码形式存贮。

9)Region

Region由一个表的若干行组成。在Region中行的排序按照行键(rowkey)字典排序。Region不能跨RegionSever,且当数据量大的时候,HBase会拆分Region。

Region由RegionServer进程管理。HBase在进行负载均衡的时候,一个Region有可能会从当前RegionServer移动到其他RegionServer上。

Region是基于HDFS的,它的所有数据存取操作都是调用了HDFS的客户端接口来实现的。

4、基本架构

在这里插入图片描述

1)Region Server
Region Server为 Region的管理者,其实现类为HRegionServer,主要作用如下:

  • 对于数据的操作:get, put, delete;
  • 对于Region的操作:splitRegion、compactRegion。

2)Master
Master是所有Region Server的管理者,其实现类为HMaster,主要作用如下:

  • 对于表的操作:create, delete, alter
  • 对于RegionServer的操作:分配regions到每个RegionServer,监控每个RegionServer的状态,负载均衡和故障转移。

3)Zookeeper
HBase通过Zookeeper来做master的高可用、RegionServer的监控、元数据的入口以及集群配置的维护等工作。
4)HDFS
HDFS为HBase提供最终的底层数据存储服务,同时为HBase提供高容错的支持。

二、安装

下面的安装配置都是在所有节点都需要配置的

1、下载解压安装包

下载Hbase

wget https://gitcode.net/weixin_44624117/software/-/raw/master/software/Linux/Hbase/hbase-2.0.5-bin.tar.gz

解压安装包

tar -zxvf hbase-2.0.5-bin.tar.gz -C /opt/module

修改文件目录

mv /opt/module/hbase-2.0.5 /opt/module/hbase

2、修改配置文件

配置环境变量

sudo vim /etc/profile.d/my_env.sh#HBASE_HOME
export HBASE_HOME=/opt/module/hbase
export PATH=$PATH:$HBASE_HOME/bin

修改配置文件

cd /opt/module/hbase/conf
vim hbase-env.sh#	修改内容
export HBASE_MANAGES_ZK=false

修改配置文件hbase-site.xml

vim hbase-site.xml#	修改内容
<configuration><property><name>hbase.rootdir</name><value>hdfs://hadoop101:8020/hbase</value></property><property><name>hbase.cluster.distributed</name><value>true</value></property><property><name>hbase.zookeeper.quorum</name><value>hadoop101,hadoop102,hadoop103</value></property><property><name>hbase.unsafe.stream.capability.enforce</name><value>false</value></property><property><name>hbase.wal.provider</name><value>filesystem</value></property>
</configuration>

3、启动服务(单机、集群)

启动(单节点启动)

cd /opt/module/hbase
bin/hbase-daemon.sh start master
bin/hbase-daemon.sh start regionserver

关闭节点

bin/hbase-daemon.sh stop master
bin/hbase-daemon.sh stop regionserver

启动(启动集群)(Hadoop101主节点)

cd /opt/module/hbase
bin/start-hbase.sh

关闭集群

bin/stop-hbase.sh

查看页面:

http://hadoop101:16010/

4、配置高可用(HA)

关闭集群

cd /opt/module/hbase
bin/stop-hbase.sh

在conf目录下创建backup-masters文件

touch conf/backup-masters

在backup-masters文件中配置高可用HMaster节点

echo hadoop102 > conf/backup-masters

重启hbase

cd /opt/module/hbase
bin/start-hbase.sh

打开页面测试查看(多了一个back Master节点)

http://hadooo102:16010

在这里插入图片描述

三、命令行操作

1、建表

登录Hbase

bin/hbase shell

查看帮助

help

查看表列表

list

创建表

  • 表名:student
  • 列簇:infoaddress
create 'student','info'
create 'student', 'info', 'address'

新增列簇

alter 'student', 'address'

2、新增/更新数据

插入数据

  • 命名空间:default
  • 表明:student
  • rowKey:1001
  • 列簇:info
  • 列名:infosex
  • 值:18
put 'student','1001','info','male'
put 'student','1001','info:sex','male'
put 'student','1001','info:age','18'
put 'student','1002','info:name','Janna'
put 'student','1002','info:sex','female'
put 'student','1002','info:age','20'

更新数据

put 'student','1001','info:name','Zhangsan'

3、查看表数据

扫描表数据

scan 'student'
#	指定开始和结束rowKey
scan 'student',{STARTROW => '1001', STOPROW  => '1001'}
scan 'student',{STARTROW => '1001'}

