手动实现 git 的 git diff 功能

这是 git diff 后的效果,感觉挺简单的,不就是 比较新旧版本,新增了就用 "+" 显示新加一行,删除了就用 "-" 显示删除一行,修改了一行就用 "-"、"+" 显示将旧版本中的该行干掉了并且新版本中增加了一行,即使用 "删除" + "新增" 操作代替 "修改" 操作,然后就用

然后我们写的测试代码如下:

import com.goldwind.ipark.common.util.MyStringUitls;
import org.apache.commons.text.similarity.LevenshteinDistance;import java.io.BufferedReader;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.List;public class MyDiffTest {public static void main(String[] args) {List<String> lines_old = loadTxtFile2List("C:\\E\\javaCode\\git\\outer_project\\guodiantou\\gdtipark-user-servie\\src\\main\\java\\com\\goldwind\\ipark\\base\\test\\DemoClass1.java" );List<String> lines_new = loadTxtFile2List("C:\\E\\javaCode\\git\\outer_project\\guodiantou\\gdtipark-user-servie\\src\\main\\java\\com\\goldwind\\ipark\\base\\test\\DemoClass2.java");// lines1的起始行和 lines2 的起始行做映射// 扫描旧版本中的每一行int size = lines_old.size();for( int i=0;i<size;i++ ){// 从新版本中找该行String line_old = lines_old.get(i);String line_new = lines_new.get(i);// 如果发现版本中中该行的数据变了,那么提示删除了旧的行,添加了新的行if( line_new.equals( line_old ) ){System.out.println( line_old );}else {System.out.println( "- " + line_old );System.out.println( "+ " + line_new );}}// xxxx        xxxx1          -xxxx// yyyy        yyyy           +xxxx1// xxxxxx      xxxxxx         xxxxxx// zzzz        zzzz           zzzz}private static List<String> loadTxtFile2List(String filePath) {BufferedReader reader = null;List<String> lines = new ArrayList<>();try {reader = new BufferedReader(new FileReader(filePath));String line = reader.readLine();while (line != null) {// System.out.println(line);lines.add( line );line = reader.readLine();}return lines;} catch (Exception e) {e.printStackTrace();return null;} finally {if (reader != null) {try {reader.close();} catch (Exception e) {e.printStackTrace();}}}}
}

其中用到的2个新旧版本的文本如下:

DemoClass1.java:
import com.goldwind.ipark.common.exception.BusinessLogicException;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.text.similarity.LevenshteinDistance;@Slf4j
public class DemoClass1 {private static final LevenshteinDistance LEVENSHTEIN_DISTANCE = LevenshteinDistance.getDefaultInstance();public static String null2emptyWithTrim( String str ){if( str == null ){str = "";}str = str.trim();return str;}public static String requiredStringParamCheck(String param, String paramRemark) {param = null2emptyWithTrim( param );if( param.length() == 0 ){String msg = "操作失败,请求参数 \"" + paramRemark + "\" 为空";log.error( msg );throw new BusinessLogicException( msg );}return param;}public static double calculateSimilarity( String str1,String str2 ){int distance = LEVENSHTEIN_DISTANCE.apply(str1, str2);double similarity = 1 - (double) distance / Math.max(str1.length(), str2.length());System.out.println("相似度:" + similarity);return similarity;}
}

