Redis高并发缓存架构

前言:

针对缓存我们并不陌生,而今天所讲的是使用redis作为缓存工具进行缓存数据。redis缓存是将数据保存在内存中的,而内存的珍贵性是不可否认的。所以在缓存之前,我们需要明确缓存的对象,是否有必要缓存,怎么做好缓存,怎样避免缓存失效。

处理Redis常见问题与提高Redis缓存性能

一、Redis作为缓存常见问题及其处理方案

1)缓存穿透

根源:请求不断的查询一个不存在的key,缓存层和存储层都不会命中。

解决方案   

  • 对接口参数进行校验、防止出现恶意攻击;
  • 查询不到值时,将value设置成一个标记为加入缓存中,下次再查询就返回一个标记数而不必经过数据库,例如查询id为5的商品,不存在则返回一个-9999,然后在做逻辑判断,但是需要设置一个较短的缓存有效时间,防止以后key对应的value有数据的时候仍然返回空造成错误。
  • 使用bitmap类型定义一个可以访问的白名单,id作为偏移量。
  • 采用布隆过滤器

2)缓存击穿

根源:缓存击穿是指对于一些设置了过期时间的key,这些key可能在某些时间被超高并发访问,是一种’热点‘数据,然后在这个数据被访问前正好key失效了,那么对这个key的查询会全部转到数据库上,造成数据库压力增大导致卡顿崩溃的现象。

解决方案:

  • 设置热点数据永不过期;
  • 加锁,大量并发只让一个人去查,其他人等待,直到以后释放锁,其他人读取到锁先查缓存。

3)缓存雪崩

根源:大量的热数据key同时过期,过期之后涌入大量请求,导致请求直接访问数据库,骤增数据库压力。

解决方案:

  • 设置热点数据永不过期;
  • 将缓存过期时间设置成某一段时间内的随机数,这样就不会同时过期;
  • 分布式处理缓存,将缓存存在不同的地方
  • 依赖隔离组件为后端限流熔断并降级。比如使用Sentinel或Hystrix限流降级组件

4)缓存与数据不一致问题

1、双写不一致情况(修改数据更新缓存)

线程1先写入了数据库,这时候准备更新缓存,但是因为某原因导致出现延迟,此时线程二快速将新数据写入数据库,并且成功更新了缓存,完事之后线程1恢复了速度开始更新缓存,就导致了线程2是最后写入数据的,但是缓存的内容还是旧值,从而达到双写不一致的错误场景

2、读写并发不一致(修改数据删除缓存)

线程一先写入数据10,并删除了缓存,之后线程三读取数据,发现缓存为空,于是去查询数据库,而此时查询数据库的时间较长,与此同时线程二写入数据6,又删除了缓存,在这之后线程三也读成功更新了缓存,造成了数据库的结果是6而缓存的结果是10这种错误情况

解决方案:

1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生缓存不一致,可以给缓存数据加上过期时间,每隔一段时间触发读的主动更新即可。

2、就算并发很高,如果业务上能容忍短时间的缓存数据不一致(如商品名称,商品分类菜单等),缓存加上过期时间依然可以解决大部分业务对于缓存的要求。

3、如果不能容忍缓存数据不一致,可以通过加分布式读写锁保证并发读写或写写的时候按顺序排好队,读读的时候相当于无锁。

4、也可以用阿里开源的canal通过监听数据库的binlog日志及时的去修改缓存,但是引入了新的中间件,增加了系统的复杂度。

0

二、针对不同热度的数据采用不同的处理方式

1)热点数据

处理方案:

1、缓存永不过期

2、缓存读延期功能

当命中缓存的时候,设置key的过期时间为默认时间,相当于时间设满,设置过期时间所需要的时间是非常非常少的,对性能的影响也是微乎其微。对于热数据的获取可以实现无线续期的效果