只显示指定的列

scan 'student', {LIMIT => 3, COLUMNS => ['info:name', 'info:age'], FORMATTER => 'toString'}

查看表数据

get '表名','rowkey'#	查看列数据
get 'student','1001'
#	查看列簇中列数据
get 'student','1001','info:name'

查看数据并且显示中文(shell默认十六进制)

get 'student','1001', {FORMATTER => 'toString'}

查看表结构

describe 'student'

查看数据行数(rowKey数量)

count 'student'

4、删除数据

删除某rowkey的某一列数据:

delete 'student','1002','info:sex'

删除某rowKey数据

deleteall 'student','1001'

清空表数据

truncate 'student'

该表为disable状态

disable 'student'

删除表(需先将表置为disable)

drop 'student'

5、修改默认保存的数据版本

修改保存数据版本数量

alter 'student',{NAME=>'info',VERSIONS=>3}

更新4个版本的数据

put 'student','1001','info:name','Zhangsan001'
put 'student','1001','info:name','Zhangsan002'
put 'student','1001','info:name','Zhangsan003'
put 'student','1001','info:name','Zhangsan004'

查看保留的数据版本

get 'student','1001',{COLUMN=>'info:name',VERSIONS=>3}

在这里插入图片描述

四、架构

1、RegionServer 架构

在这里插入图片描述

1)StoreFile

保存实际数据的物理文件,StoreFile以Hfile的形式存储在HDFS上。每个Store会有一个或多个StoreFile(HFile),数据在每个StoreFile中都是有序的。

2)MemStore

写缓存,由于HFile中的数据要求是有序的,所以数据是先存储在MemStore中,排好序后,等到达刷写时机才会刷写到HFile,每次刷写都会形成一个新的HFile。

3)HLog

由于数据要经MemStore排序后才能刷写到HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个实现了Write-Ahead logfile机制的文件HLog中,然后再写入MemStore中。所以在系统出现故障的时候,数据可以通过这个日志文件重建。

4)BlockCache

读缓存,每次查询出的数据会缓存在BlockCache中,方便下次查询。

2、写流程

在这里插入图片描述

1)Client先访问zookeeper,获取hbase:meta表位于哪个Region Server。

2)访问对应的Region Server,获取hbase:meta表,根据写请求的namespace:table/rowkey,查询出目标数据位于哪个Region Server中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的meta cache,方便下次访问。

3)与目标Region Server进行通讯;

4)将数据顺序写入(追加)到HLog;

5)将数据写入对应的MemStore,数据会在MemStore进行排序;

6)向客户端发送ack;

7)等达到MemStore的刷写时机后,将数据刷写到HFile。

3、MemStore Flush

在这里插入图片描述

Memstore级别

当某个memstroe的大小达到了hbase.hregion.memstore.flush.size(默认值128M),其所在region的所有memstore都会刷写。因此不建议创建太多的列族。

Region级别

当一个Region中所有的memstore的大小达到了hbase.hregion.memstore.flush.size(默认值128M) * hbase.hregion.memstore.block.multiplier(默认值4)时,会阻止继续往该Region写数据,进行所有Memstore的刷写。

RegionServer级别

一个RegionServer中的阈值大于java_heapsize * hbase.regionserver.global.memstore.size(默认值0.4)* hbase.regionserver.global.memstore.size.lower.limit(默认值0.95)。region会按照其所有memstore的大小顺序(由大到小)依次进行刷写。直到region server中所有memstore的总大小减小到上述值以下。

当regionserver中memstore的总大小达到java_heapsize * hbase.regionserver.global.memstore.size(默认值0.4)时,会阻止继续往所有的memstore写数据。

HLog数量上限

当WAL文件的数量超过hbase.regionserver.max.logs,region会按照时间顺序依次进行刷写,直到WAL文件数量减小到hbase.regionserver.max.log以下(该属性名已经废弃,现无需手动设置,最大值为32)

定时刷写

到达自动刷写的时间,也会触发memstore flush。自动刷新的时间间隔由该属性进行配置hbase.regionserver.optionalcacheflushinterval(默认1小时)

手动刷写

可以在客户端手动flush 表名 或 region名 或regionserver名

4、读流程

在这里插入图片描述

RegionServer返回数据

在这里插入图片描述

  • 1)Client先访问zookeeper,获取hbase:meta表位于哪个Region Server。

  • 2)访问对应的Region Server,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个Region Server中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的meta cache,方便下次访问。