DemoClass2.java:
import com.goldwind.ipark.common.exception.BusinessLogicException;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.text.similarity.LevenshteinDistance;@Slf4j
public class DemoClass2 {private static final LevenshteinDistance LEVENSHTEIN_DISTANCE = LevenshteinDistance.getDefaultInstance();private static final LevenshteinDistance LEVENSHTEIN_DISTANCE1 = LevenshteinDistance.getDefaultInstance();private static final LevenshteinDistance LEVENSHTEIN_DISTANCE2 = LevenshteinDistance.getDefaultInstance();public static String null2emptyWithTrim( String str ){if( str == null ){str = "";}str = str.trim();return str;}public static String requiredStringParamCheck(String param, String paramRemark) {param = null2emptyWithTrim( param );if( param.length() == 0 ){String msg = "操作失败,请求参数 \"" + paramRemark + "\" 为空";log.error( msg );throw new BusinessLogicException( msg );}return param;}public static double calculateSimilarity( String str1,String str2 ){int distance = LEVENSHTEIN_DISTANCE.apply(str1, str2);double similarity = 1 - (double) distance / Math.max(str1.length(), str2.length());System.out.println("相似度:" + similarity);return similarity;}
}
DemoClass2.java 相较于 DemoClass1.java 的区别是 "public class" 后面的类名不同,"private static final LevenshteinDistance LEVENSHTEIN_DISTANC..." 多复制了2行并改了名称,然后运行后显示差别如下:
import com.goldwind.ipark.common.exception.BusinessLogicException;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.text.similarity.LevenshteinDistance;@Slf4j
- public class DemoClass1 {
+ public class DemoClass2 {private static final LevenshteinDistance LEVENSHTEIN_DISTANCE = LevenshteinDistance.getDefaultInstance();
- 
+     private static final LevenshteinDistance LEVENSHTEIN_DISTANCE1 = LevenshteinDistance.getDefaultInstance();
-     public static String null2emptyWithTrim( String str ){
+     private static final LevenshteinDistance LEVENSHTEIN_DISTANCE2 = LevenshteinDistance.getDefaultInstance();
-         if( str == null ){
+ 
-             str = "";
+     public static String null2emptyWithTrim( String str ){
-         }
+         if( str == null ){
-         str = str.trim();
+             str = "";
-         return str;
+         }
-     }
+         str = str.trim();
- 
+         return str;
-     public static String requiredStringParamCheck(String param, String paramRemark) {
+     }
-         param = null2emptyWithTrim( param );
+ 
-         if( param.length() == 0 ){
+     public static String requiredStringParamCheck(String param, String paramRemark) {
-             String msg = "操作失败,请求参数 \"" + paramRemark + "\" 为空";
+         param = null2emptyWithTrim( param );
-             log.error( msg );
+         if( param.length() == 0 ){
-             throw new BusinessLogicException( msg );
+             String msg = "操作失败,请求参数 \"" + paramRemark + "\" 为空";
-         }
+             log.error( msg );
-         return param;
+             throw new BusinessLogicException( msg );
-     }
+         }
- 
+         return param;
-     public static double calculateSimilarity( String str1,String str2 ){
+     }
-         int distance = LEVENSHTEIN_DISTANCE.apply(str1, str2);
+ 
-         double similarity = 1 - (double) distance / Math.max(str1.length(), str2.length());
+     public static double calculateSimilarity( String str1,String str2 ){
-         System.out.println("相似度:" + similarity);
+         int distance = LEVENSHTEIN_DISTANCE.apply(str1, str2);
-         return similarity;
+         double similarity = 1 - (double) distance / Math.max(str1.length(), str2.length());
-     }
+         System.out.println("相似度:" + similarity);
- }
+         return similarity;

为啥???

如上两张图片,旧版本的第10行和新版本的第10行对应,从直观上看新版本的第11、12行是在旧版本的第10行和第11行之间插进去的,但是程序并不这么认为,它会认为将旧版本的第11行的空白行修改为了新版本的 “private static final LevenshteinDistance LEVENSHTEIN_DISTANCE1 = LevenshteinDistance.getDefaultInstance();” 为什么我们人眼会这么直观的感觉到 新版本的 第11、12行时插进去的,因为我们比较了新旧版本的第7、8、9、10行都差不多,旧版本的11~27行和新版本的 13~29行都差不多,所以自然而然的认为新版本的11、12行是直接插进去的,那么现在我们就来算法实现吧!( ps:前文中的 “差不多” 是差几多?是完全equals 还是很像?”其实这里可以设置一个阈值,使用求字符串的相似度算法求出相似度,网上有现成的类库求相似度,自己也可以使用动态规划写一个简单的字符串相似度算法 )

感觉恰当的算法的执行过程应该是这样的:

新旧版本各维持一个行号游标:index_old、index_new,最开始这两个游标相同,越往后可能不同,但是他们表示的行的内容应该是应该相似的,因为新版本的修改会导致内容越来越 “错位”。假设我们从上面2张图片的第7行开始描:

        1. 最开始 index_old = index_new = 7,算法检测到新旧版本的第7行的内容相同( 后面我们就尽量用伪代码表示,就不说这么多啰里啰嗦的话了 ),即 lines_old[ 7] = lines_new[ 7]。

        2. index_old++,index_new++,都变为8,算法检测到 lines_old[ 8 ] != lines_new[ index_new ],并且他们的相似度很高,所以算法判断新版本的第8行相较于旧版本的第8行是做了修改操作。

        3. index_old++,index_new++,都变为9,算法检测到 lines_old[ 9 ] = lines_new[ 9 ]。

        4. index_old++,index_new++,都变为10,算法检测到 lines_old[ 10 ] = lines_new[ 10 ]。

        5.  index_old++,index_new++,都变为11,算法检测到 lines_old[ 11 ] !=  lines_new[ 11 ],并且这两行的文本内容及不相似,所以判断新版本是在旧版本的第11行插入了一行 “private static final LevenshteinDistance LEVENSHTEIN_DISTANCE1 =LevenshteinDistance.getDefaultInstance();”,所以此时旧版本的第11行就和新版本的第11行对应不上了,而是和新版本的第12行做对应。