2)冷门数据

处理方案:
针对冷门数据最好不进行缓存,避免内存浪费以及无意义的缓存在过期

基础缓存代码分析

源码与图示

很基础的Redis工具类

@Component
public class RedisUtil {@Autowiredprivate RedisTemplate redisTemplate;public void set(String key, Object value) {redisTemplate.opsForValue().set(key, value);}public void set(String key, Object value, long timeout, TimeUnit unit) {redisTemplate.opsForValue().set(key, value, timeout, unit);}public boolean setIfAbsent(String key, Object value, long timeout, TimeUnit unit) {return redisTemplate.opsForValue().setIfAbsent(key, value, timeout, unit);}public <T> T get(String key, Class<?> T) {return (T) redisTemplate.opsForValue().get(key);}public String get(String key) {return (String) redisTemplate.opsForValue().get(key);}public Long decr(String key) {return redisTemplate.opsForValue().decrement(key);}public Long decr(String key, long delta) {return redisTemplate.opsForValue().decrement(key, delta);}public Long incr(String key) {return redisTemplate.opsForValue().increment(key);}public Long incr(String key, long delta) {return redisTemplate.opsForValue().increment(key, delta);}public void expire(String key, long time, TimeUnit unit) {redisTemplate.expire(key, time, unit);}}

代码:

@Service
public class ProductService {@Autowiredprivate ProductDao productDao;@Autowiredprivate RedisUtil redisUtil;@Autowiredprivate Redisson redisson;public static final Integer PRODUCT_CACHE_TIMEOUT = 60 * 60 * 24;public static final String EMPTY_CACHE = "{}";public static final String LOCK_PRODUCT_HOT_CACHE_PREFIX = "lock:product:hot_cache:";public static final String LOCK_PRODUCT_UPDATE_PREFIX = "lock:product:update:";//新增数据@Transactionalpublic Product create(Product product) {Product productResult = productDao.create(product);redisUtil.set(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), JSON.toJSONString(productResult),genProductCacheTimeout(), TimeUnit.SECONDS);return productResult;}//修改数据@Transactionalpublic Product update(Product product) {Product productResult = null;RReadWriteLock readWriteLock = redisson.getReadWriteLock(LOCK_PRODUCT_UPDATE_PREFIX + product.getId());RLock writeLock = readWriteLock.writeLock();writeLock.lock();try {productResult = productDao.update(product);redisUtil.set(RedisKeyPrefixConst.PRODUCT_CACHE + productResult.getId(), JSON.toJSONString(productResult),genProductCacheTimeout(), TimeUnit.SECONDS);} finally {writeLock.unlock();}return productResult;}//读数据方法public Product get(Long productId) throws InterruptedException {Product product = null;String productCacheKey = RedisKeyPrefixConst.PRODUCT_CACHE + productId;//读取缓存中的数据,具体方法实现看源码 getProductFromCacheproduct = getProductFromCache(productCacheKey);if (product != null) {//此处需要和前端进行约定,如果对象的ID为空,则需要提示商品不存在return product;}//DCL 如果存在很高的并发量,导致竞争锁耗时过程可以采用定时阻塞的型式//需要精确预估执行完后面代码所需要的时候,然后将该值设置为过期时间,时间一过线程就可以继续执行RLock hotCacheLock = redisson.getLock(LOCK_PRODUCT_HOT_CACHE_PREFIX + productId);hotCacheLock.lock();try {//再次尝试从缓存中获取数据,避免其他线程已经读取过db而这边线程又重复读取product = getProductFromCache(productCacheKey);if (product != null) {return product;}//从数据库中读取数据product = productDao.get(productId);//读取到的数据不为空,则将数据存入redis中。if (product != null) {redisUtil.set(productCacheKey, JSON.toJSONString(product),genProductCacheTimeout(), TimeUnit.SECONDS);} else {//当数据为空,则存入一个特俗字符,代表空数据,避免缓存穿透//针对特俗key使用较短的过期时间,可以避免短时间黑客反复攻击,看能避免长时间造成的内存浪费redisUtil.set(productCacheKey, EMPTY_CACHE, genEmptyCacheTimeout(), TimeUnit.SECONDS);}} finally {hotCacheLock.unlock();}return product;}//从缓存中读取数据private Product getProductFromCache(String productCacheKey) {Product product = null;String productStr = redisUtil.get(productCacheKey);if (!StringUtils.isEmpty(productStr)) {if (EMPTY_CACHE.equals(productStr)) {//未查询到数据,需要设置一个空对象返回,并设置较短的过期时间redisUtil.expire(productCacheKey, genEmptyCacheTimeout(), TimeUnit.SECONDS);return new Product();}//如果真是查询到数据,设置读延期product = JSON.parseObject(productStr, Product.class);redisUtil.expire(productCacheKey, genProductCacheTimeout(), TimeUnit.SECONDS); //读延期}return product;}//设置较长的过期时间private Integer genProductCacheTimeout() {return PRODUCT_CACHE_TIMEOUT + new Random().nextInt(5) * 60 * 60;}//设置较短的过期时间private Integer genEmptyCacheTimeout() {return 60 + new Random().nextInt(30);}}