  • 3)向目标Region Server发送读请求;

  • 4)分别在MemStore和Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不同的类型(Put/Delete)。

  • 5)将查询到的新的数据块(Block,HFile数据存储单元,默认大小为64KB)缓存到Block Cache。

  • 6)将合并后的最终结果返回给客户端。

5、Region Split(Region切分)

默认情况下,每个Table起初只有一个Region,随着数据的不断写入,Region会自动进行拆分。刚拆分时,两个子Region都位于当前的Region Server,但处于负载均衡的考虑,HMaster有可能会将某个Region转移给其他的Region Server。

0.94版本之前的策略

0.94版本之前采取的是 ConstantSizeRegionSplitPolicy , 当一个Store(对应一个列族)的StoreFile大小大于配置hbase.hregion.max.filesize(默认10G)时就会拆分。

0.94版本之后的策略

0.94版本之后的切分策略取决于hbase.regionserver.region.split.policy参数的配置,默认使用IncreasingToUpperBoundRegionSplitPolicy策略切分region。

该策略分为两种情况,第一种为如果在当前RegionServer中某个Table的Region个数介于 0-100之间,那么当1个region中的某个Store下所有StoreFile的总大小超过Min(initialSize*R^3 ,hbase.hregion.max.filesize"),该Region就会进行拆分。其中initialSize的默认值为2*hbase.hregion.memstore.flush.size,R为当前Region Server中属于该Table的Region个数。

具体的切分策略为:

  • 第一次split:1^3 * 256 = 256MB
  • 第二次split:2^3 * 256 = 2048MB
  • 第三次split:3^3 * 256 = 6912MB
  • 第四次split:4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB
  • 后面每次split的size都是10GB了。

第二种为如果当前RegionServer中某个Table的Region个数超过100个,则超过10GB才会切分一次region。

2.0版本之后的策略

Hbase 2.0引入了新的split策略:SteppingSplitPolicy。如果当前RegionSer ver上该表只有一个Region,按照2 * hbase.hregion.memstore.flush.size分裂,否则按照hbase.hregion.max.filesize分裂。

在这里插入图片描述

禁止分裂

region的分裂需要消耗一定的性能,因此如果对region已经提前预分区,那么可以设置禁止region自动分裂,即使用DisableSplitPolicy

五、API

1、获取链接

public Connection getConn() {Connection connection = null;try {connection = ConnectionFactory.createConnection();} catch (IOException e) {e.printStackTrace();}return connection;
}

2、获取Table对象

/*** 1、获取表对象*/
@Test
public void getTable() throws IOException {Connection conn = new HbaseUtils().getConn();String tableName = "student";if (StringUtils.isBlank(tableName)) {throw new RuntimeException("表名非法");}Table table = conn.getTable(TableName.valueOf(tableName));
}

3、Put

/*** 2、新增行数据** @throws IOException*/
@Test
public void testPUt() throws IOException {Connection conn = new HbaseUtils().getConn();String tableName = "student";Table table = conn.getTable(TableName.valueOf(tableName));ArrayList<Put> puts = new ArrayList<>();puts.add(createPut("a3", "info", "name", "jack"));puts.add(createPut("a3", "info", "age", "20"));puts.add(createPut("a3", "info", "gender", "male"));table.put(puts);table.close();
}
public Put createPut(String rowkey, String cf, String cq, String value) {Put put = new Put(Bytes.toBytes(rowkey));return put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(cq), Bytes.toBytes(value));
}

在这里插入图片描述

4、Get

/*** 3、get获取值** @throws IOException*/
@Test
public void getTables() throws IOException {Connection conn = new HbaseUtils().getConn();TableName tableName = TableName.valueOf("student");Table table = conn.getTable(tableName);Get get = new Get(Bytes.toBytes("a3"));Result result = table.get(get);//  打印结果parseResult(result);table.close();
}
/*** 遍历Get的一行结果* 一行由若干列组成,每个列都有若干个cell*/
public void parseResult(Result result) {//获取一行中最原始的cellCell[] cells = result.rawCells();//遍历for (Cell cell : cells) {System.out.print("  rowkey:" + Bytes.toString(CellUtil.cloneRow(cell)));System.out.print("  列名" + Bytes.toString(CellUtil.cloneFamily(cell)) + ":" + Bytes.toString(CellUtil.cloneQualifier(cell)));System.out.print("  值:" + Bytes.toString(CellUtil.cloneValue(cell)));System.out.println();}
}