        6.  index_old 不变,index_new++,index_old 还是11,index_new 变为 12,即旧版本的第11行要和新版本的第12行做对应,就像找老婆一样,旧7和新7结为了夫妻,旧8和新8结为了夫妻( 虽然有一点点的裂痕,但不打紧 ),新9和新9结为了夫妻,...,所以旧11也要在新版本中找到一个新x作为自己的伴侣,本来已经找到了一个新11,但是发现新11和自己三观差别很大,根本合不来,所以pass掉,继续找,现在发现了下一个相亲对象 新12,发现lines_old[ 11 ] 和 lines_new[ 12 ] 相似度还是差别很大,所以算法判断新版本又插入了一个新行 “private static final LevenshteinDistance LEVENSHTEIN_DISTANCE2 = LevenshteinDistance.getDefaultInstance();”。

        7. index_old 不变,index_new++,index_old 还是11,index_new 变为 13,因为 lines_old[ 11 ] = lines_new[ 13 ],所以 旧11 很幸运的找到了自己的伴侣 新13,。

        8.  index_old++,index_new++,index_old变为12,index_new变为14,因为 lines_old[ 12 ] = lines_new[ 14 ],所以此步未检测到变化。

        ...

改进后的测试代码如下:

todo

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167856.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Modown主题v8.12 安装教程和主题下载

亲测」Modown主题v8.12学习版 上传好主题选择该主题就好了设置 设置好的首页 内容页&#xff1a; WordPress主题Modown和WordPress插件Erphpdown想必正在使用WordPress程序建站的站长都非常熟悉&#xff0c;因为这两款应用在WordPress站长圈子里还是比较知名的&#xff0c;所以…

计算机毕业设计 基于SpringBoot的无人智慧超市管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解+答疑

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

GoLang Filepath.Walk遍历优化

原生标准库在文件量过大时效率和内存均表现不好 1400万文件遍历Filepath.Walk 1400万文件重写直接调用windows api并处理细节 结论 1400万文件遍历时对比 对比条目filepath.walkwindows api并触发黑科技运行时间710秒22秒内存占用480M38M 关键代码 //超级快的文件遍历 fun…

【HuggingFace Transformer库学习笔记】基础组件学习:pipeline

一、Transformer基础知识 pip install transformers datasets evaluate peft accelerate gradio optimum sentencepiece pip install jupyterlab scikit-learn pandas matplotlib tensorboard nltk rouge在host文件里添加途中信息&#xff0c;可以避免运行代码下载模型时候报错…

企业计算机服务器中了360勒索病毒怎么办,360勒索病毒解密文件恢复

计算机技术的不断发展&#xff0c;为企业的生产运营提供了极大便利&#xff0c;不仅提升了办公效率&#xff0c;还促进了企业的发展。企业计算机在日常工作中一定加以防护&#xff0c;减少网络威胁事件的产生&#xff0c;确保企业的生产生产运营。最近&#xff0c;网络上的360后…

微信小程序富文本拓展rich-text

微信小程序富文本插件 功能介绍 支持解析<style>标签中的全局样式支持自定义默认的标签样式支持自动设置标题 若html中存在title标签,将自动把title标签的内容设置到页面的标题上,并在回调bindparse中返回,可以用于转发支持添加加载提示 可以在Parser标签内添加加载提…

动态规划 之 钢条切割

自顶向下递归实现(Recursive top-down implementation) 程序CUT-ROD对等式(14.2)进行了实现&#xff0c;伪代码如下&#xff1a; CUT-ROD(p, n)if n 0return 0q -∞for i 1 to nq max{q, p[i] CUT-ROD(p, n - i)}return q上面解决中重复对一个子结构问题重复求解了&#…

VR全景展示,“超前点播”打开娱乐行业线上营销门户

如今&#xff0c;人们的生活水平正在逐步提高&#xff0c;这种提高不仅仅是体现在衣食住行上&#xff0c;更多方面是体现在大众的娱乐活动上。我们可以看到&#xff0c;相比于过去娱乐种类的匮乏&#xff0c;现如今&#xff0c;各种娱乐活动可谓是百家争鸣&#xff0c;例如温泉…

java学习part10 this

90-面向对象(进阶)-关键字this调用属性、方法、构造器_哔哩哔哩_bilibili 1.java的this java的this性质类似cpp的this&#xff0c; 但它是一种引用&#xff0c;所以用 this. xxx来调用。 this代表当前的类的实例&#xff0c;所以必须和某个对象结合起来使用&#xff0c;不能…