良好的Redis使用习惯

一、键值设计

1)key名设计

  • (1)【建议】: 可读性和可管理性

以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id

trade:order:1

  • (2)【建议】:简洁性

保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:

user:{uid}:friends:messages:{mid} 简化为 u:{uid}:fr:m:{mid}

  • (3)【强制】:不要包含特殊字符

反例:包含空格、换行、单双引号以及其他转义字符

2) value设计

(1)【强制】:拒绝bigkey(防止网卡流量、慢查询)

在Redis中,一个字符串最大512MB,一个二级数据结构(例如hash、list、set、zset)可以存储大约40亿个(2^32-1)个元素,但实际中如果下面两种情况,我就会认为它是bigkey。

  1. 字符串类型:它的big体现在单个value值很大,一般认为超过10KB就是bigkey。
  2. 非字符串类型:哈希、列表、集合、有序集合,它们的big体现在元素个数太多。

一般来说,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。

反例:一个包含200万个元素的list。

非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞)

bigkey的危害:

1.导致redis阻塞

2.网络拥塞

bigkey也就意味着每次获取要产生的网络流量较大,假[[设一个bigkey为1MB,客户端每秒访问量为1000,那么每秒产生1000MB的流量,对于普通的千兆网卡(按照字节算是128MB/s)的服务器来说简直是灭顶之灾,而且一般服务器会采用单机多实例的方式来部署,也就是说一个bigkey可能会对其他实例也造成影响,其后果不堪设想。

3.过期删除

有个bigkey,它安分守己(只执行简单的命令,例如hget、lpop、zscore等),但它设置了过期时间,当它过期后,会被删除,如果没有使用Redis 4.0的过期异步删除(lazyfree-lazy-expire yes),就会存在阻塞Redis的可能性。

bigkey的产生:

一般来说,bigkey的产生都是由于程序设计不当,或者对于数据规模预料不清楚造成的,来看几个例子:

(1) 社交类:粉丝列表,如果某些明星或者大v不精心设计下,必是bigkey。

(2) 统计类:例如按天存储某项功能或者网站的用户集合,除非没几个人用,否则必是bigkey。

(3) 缓存类:将数据从数据库load出来序列化放到Redis里,这个方式非常常用,但有两个地方需要注意,第一,是不是有必要把所有字段都缓存;第二,有没有相关关联的数据,有的同学为了图方便把相关数据都存一个key下,产生bigkey。

优化bigkey

1. 拆

  • big list: list1、list2、...listN
  • big hash:可以讲数据分段存储,比如一个大的key,假设存了1百万的用户数据,可以拆分成200个key,每个key下面存放5000个用户数据
  •  如果bigkey不可避免,也要思考一下要不要每次把所有元素都取出来(例如有时候仅仅需要hmget,而不是hgetall),删除也是一样,尽量使用优雅的方式来处理。

(2)【推荐】:选择适合的数据类型。

例如:实体类型(要合理控制和使用数据结构,但也要注意节省内存和性能之间的平衡)

反例:

set user:1:name tom set user:1:age 19 set user:1:favor football

正例:

hmset user:1 name tom age 19 favor football

(3)【推荐】:控制key的生命周期,redis不是垃圾桶。

建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期)。

二、命令使用

1. O(N)命令关注N的数量

例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。

2.:禁用命令

禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。

3.合理使用select

redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。

4.使用批量操作提高效率

原生命令:例如mget、mset。 非原生命令:可以使用pipeline提高效率。

但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。

注意两者不同:

1. 原生命令是原子操作,pipeline是非原子操作。 2. pipeline可以打包不同的命令,原生命令做不到 3. pipeline需要客户端和服务端同时支持。

5.Redis事务功能较弱,不建议过多使用,可以用lua替代

三、客户端处理

1.避免多个应用使用一个Redis实例

正例:不相干的业务拆分,公共数据做服务化。

2.使用带有连接池的数据库,可以有效控制连接,同时提高效率,标准使用方式:

1 JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
2 jedisPoolConfig.setMaxTotal(5);
3 jedisPoolConfig.setMaxIdle(2);
4 jedisPoolConfig.setTestOnBorrow(true);
5
6 JedisPool jedisPool = new JedisPool(jedisPoolConfig, "192.168.0.60", 6379, 3000, null);
7
8 Jedis jedis = null;
9 try {
10 jedis = jedisPool.getResource();
11 //具体的命令
12 jedis.executeCommand()
13 } catch (Exception e) {
14 logger.error("op key {} error: " + e.getMessage(), key, e);
15 } finally {
16 //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。
17 if (jedis != null)
18 jedis.close();
19 }