5、Scan

/*** 4、Scan查询数据** @throws IOException*/
@Test
public void testScan() throws IOException {//  创建表对象Connection conn = new HbaseUtils().getConn();TableName tableName = TableName.valueOf("student");Table table = conn.getTable(tableName);//  封装查询条件Scan scan = new Scan();scan.withStartRow(Bytes.toBytes("a1"));scan.withStopRow(Bytes.toBytes("z1"));ResultScanner scanner = table.getScanner(scan);//  返回结果处理for (Result result : scanner) {parseResult(result);}table.close();
}

在这里插入图片描述

6、Delete删除

/*** 4、删除数据** @throws IOException*/
@Test
public void testDelete() throws IOException {Connection conn = new HbaseUtils().getConn();Table table = conn.getTable(TableName.valueOf("student"));Delete delete = new Delete(Bytes.toBytes("a3"));//  删一列的最新版本 向指定的列添加一个cell (type = Delete, ts = 最新的cell的ts)delete.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("age"));//  删除这列的所有版本 向指定的列添加一个cell (type = DeleteColumn, ts = 当前时间)delete.addColumns(Bytes.toBytes("f1"), Bytes.toBytes("age"));//  删除列族的所有版本 向指定的行添加一个cell f1:,timestamp = 当前时间, type = DeleteFamilydelete.addFamily(Bytes.toBytes("f1"));//  删除一行的所有列族table.delete(delete);table.close();
}

7、完整代码

建表语句

create 'student','info'

代码测试类

import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
import org.junit.jupiter.api.Test;import java.io.IOException;
import java.util.ArrayList;class HbaseUtilsTest {/*** 1、获取表对象*/@Testpublic void getTable() throws IOException {Connection conn = new HbaseUtils().getConn();String tableName = "student";if (StringUtils.isBlank(tableName)) {throw new RuntimeException("表名非法");}Table table = conn.getTable(TableName.valueOf(tableName));}/*** 2、新增行数据** @throws IOException*/@Testpublic void testPUt() throws IOException {Connection conn = new HbaseUtils().getConn();String tableName = "student";Table table = conn.getTable(TableName.valueOf(tableName));ArrayList<Put> puts = new ArrayList<>();puts.add(createPut("a3", "info", "name", "jack"));puts.add(createPut("a3", "info", "age", "20"));puts.add(createPut("a3", "info", "gender", "male"));table.put(puts);table.close();}public Put createPut(String rowkey, String cf, String cq, String value) {Put put = new Put(Bytes.toBytes(rowkey));return put.addColumn(Bytes.toBytes(cf), Bytes.toBytes(cq), Bytes.toBytes(value));}/*** 3、get获取值** @throws IOException*/@Testpublic void getTables() throws IOException {Connection conn = new HbaseUtils().getConn();TableName tableName = TableName.valueOf("student");Table table = conn.getTable(tableName);Get get = new Get(Bytes.toBytes("a3"));Result result = table.get(get);//  打印结果parseResult(result);table.close();}/*** 遍历Get的一行结果* 一行由若干列组成,每个列都有若干个cell*/public void parseResult(Result result) {//获取一行中最原始的cellCell[] cells = result.rawCells();//遍历for (Cell cell : cells) {System.out.print("  rowkey:" + Bytes.toString(CellUtil.cloneRow(cell)));System.out.print("  列名" + Bytes.toString(CellUtil.cloneFamily(cell)) + ":" + Bytes.toString(CellUtil.cloneQualifier(cell)));System.out.print("  值:" + Bytes.toString(CellUtil.cloneValue(cell)));System.out.println();}}/*** 4、Scan查询数据** @throws IOException*/@Testpublic void testScan() throws IOException {//  创建表对象Connection conn = new HbaseUtils().getConn();TableName tableName = TableName.valueOf("student");Table table = conn.getTable(tableName);//  封装查询条件Scan scan = new Scan();scan.withStartRow(Bytes.toBytes("a1"));scan.withStopRow(Bytes.toBytes("z1"));ResultScanner scanner = table.getScanner(scan);//  返回结果处理for (Result result : scanner) {parseResult(result);}table.close();}/*** 4、删除数据** @throws IOException*/@Testpublic void testDelete() throws IOException {Connection conn = new HbaseUtils().getConn();Table table = conn.getTable(TableName.valueOf("student"));Delete delete = new Delete(Bytes.toBytes("a3"));//  删一列的最新版本 向指定的列添加一个cell (type = Delete, ts = 最新的cell的ts)delete.addColumn(Bytes.toBytes("f1"), Bytes.toBytes("age"));//  删除这列的所有版本 向指定的列添加一个cell (type = DeleteColumn, ts = 当前时间)delete.addColumns(Bytes.toBytes("f1"), Bytes.toBytes("age"));//  删除列族的所有版本 向指定的行添加一个cell f1:,timestamp = 当前时间, type = DeleteFamilydelete.addFamily(Bytes.toBytes("f1"));//  删除一行的所有列族table.delete(delete);table.close();}}

