02 RANSAC算法 及 Python 实现

文章目录

    • 02 RANSAC算法 及 Python 实现
      • 2.1 简介
      • 2.2 算法流程
      • 2.3 RANSAC 算法实现直线拟合
      • 2.4 利用 RANSAC 算法减少 ORB 特征点误匹配

02 RANSAC算法 及 Python 实现

2.1 简介

RANSAC (Random Sample Consensus,随机抽样一致)算法的 基本假设 是样本中包含正确数据(inliers即内点,可以被模型描述的数据),也包含异常数据(outliers 即外点,偏离正常范围很远、无法适应数学模型的数据),也就是说数据集中含有噪声。

我们的目的就是找出 使内点最多的模型参数(类似最小二乘法,最小二乘法试图找到满足所有点的参数,而 RANSAC 是为了消除误匹配,尽量找到更多内点,去除外点)。

2.2 算法流程

RANSAC 是通过反复选择数据集去估计出模型参数,一直迭代到估计出认为比较好的模型。

具体的实现步骤可以分为以下几步:

(1)选择出可以估计出模型的最小数据集;(对于直线拟合来说就是两个点,对于计算单应矩阵就是 4 个点);

(2)使用这个最小数据集计算出模型参数;

(3)将所有数据带入这个模型,计算并记录“内点”的数目(在误差允许范围内的点的数目);

(4)与之前记录的最好模型的“内点”数量进行比较,若表现更好,则将此模型更新为最优模型;

(5)重复以上步骤,直至达到最大迭代次数或“内点”数量满足要求。

2.3 RANSAC 算法实现直线拟合

# @Time : 2022/11/7 20:11
# @Author : xiao cong
# @Function : RANSAC 算法实现直线拟合import numpy as np
import matplotlib.pyplot as plt
import randomITERS = 1000            # 最大迭代次数
SIZE = 50               # 样本数量
RATIO = 0.6             # 期望为内点的比例
INLIERS = SIZE * RATIO  # 内点# 生成样本数据
X = np.linspace(0, 5, SIZE)
Y = 2 * X + 5
for index in range(SIZE):sigma = np.random.uniform(-0.5, 0.5)  # 生成高斯噪声Y[index] += sigma# 绘散点图
plt.figure()
plt.scatter(X, Y)
plt.xlabel("x")
plt.ylabel("y")# 使用 RANSAC 算法估算模型
iter = 0  # 迭代次数
max_inliers = 0  # 先前最多内点数量
best_a = 0  # 最优参数
best_b = 0
error = 0.5  # 允许最小误差while iter <= ITERS and max_inliers < INLIERS:# 随机选取两个点,计算模型参数random_index = random.sample(range(0, SIZE), 2)  # 返回索引列表x1 = X[random_index[0]]y1 = Y[random_index[0]]x2 = X[random_index[1]]y2 = Y[random_index[1]]a = (y2 - y1) / (x2 - x1)  # 斜率b = y1 - a * x1  # 截距inliers = 0  # 本次内点数量# 代入模型,计算内点数量for index in range(SIZE):y_estimate = a * X[index] + bif abs(Y[index] - y_estimate) <= error:inliers += 1if inliers >= max_inliers:best_a = abest_b = bmax_inliers = inliersiter += 1# 画出拟合直线
Y_estimate = best_a * X + best_b
plt.plot(X, Y_estimate, linewidth=2.0, color="r")
text = "best_a: " + str(round(best_a, 2)) + "\nbest_b:  " + str(round(best_b, 2)) + \"\nmax_inliers: " + str(int(max_inliers))
plt.text(3, 6, text, fontdict={'size': 10, 'color': 'r'})
plt.title("RANSAC")
plt.show()

2.4 利用 RANSAC 算法减少 ORB 特征点误匹配

特征点匹配会有很多误匹配的点,所以求出基础矩阵 F \boldsymbol{F} F,用它来做更精准的匹配。这里以 ORB 为例,FAST 特征点就是 RANSAC 算法的数据样本。

对极约束,得到

p 2 T F p 1 = 0 \boldsymbol{p_2^{\mathrm{T}}}\boldsymbol{F}\boldsymbol{p_1}=0 p2TFp1=0

其中, p 1 \boldsymbol{p_1} p1 p 2 \boldsymbol{p_2} p2 为匹配点的像素坐标 。

分别为 ORB_features.png*、all_matches.png、goodmatches.png、*after_RANSAC.png.