连接池参数含义:

序号

参数名

含义

默认值

使用建议

1

maxTotal

资源池中最大连接数

8

设置建议见下面

2

maxIdle

资源池允许最大空闲的连接数

8

设置建议见下面

3

minIdle

资源池确保最少空闲的连接数

0

设置建议见下面

4

blockWhenExhausted

当资源池用尽后,调用者是否要等待。只有当为true时,下面的maxWaitMillis才会生效

true

建议使用默认值

5

maxWaitMillis

当资源池连接用尽后,调用者的最大等待时间(单位为毫秒)

-1:表示永不超时

不建议使用默认值

6

testOnBorrow

向资源池借用连接时是否做连接有效性检测(ping),无效连接会被移除

false

业务量很大时候建议设置为false(多一次ping的开销)。

7

testOnReturn

向资源池归还连接时是否做连接有效性检测(ping),无效连接会被移除

false

业务量很大时候建议设置为false(多一次ping的开销)。

8

jmxEnabled

是否开启jmx监控,可用于监控

true

建议开启,但应用本身也要开启

优化建议:

1)maxTotal:最大连接数,早期的版本叫maxActive

实际上这个是一个很难回答的问题,考虑的因素比较多:

  • 业务希望Redis并发量
  • 客户端执行命令时间
  • Redis资源:例如 nodes(例如应用个数) * maxTotal 是不能超过redis的最大连接数maxclients。
  • 资源开销:例如虽然希望控制空闲连接(连接池此刻可马上使用的连接),但是不希望因为连接池的频繁释放创建连接造成不必靠开销。

以一个例子说明,假设:

  • 一次命令时间(borrow|return resource + Jedis执行命令(含网络) )的平均耗时约为1ms,一个连接的QPS大约是1000
  • 业务期望的QPS是50000

那么理论上需要的资源池大小是50000 / 1000 = 50个。但事实上这是个理论值,还要考虑到要比理论值预留一些资源,通常来讲maxTotal可以比理论值大一些。

但这个值不是越大越好,一方面连接太多占用客户端和服务端资源,另一方面对于Redis这种高QPS的服务器,一个大命令的阻塞即使设置再大资源池仍然会无济于事。

2)maxIdle和minIdle

maxIdle实际上才是业务需要的最大连接数,maxTotal是为了给出余量,所以maxIdle不要设置过小,否则会有new Jedis(新连接)开销。

连接池的最佳性能是maxTotal = maxIdle,这样就避免连接池伸缩带来的性能干扰。但是如果并发量不大或者maxTotal设置过高,会导致不必要的连接资源浪费。一般推荐maxIdle可以设置为按上面的业务期望QPS计算出来的理论连接数,maxTotal可以再放大一倍。

minIdle(最小空闲连接数),与其说是最小空闲连接数,不如说是"至少需要保持的空闲连接数",在使用连接的过程中,如果连接数超过了minIdle,那么继续建立连接,如果超过了maxIdle,当超过的连接执行完业务后会慢慢被移出连接池释放掉。

如果系统启动完马上就会有很多的请求过来,那么可以给redis连接池做预热,比如快速的创建一些redis连接,执行简单命令,类似ping(),快速的将连接池里的空闲连接提升到minIdle的数量。

连接池预热示例代码:

 List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.getMinIdle());
2
3 for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
4 Jedis jedis = null;
5 try {
6 jedis = pool.getResource();
7 minIdleJedisList.add(jedis);
8 jedis.ping();
9 } catch (Exception e) {
10 logger.error(e.getMessage(), e);
11 } finally {
12 //注意,这里不能马上close将连接还回连接池,否则最后连接池里只会建立1个连接。。
13 //jedis.close();
14 }
15 }
16 //统一将预热的连接还回连接池
17 for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {
18 Jedis jedis = null;
19 try {
20 jedis = minIdleJedisList.get(i);
21 //将连接归还回连接池
22 jedis.close();
23 } catch (Exception e) {
24 logger.error(e.getMessage(), e);
25 } finally {
26 }
27 }

总之,要根据实际系统的QPS和调用redis客户端的规模整体评估每个节点所使用的连接池大小。

3.高并发下建议客户端添加熔断功能(例如sentinel、hystrix)