HbaseUtils工具类

package com.lydms.demohbase.utils;import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;import java.io.IOException;public class HbaseUtils {public Connection getConn() {Connection connection = null;try {connection = ConnectionFactory.createConnection();} catch (IOException e) {e.printStackTrace();}return connection;}public void closeConn(Connection connection) throws IOException {if (connection != null) {connection.close();}}}

Resource目录下创建hbase-site.xml文件

<configuration><property><name>hbase.zookeeper.quorum</name><value>hadoop101,hadoop102,hadoop103</value></property>
</configuration>

pom文件

<!--   Hbase-->
<dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-server</artifactId><version>2.0.5</version><exclusions><exclusion><groupId>org.glassfish</groupId><artifactId>javax.el</artifactId></exclusion></exclusions>
</dependency>
<dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-client</artifactId><version>2.0.5</version>
</dependency>
<dependency><groupId>org.glassfish</groupId><artifactId>javax.el</artifactId><version>3.0.1-b06</version>
</dependency>

六、HBase使用设计

1、预分区

每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维护的rowKey范围,则该数据交给这个region维护。那么依照这个原则,我们可以将数据所要投放的分区提前大致的规划好,以提高HBase性能。

  • 手动设定分区
create 'staff1','info', SPLITS => ['1000','2000','3000','4000']
  • 生成16进制序列预分区
create 'staff2','info',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
  • 按照文件中设置的规则预分区

新建文件splits.txt

aaaa
bbbb
cccc
dddd

执行脚本命令

create 'staff3', 'info',SPLITS_FILE => 'splits.txt'

2、RowKey设计

一条数据的唯一标识就是rowkey,那么这条数据存储于哪个分区,取决于rowkey处于哪个region的区间内,设计rowkey的主要目的 ,就是让数据均匀的分布于所有的region中,在一定程度上防止数据倾斜。接下来我们就谈一谈如何让rowkey足够散列。

  • 生成随机数、hash、散列值
原本rowKey为1001的,SHA1后变成:dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原本rowKey为3001的,SHA1后变成:49042c54de64a1e9bf0b33e00245660ef92dc7bd
原本rowKey为5001的,SHA1后变成:7b61dec07e02c188790670af43e717f0f46e8913
  • 字符串反转
20170524000001转成10000042507102
20170524000002转成20000042507102
  • 字符串拼接
a12e_20170524000001
93i7_20170524000001

3、内存优化

HBase操作过程中需要大量的内存开销,毕竟Table是可以缓存在内存中的,但是不建议分配非常大的堆内存,因为GC过程持续太久会导致RegionServer处于长期不可用状态,一般16~36G内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。

内存优化需要修改HBase家目录conf中的hbase-env.sh文件

#对master和regionserver都有效
export HBASE_HEAPSIZE=1G#只对master有效
export HBASE_MASTER_OPTS=自定义的jvm虚拟机参数#只对regionserver有效
export HBASE_REGIONSERVER_OPTS=自定义的jvm虚拟机参数

4、基础优化

1) RPC监听数量

hbase-site.xml

属性:hbase.regionserver.handler.count
解释:默认值为30,用于指定RPC监听的数量,可以根据客户端的请求数进行调整,读写请求较多时,增加此值。

2)手动控制Major Compaction

hbase-site.xml

属性:hbase.hregion.majorcompaction解释:默认值:604800000秒(7天), Major Compaction的周期,若关闭自动Major Compaction,可将其设为0