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <opencv2/features2d.hpp>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{// 读取图像Mat img_01 = imread("/home/cong/slambook_code/test/img_01.png");Mat img_02 = imread("/home/cong/slambook_code/test/img_02.png");// 提取 ORB 特征点vector<KeyPoint> keypoints_01, keypoints_02;         // FAST 特征点Mat descriptors_01, descriptors_02;                  // BRIEF 描述子Ptr<FeatureDetector> detector = ORB::create();       // 初始化Ptr<DescriptorExtractor> descriptor = ORB::create();Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");//-- 第一步:检测 Oriented FAST 角点位置detector->detect(img_01, keypoints_01);detector->detect(img_02, keypoints_02);//-- 第二步:根据角点位置计算 BRIEF 描述子descriptor->compute(img_01, keypoints_01, descriptors_01);descriptor->compute(img_02, keypoints_02, descriptors_02);Mat outimg_01;drawKeypoints(img_01, keypoints_01, outimg_01, Scalar::all(-1), DrawMatchesFlags::DEFAULT);imwrite("ORB_features.png", outimg_01);imshow("ORB features", outimg_01);//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,计算 Hamming 距离// matches 用来存储匹配点对的信息,包括//queryIdx:测试图像的特征点描述符的下标//trainIdx:样本图像的特征点描述符下标//distance:特征点描述子的欧式距离vector<DMatch> matches;matcher->match(descriptors_01, descriptors_02, matches);//-- 第四步:匹配点对筛选(距离过大的一对点将被认为误匹配)// 找出所有匹配之间的最小距离和最大距离, 即最相似的和最不相似的两组点之间的距离auto min_max = minmax_element(matches.begin(), matches.end(),[] (const DMatch &m1, const DMatch &m2) {return m1.distance < m2.distance;});double min_dist = min_max.first->distance;double max_dist = min_max.second->distance;//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.// 但有时候最小距离会非常小,设置一个经验值30作为下限.vector<DMatch> good_matches;for(int i = 0; i < descriptors_01.rows; i++){if(matches[i].distance <= max(2*min_dist, 30.0))good_matches.push_back(matches[i]);}//-- 第五步:绘制匹配结果Mat img_match;Mat img_goodmatch;drawMatches(img_01, keypoints_01, img_02, keypoints_02, matches, img_match);drawMatches(img_01, keypoints_01, img_02, keypoints_02, good_matches, img_goodmatch);imwrite("all_matches.png", img_match);imwrite("good_matches.png", img_goodmatch);imshow("all matches", img_match);imshow("good matches", img_goodmatch);/*******************************************************************/// 下面用 RANSAC 算法去除误匹配// 主要分为三个部分:// 1)根据matches将特征点对齐,将坐标转换为float类型// 2)使用求基础矩阵方法 findFundamentalMat,得到RansacStatus// 3)根据RansacStatus来将误匹配的点也即RansacStatus[i]=0的点删除// 1)根据 matches 将特征点对齐(也就是 使对应的一对特征点的下标相同)vector<KeyPoint> R_keypoint_01, R_keypoint_02;        // 存储对应的特征点for(size_t i = 0; i < matches.size(); i++){R_keypoint_01.push_back(keypoints_01[matches[i].queryIdx]);     // 存储img01中能与img02匹配的特征点的索引值R_keypoint_02.push_back(keypoints_02[matches[i].trainIdx]);}// 像素坐标转换成 floatvector<Point2f> p01, p02;for(size_t i = 0; i < matches.size(); i++){p01.push_back(R_keypoint_01[i].pt);          // 坐标p02.push_back(R_keypoint_02[i].pt);}// 利用基础矩阵剔除误匹配点vector<uchar> RansacStatus;Mat Fundamental = findFundamentalMat(p01, p02, RansacStatus, FM_RANSAC);vector<KeyPoint> RR_keypoint_01, RR_keypoint_02;vector<DMatch> RR_matches;                         // 筛选后的匹配点int index = 0;for(size_t i = 0; i < matches.size(); i++){if(RansacStatus[i] != 0){RR_keypoint_01.push_back(R_keypoint_01[i]);RR_keypoint_02.push_back(R_keypoint_02[i]);matches[i].queryIdx = index;matches[i].trainIdx = index;RR_matches.push_back(matches[i]);index++;}}Mat img_RR_matches;drawMatches(img_01, RR_keypoint_01, img_02, RR_keypoint_02, RR_matches, img_RR_matches);imwrite("after_RANSAC.png", img_RR_matches);imshow("after RANSAC", img_RR_matches);waitKey(0);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/169372.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode-805.保持城市天际线 C/C++实现 超详细思路及过程[M]