4.设置合理的密码,如有必要可以使用SSL加密访问

5.Redis对于过期键有三种清除策略:

  1. 被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key
  2. 主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期(默认每100ms)主动淘汰一批已过期的key,这里的一批只是部分过期key,所以可能会出现部分key已经过期但还没有被清理掉的情况,导致内存并没有被释放
  3. 当前已用内存超过maxmemory限定时,触发主动清理策略

主动清理策略在Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略,总共8种:

a) 针对设置了过期时间的key做处理:

  1. volatile-ttl:在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
  2. volatile-random:就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
  3. volatile-lru:会使用 LRU 算法筛选设置了过期时间的键值对删除。
  4. volatile-lfu:会使用 LFU 算法筛选设置了过期时间的键值对删除。

b) 针对所有的key做处理:

  1. allkeys-random:从所有键值对中随机选择并删除数据。
  2. allkeys-lru:使用 LRU 算法在所有数据中进行筛选删除。
  3. allkeys-lfu:使用 LFU 算法在所有数据中进行筛选删除。

c) 不处理:

  1. noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作。

LRU 算法(Least Recently Used,最近最少使用)

淘汰很久没被访问过的数据,以最近一次访问时间作为参考。

LFU 算法(Least Frequently Used,最不经常使用)

淘汰最近一段时间被访问次数最少的数据,以次数作为参考。

当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。这时使用LFU可能更好点。

根据自身业务类型,配置好maxmemory-policy(默认是noeviction),推荐使用volatile-lru。如果不设置最大内存,当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap),会让 Redis 的性能急剧下降。

当Redis运行在主从模式时,只有主结点才会执行过期删除策略,然后把删除操作”del key”同步到从结点删除数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/168000.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2022年03月 Scratch(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 以下四个选项中,运行哪个积木块,可能得到523这个数值? A: B: C: D: 答案:B 四个选项都遵循统一的公式:随机数ⅹ10+3=523,因此可以得出随

和数集团出席中科院上海高研院​第三十三期“高研交叉论坛”信息能源融合专场

2023年11月21日&#xff0c;中国科学院上海高等研究院第三十三期“高研交叉论坛”信息能源融合专场在上海高研院成功举办。本次论坛由中国科学院上海高等研究院智能信息通信技术研究与发展中心、中国科学院低碳转化科学与工程重点实验室、中科院和数智能区块链与能源系统应用联…

【文末送书】机器学习高级实践

2023年初是人工智能爆发的里程碑式的重要阶段&#xff0c;以OpenAI研发的GPT为代表的大模型大行其道&#xff0c;NLP领域的ChatGPT模型火爆一时&#xff0c;引发了全民热议。而最新更新的GPT-4更是实现了大型多模态模型的飞跃式提升&#xff0c;它能够同时接受图像和文本的输入…

仿 美图 / 饿了么,店铺详情页功能

前言 UI有所不同&#xff0c;但功能差不多&#xff0c;商品添加购物车功能 正在写&#xff0c;写完会提交仓库。 效果图一&#xff1a;左右RecyclerView 联动 效果图二&#xff1a;通过点击 向上偏移至最大值 效果图三&#xff1a;通过点击 或 拖动 展开收缩公告 效果图四&…

SpringBoot3核心原理

SpringBoot3核心原理 事件和监听器 生命周期监听 场景&#xff1a;监听应用的生命周期 可以通过下面步骤自定义SpringApplicationRunListener来监听事件。 ①、编写SpringApplicationRunListener实现类 ②、在META-INF/spring.factories中配置org.springframework.boot.Sprin…

上市公司-股权性质数据(国企、央企)2003-2022年

上市公司-股权性质数据&#xff08;国企、央企&#xff09;是一个针对上市公司的数据集&#xff0c;主要涵盖了A股公司股权性质的详细信息&#xff0c;区分了公司是否为民营企业、国企或央企。这份数据集提供了每家上市公司的股权结构背景&#xff0c;对投资者、市场分析师和经…

Shell循环:for(二)

一、通过用户列表文件创建用户 需求&#xff1a;通过用户列表文件创建用户 [rootlocalhost ~]# cat user.txt qian yoa huang演示&#xff1a; [rootlocalhost ~]# vim foruser.sh #编写脚本 #!/bin/bash for i in cat user.txt do useradd $i if [ $? -eq 0 ] thenech…