3)优化HStore文件大小

hbase-site.xml

属性:hbase.hregion.max.filesize解释:默认值10737418240(10GB),如果需要运行HBase的MR任务,可以减小此值,因为一个region对应一个map任务,如果单个region过大,会导致map任务执行时间过长。该值的意思就是,如果HFile的大小达到这个数值,则这个region会被切分为两个Hfile。

4)优化HBase客户端缓存

hbase-site.xml

属性:hbase.client.write.buffer解释:默认值2097152bytes(2M)用于指定HBase客户端缓存,增大该值可以减少RPC调用次数,但是会消耗更多内存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少RPC次数的目的。

5)指定scan.next扫描HBase所获取的行数

hbase-site.xml

属性:hbase.client.scanner.caching解释:用于指定scan.next方法获取的默认行数,值越大,消耗内存越大。

6)BlockCache占用RegionServer堆内存的比例

hbase-site.xml

属性:hfile.block.cache.size解释:默认0.4,读请求比较多的情况下,可适当调大

7)MemStore占用RegionServer堆内存的比例

hbase-site.xml

属性:hbase.regionserver.global.memstore.size
解释:默认0.4,写请求较多的情况下,可适当调大

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/170813.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据提取PDF SDK的对比推荐

PDF 已迅速成为跨各种平台共享和分发文档的首选格式&#xff0c;它作为一种数据来源&#xff0c;常见于公司的各种报告和报表中。为了能更好地分析、处理这些数据信息&#xff0c;我们需要检测和提取 PDF 中的数据&#xff0c;并将其转换为可用且有意义的格式。而数据提取的 PD…

物联网中基于信任的安全性调查研究:挑战与问题

A survey study on trust-based security in Internet of Things: Challenges and issues 文章目录 a b s t r a c t1. Introduction2. Related work3. IoT security from the one-stop dimension3.1. Output data related security3.1.1. Confidentiality3.1.2. Authenticity …

快速认识Linux的几个指令

我们先简单认识几个指令&#xff0c;为之后的指令学习打好基础 打开XShell并登录云服务器 01.pwd指令 pwd命令的作用是显示当前在Linux系统中所处的路径 02.ls指令 ls命令的作业是罗列出当前路径下的文件名&#xff08;即pwd的路径下&#xff09;&#xff0c;由于我们没有新…

Docker Swarm总结+Jenkins安装配置与集成(4/4)

博主介绍&#xff1a;Java领域优质创作者,博客之星城市赛道TOP20、专注于前端流行技术框架、Java后端技术领域、项目实战运维以及GIS地理信息领域。 &#x1f345;文末获取源码下载地址&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&#x1f3fb;…

Python可迭代对象排序:深入排序算法与定制排序

更多Python学习内容&#xff1a;ipengtao.com 排序在计算机科学中是一项基础而关键的操作&#xff0c;而Python提供了强大的排序工具来满足不同场景下的排序需求。本文将深入探讨Python中对可迭代对象进行排序的方法&#xff0c;涵盖基础排序算法、sorted函数的应用、以及定制排…

【C++初阶】STL详解(八)List的模拟实现

本专栏内容为&#xff1a;C学习专栏&#xff0c;分为初阶和进阶两部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握C。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&…

【深度学习笔记】03 微积分与自动微分

03 微积分与自动微分 导数和微分导数解释的可视化偏导数梯度链式法则自动微分非标量变量的反向传播分离计算 导数和微分 假设我们有一个函数 f : R → R f: \mathbb{R} \rightarrow \mathbb{R} f:R→R&#xff0c;其输入和输出都是标量。 如果 f f f的导数存在&#xff0c;这个…

GIT版本控制和常用命令使用介绍

GIT版本控制和常用命令使用介绍 1. 版本控制1.1 历史背景1.2 什么是版本控制1.3 常见版本控制工具1.4 版本控制的分类 2 Git介绍2.1 Git 工作流程2.2 基本概念2.3 文件的四种状态2.4 忽略文件2.5 Git命令2.5.1 查看本地git配置命令2.5.2 远程库信息查看命令2.5.3 分支交互命令2…

WorkPlus即时通讯软件,以自主安全为底座,连接工作的一切

在当今竞争激烈的商业环境中&#xff0c;中大型企业对于移动办公平台的需求越来越迫切。在众多可选的平台中&#xff0c;WorkPlus凭借其高性价比和针对中大型企业的特色功能&#xff0c;成为了许多企业的首选。本文将为各位读者深度解析WorkPlus私有化部署的优势&#xff0c;带…