&#x1f388;归属专栏&#xff1a;深夜咖啡配算法 &#x1f697;个人主页&#xff1a;Jammingpro &#x1f41f;记录一句&#xff1a;摆烂一天后&#xff0c;写的第一篇博客 文章目录 LeetCode-807. 保持城市天际线&#x1f697;题目&#x1f686;题目描述&#x1f686;题目示…

网站定制开发主要分类有哪些|企业 app 软件小程序定制

网站定制开发主要分类有哪些|企业 app 软件小程序定制 网站定制开发是指根据客户需求&#xff0c;为其量身定制设计和开发的网站服务。目前&#xff0c;网站定制开发主要分为以下几个分类&#xff1a; 1.静态网站定制开发&#xff1a;静态网站是由 HTML、CSS 和 JavaScript 等静…

Linux shell编程学习笔记29:shell自带的 脚本调试 选项

Linux shell脚本的调试方法比较多&#xff0c;上次我们探讨和测试了shell内建命令set所提供的一些调试选项&#xff0c;其实 shell 本身也提供了一些调试选项。我们以bash为例来看看。 1 bash 的命令行帮助信息&#xff08;bash --help&#xff09; purleEndurer csdn ~ $ ba…

华为ensp:trunk链路

当我们使用trunk链路后&#xff0c;还要选择要放行的vlan那就是全部vlan&#xff08;all&#xff09;&#xff0c;但是all并不包括vlan1&#xff0c;所以我们的trunk链路中的all不对all进行放行 实现相同vlan之间的通信 先将他们加入对应的vlan lsw1 进入e0/0/3接口 interfa…

mysql忘记密码,然后重置

数据库版本8.0.26 只针对以下情况 mysql忘记了密码&#xff0c;但是你navicat之前连接上了 解决方法&#xff1a; 第一步&#xff0c;选中mysql这个数据库&#xff0c;点击新建查询 第二步&#xff1a;重置密码 alter user rootlocalhost IDENTIFIED BY 你的密码; 然后就可…

基于单片机的智能鱼缸(论文+源码)

1.总体设计 在本次设计中&#xff0c;其系统整个框图如下图2.1所示。其主要的核心控制模块由单片机模块&#xff0c;LCD显示模块&#xff0c;喂食模块&#xff0c;蜂鸣器模块&#xff0c;按键模块&#xff0c;复位电路&#xff0c;抽水电路&#xff0c;加热电路&#xff0c;加…

分享一个鬼~

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 先看效果&#xff1a; 上源码&#xff1a; import GUI from "https://cdn.jsdelivr.net/npm/lil-gui0.18.2/esm"const canv…

dat文件转换成excel教程

dat文件存在于很多的日用场合&#xff0c;为了更好的去进行办公使用&#xff0c;很多的用户都会将dat文件转换成excel&#xff0c;但是不知道怎么操作的却很多&#xff0c;下面来看看教程吧。 dat文件转换成excel&#xff1a; 1、首先打开excel&#xff0c;然后点击上面的“数…

设计模式—开闭原则

1.背景 伯特兰迈耶一般被认为是最早提出开闭原则这一术语的人&#xff0c;在他1988年发行的《面向对象软件构造》中给出。这一想法认为一旦完成&#xff0c;一个类的实现只应该因错误而修改&#xff0c;新的或者改变的特性应该通过新建不同的类实现。新建的类可以通过继承的方…