Javaweb之前端工程化的详细解析

3 前端工程化 3.1 前端工程化介绍 我们目前的前端开发中&#xff0c;当我们需要使用一些资源时&#xff0c;例如&#xff1a;vue.js&#xff0c;和axios.js文件&#xff0c;都是直接再工程中导入的&#xff0c;如下图所示&#xff1a; 但是上述开发模式存在如下问题&#xff…

git的使用:本地git下载、sshkey的添加、github仓库创建及文件上传

一、github创建账号 即github注册账号&#xff0c;登录github官网&#xff0c;根据提示注册即可 github官网 二、git客户端下载安装 已有很多git下载安装的博文了&#xff0c;在此就不赘述 三、sshkey的生成与添加 1、sshkey的生成以及查看 // sshkey的生成命令&#xff…

OSS+CDN的资费和安全

文章目录 花费OSSCDNOSS CDN 安全OSS防盗链跨域设置CORS数据加密 CDN防盗链URL鉴权Cookie鉴权远程鉴权IP黑白名单UA黑白名单 回源服务自定义私有参数IP黑白名单数据加密 花费 OSS 存储费用 &#xff1a;0.12元/GB/月下行流量费用 &#xff1a;0.5元/GB请求费用 &#xff1a;…

C语言你爱我么?(ZZULIOJ 1205:你爱我么?)

题目描述 LCY买个n束花准备送给她暗恋的女生&#xff0c;但是他不知道这个女生是否喜欢他。这时候一个算命先生告诉他让他查花瓣数&#xff0c;第一个花瓣表示"爱"&#xff0c;第二个花瓣表示"不爱"&#xff0c;第三个花瓣表示"爱"..... 为了使最…

某60区块链安全之未初始化的存储指针实战二学习记录

系列文章目录 文章目录 系列文章目录未初始化的存储指针实战二实验目的实验环境实验工具实验原理实验内容实验过程EXP利用 未初始化的存储指针实战二 实验目的 学会使用python3的web3模块 学会分析以太坊智能合约未初始化的存储指针漏洞 找到合约漏洞进行分析并形成利用 实验…

Flink 常用物理分区算子(Physical Partitioning)

Flink 物理分区算子(Physical Partitioning) 在Flink中&#xff0c;常见的物理分区策略有&#xff1a;随机分配(Random)、轮询分配(Round-Robin)、重缩放(Rescale)和广播(Broadcast)。 接下来&#xff0c;我们通过源码和Demo分别了解每种物理分区算子的作用和区别。 (1) 随机…

win10安装pytorch(py39)

cuda≤11.6&#xff0c;观察控制面板 观察torch对应cuda版本 https://download.pytorch.org/whl/torch/ 安装cuda11.6.0 CUDA Toolkit Archive | NVIDIA Developer cmd输入nvcc -V 编辑国内镜像源 .condarc anaconda prompt输入 查看环境 conda env list 安装py3.9…

uniapp视频倍速播放插件,uniapp视频试看插件——sunny-video使用文档

sunny-video视频倍速播放器 组件名&#xff1a;sunny-video 效果图 img1img2img3img4 平台差异说明 目前已应用到APP&#xff08;安卓、iOS&#xff09;、微信&#xff08;小程序、H5&#xff09;其它平台未测试 安装方式 本组件符合easycom规范&#xff0c;HBuilderX 2.5…

点大商城V2.5.3分包小程序端+小程序上传提示限制分包制作教程

这几天很多播播资源会员反馈点大商城V2.5.3小程序端上传时提示大小超限&#xff0c;官方默认单个包都不能超过2M&#xff0c;总分包不能超20M。如下图提示超了93KB&#xff0c;如果出现超的不多情况下可采用手动删除一些images目录下不使用的图片&#xff0c;只要删除超过100KB…

鸿蒙4.0开发笔记之DevEco Studio如何使用低代码开发模板进行开发的详细流程(六)

鸿蒙低代码开发 一、什么是低代码二、如何进行鸿蒙低代码开发1、 创建低代码开发工程&#xff08;方式壹&#xff09;2、已有工程则创建Visual文件&#xff08;方拾贰&#xff09; 三、低代码开发界面介绍四、低代码实现页面跳转五、低代码开发建议 一、什么是低代码 所谓低代码…

基于 STM32F7 和神经网络的实时人脸特征提取与匹配算法实现

本文讨论了如何使用 STM32F7 和神经网络模型来实现实时人脸特征提取与匹配算法。首先介绍了 STM32F7 的硬件和软件特点&#xff0c;然后讨论了人脸特征提取和匹配算法的基本原理。接下来&#xff0c;我们将重点讨论如何在 STM32F7 上实现基于神经网络的人脸特征提取与匹配算法&…