学习.NET验证模块FluentValidation的基本用法(续2:其它常见用法)

FluentValidation模块支持调用When和Unless函数设置验证规则的执行条件&#xff0c;其中when函数设置的是满足条件时执行&#xff0c;而Unless函数则是满足条件时不执行&#xff0c;这两个函数的使用示例如及效果如下所示&#xff1a; public AppInfoalidator() {RuleFor(x>…

Mysql 解决Invalid default value for ‘created_at‘

在mysql版本 8.0 和 5.* 之间数据互导的过程中&#xff0c;老是会出现各种错误&#xff0c;比如 这个created_at 一定要有一个默认值&#xff0c; 但是我加了 default null 还是会报错&#xff0c;于是对照了其他的DDL 发现&#xff0c;需要再加 null default null 才行&#…

从0开始学习JavaScript--JavaScript事件:响应与交互

JavaScript的事件处理是Web开发中至关重要的一部分&#xff0c;通过事件&#xff0c;能够实现用户与页面的互动&#xff0c;使得网页更加生动和交互性。本文将深入探讨JavaScript事件的各个方面&#xff0c;包括事件的基本概念、事件类型、事件对象、事件冒泡与捕获、事件委托、…

如何看待 2023 OPPO 开发者大会?潘塔纳尔进展如何?AndesGPT 有哪些亮点?

在2023年11月16日举行的OPPO开发者大会&#xff08;ODC23&#xff09;上&#xff0c;OPPO带来了全新ColorOS 14、全新互联网服务生态以及健康服务进展&#xff0c;这些新动态中有许多值得关注的地方。 1、全新ColorOS 14&#xff1a; 效率提升&#xff1a;ColorOS 14通过一系列…

虚拟机可ping树莓派树莓派无法ping虚拟机 的解决办法

问题描述 在学习交叉编译的过程中&#xff0c;发现了树莓派无法ping通虚拟机的问题。所以我尝试了各种ping&#xff0c;发现&#xff1a; 虚拟机可以ping通树莓派和主机树莓派可以ping通主机主机可以ping通树莓派和虚拟机唯独树莓派没法ping通虚拟机 尝试各种方法后找到一种…

Qt手写ListView

创建视图&#xff1a; QHBoxLayout* pHLay new QHBoxLayout(this);m_pLeftTree new QTreeView(this);m_pLeftTree->setEditTriggers(QAbstractItemView::NoEditTriggers); //设置不可编辑m_pLeftTree->setFixedWidth(300);创建模型和模型项&#xff1a; m_pLeftTree…

车载通信架构 —— 传统车内通信网络FlexRay(较高速度高容错、较灵活拓扑结构)

车载通信架构 —— 传统车内通信网络FlexRay(较高速度高容错、较灵活拓扑结构) 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,…

如何在3dMax中根据AutoCAD地形规划文件对地形进行建模?

在3dMax中根据Autocad地形规划文件对地形进行建模的方法 直入主题&#xff0c;要根据包含地形图的DWG (Autocad) 文件进行地形建模&#xff0c;方法步骤如下&#xff1a; 1.运行3dmax软件&#xff0c;点击“文件&#xff08;File&#xff09;->导入&#xff08;Import&…

用友NC word.docx接口存在任意文件读取漏洞 附POC

@[toc] 用友NC word.docx接口存在任意文件读取漏洞 附POC 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失,均由使用者本人负责,所产生的一切不良后果与文章作者无关。该文章仅供学习用途使…

使用Python的turtle库绘制随机生成的雪花

1.1引言 在这篇文章中&#xff0c;我们将使用Python的turtle库来绘制一个具有分支结构的雪花。该程序使用循环和随机颜色选择来绘制20个不同大小和颜色的雪花。turtle库是一个流行的绘图库&#xff0c;常用于创建图形用户界面和简单的动画。这个代码实现了一个有趣的应用&…

Elasticsearch:ES|QL 查询中的元数据字段及多值字段

在今天的文章里&#xff0c;我来介绍一下 ES|QL 里的元数据字段以及多值字段。我们可以利用这些元数据字段以及多值字段来针对我们的查询进行定制。 ES|QL 源数据字段 ES|QL 可以访问元数据字段。 目前支持的有&#xff1a; _index&#xff1a;文档所属的索引名称。 该字段的…