2023年亚太杯数学建模C题新能源汽车成品文章(思路模型代码成品)

一、翻译 新能源汽车是指采用先进的技术原理、新技术和新结构&#xff0c;以非常规车用燃料&#xff08;非常规车用燃料是指汽油和柴油以外的燃料(非常规车用燃料是指汽油和柴油以外的燃料&#xff09;&#xff0c;并集成了汽车动力控制和驱动等先进技术的汽车。新能源汽车包括…

C++入门第九篇---Stack和Queue模拟实现,优先级队列

前言&#xff1a; 我们已经掌握了string vector list三种最基本的数据容器模板&#xff0c;而对于数据结构的内容来说&#xff0c;其余的数据结构容器基本都是这三种容器的延申和扩展&#xff0c;在他们的基础上扩展出更多功能和用法&#xff0c;今天我们便来模拟实现一下C库中…

superset 后端增加注册接口

好烦啊-- &#xff1a;< 1.先定义modes: superset\superset\models\user.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information…

Tars框架 Tars-Go 学习

Tars 框架安装 网上安装教程比较多&#xff0c;官方可以参数这个 TARS官方文档 (tarsyun.com) 本文主要介绍部署应用。 安装完成后Tars 界面 增加应用amc 部署申请 amc.GoTestServer.GoTestObj 名称不知道的可以参考自己创建的app config 点击刷新可以看到自己部署的应用 服…

【阿里云服务器】2023安装宝塔面板8.0.4

文章目录 前言安装宝塔远程链接服务器输入安装宝塔命令放行宝塔端口 一键安装环境附录重装系统Linux系统卸载宝塔方式一方式二 遇见的问题 前言 镜像是CentOS 7.9.4 安装宝塔 远程链接服务器 输入安装宝塔命令 yum install -y wget && wget -O install.sh https://…

2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(基于yolov5的苹果分割)

注&#xff1a;.题中附录并没有给出苹果的标签集&#xff0c;所以需要我们自己通过前4问得到训练的标签集&#xff0c;采用的是yolov5 7.0 版本&#xff0c;该版本带分割功能 一&#xff1a;关于数据集的制作&#xff1a; clc; close all; clear; %-----这个是生成yolov5 数据…

Linux应用开发基础知识——I2C应用编程(十三)

一、无需编写驱动程序即可访问 I2C 设备 APP 访问硬件肯定是需要驱动程序的&#xff0c;对于 I2C 设备&#xff0c;内核提供了驱动程序 drivers/i2c/i2c-dev.c&#xff0c;通过它可以直接使用下面的 I2C 控制器驱动程序来访问 I2C 设备。 i2c-tools 是一套好用的工具&#xff0…

H5(uniapp)中使用echarts

1,安装echarts npm install echarts 2&#xff0c;具体页面 <template><view class"container notice-list"><view><view class"aa" id"main" style"width: 500px; height: 400px;"></view></v…

SQLite 和 SQLiteDatabase 的使用

实验七&#xff1a;SQLite 和 SQLiteDatabase 的使用 7.1 实验目的 本次实验的目的是让大家熟悉 Android 中对数据库进行操作的相关的接口、类等。SQLiteDatabase 这个是在 android 中数据库操作使用最频繁的一个类。通过它可以实现数据库的创建或打开、创建表、插入数据、删…

【MySQL】索引与事务

&#x1f451;专栏内容&#xff1a;MySQL⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、索引1、使用场景2、使用索引创建索引查看索引删除索引 3、底层数据结构&#xff08;非常重要&#xff09; 二、事务1、概念…

Android设计模式--享元模式

水不激不跃&#xff0c;人不激不奋 一&#xff0c;定义 使用共享对象可有效地支持大量的细粒度的对象 享元模式是对象池的一种实现&#xff0c;用来尽可能减少内存使用量&#xff0c;它适合用于可能存在大量重复对象的场景&#xff0c;来缓存可共享的对象&#xff0c;达到对象…

Qt项目打包发布超详细教程

https://blog.csdn.net/qq_45491628/article/details/129091320

HTML网站稳定性状态监控平台源码

这是一款网站稳定性状态监控平台源码&#xff0c;它基于UptimeRobot接口进行开发。当您的网站遇到故障时&#xff0c;该平台能够通过邮件或短信通知您。下面是对安装过程的详细说明&#xff1a; 安装步骤 将源码上传至您的主机或服务器&#xff0c;并进行解压操作。 在Uptim…