Appium+Python+pytest自动化测试框架的实战

本文主要介绍了AppiumPythonpytest自动化测试框架的实战&#xff0c;文中通过示例代码介绍的非常详细&#xff0c;具有一定的参考价值&#xff0c;感兴趣的小伙伴们可以参考一下 先简单介绍一下目录&#xff0c;再贴一些代码&#xff0c;代码里有注释 Basic目录下写的是一些公…

Linux-基本指令(1.0)

Linux是一个非常流行的操作的知识&#xff0c;并提供实例帮助读者更好地理解。让我们一起来学习吧&#xff01;系统&#xff0c;也是云计算、大数据、人工智能等领域的重要基础。学习Linux命令是Linux系统管理的基础&#xff0c;也是开发过程中必不可少的技能。本博客将介绍Lin…

212. 单词搜索 II

212. 单词搜索 II Java&#xff1a;搜索全部可能&#xff0c;超出时间限制&#xff01; class Solution {StringBuilder sb;List<String> list;Set<String> set;private void dfs(int x, int y, int m, int n, char[][] board){if (x < 0 || x > m || y <…

leetcode中“辅助栈”类题目和“单调栈”类题目的异同

1 总结 1 栈中元素的特性 2 单调栈存在一次性连续删除多个栈顶的情况&#xff0c;但是普通的栈&#xff0c;一次只pop掉一个栈顶元素 2 LC1209. 删除字符串中的所有相邻重复项 II - 普通辅助栈 class Solution {public String removeDuplicates(String s, int k) {int ns.l…

华为ospf路由协议防环和次优路径中一些难点问题分析

第一种情况是ar3的/0/0/2口和ar4的0/0/2口发布在区域1时&#xff0c;当ar1连接ar2的线断了以后&#xff0c;骨干区域就断了&#xff0c;1.1.1.1到2.2.2.2就断了&#xff0c;ping不通了。但ar5和ar6可以ping通2.2.2.2和1.1.1.1&#xff0c;ar3和ar4不可以ping通2.2.2.2和1.1.1.1…

软件测试 | MySQL 主键自增详解:实现高效标识与数据管理

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

The Bridge:从临床数据到临床应用(预测模型总结)

The Bridge:从临床数据到临床应用&#xff08;预测模型总结&#xff09; 如果说把临床预测模型比作临床数据和临床应用之间的一座“桥梁”&#xff0c;那它应该包括这样几个环节&#xff1a;模型的构建和评价、模型的概率矫正、模型决策阈值的确定和模型的局部再评价。 模型的构…

数据库实验7

实验报告&#xff08;七&#xff09;数据更新 1、实验目的 &#xff08;1&#xff09; 掌握插入、更新和删除表数据的方法 &#xff08;2&#xff09; 掌握更新操作与子查询结合的用法 2、实验预习与准备 &#xff08;1&#xff09; Update&#xff0c;Delete&am…

【LeetCode】每日一题 2023_11_24 统计和小于目标的下标对数目(暴力/双指针)

文章目录 刷题前唠嗑题目&#xff1a;统计和小于目标的下标对数目题目描述代码与解题思路 结语 刷题前唠嗑 LeetCode&#xff1f;启动&#xff01;&#xff01;&#xff01; 题目&#xff1a;统计和小于目标的下标对数目 题目链接&#xff1a;2824. 统计和小于目标的下标对数…

C/C++ 运用Npcap发送UDP数据包

Npcap 是一个功能强大的开源网络抓包库&#xff0c;它是 WinPcap 的一个分支&#xff0c;并提供了一些增强和改进。特别适用于在 Windows 环境下进行网络流量捕获和分析。除了支持通常的网络抓包功能外&#xff0c;Npcap 还提供了对数据包的拼合与构造&#xff0c;使其成为实现…

【迅搜03】全文检索、文档、倒排索引与分词

全文检索、文档、倒排索引与分词 今天还是概念性的内容&#xff0c;但是这些概念却是整个搜索引擎中最重要的概念。可以说&#xff0c;所有的搜索引擎就是实现了类似的概念才能称之为搜索引擎。而且今天的内容其实都是相关联的&#xff0c;所以不要以为标题上有四个名词就感觉好…