实例分割12篇顶会论文及代码合集,含2023最新

同学们,你们觉得视觉经典四个任务中哪个最难?我个人觉得是实例分割

因为它既具备语义分割的特点,需要做到像素层面上的分类,也具备目标检测的一部分特点,即需要定位出不同实例,即使它们是同一种类。

但尽管实例分割的复杂性和挑战性较高,它仍然是计算机视觉领域一个很重要的研究主题,对地理信息系统、医学影像、自动驾驶、机器人等领域有着很重要的应用技术支持作用。

为了帮助同学们学习这一重要主题,今天我就来和大家分享各大顶会中实例分割方向的12篇高分论文,包含今年最新的研究成果,希望能帮助同学们更轻松地理解并掌握实例分割。

论文原文及代码需要的同学看文末

1.PatchDCT: Patch Refinement for High Quality Instance Segmentation 【ICLR2023】

PatchDCT:用于高质量实例分割的Patch细化

简述:PatchDCT是一种用于高质量实例分割的方法,它通过将解码自DCT向量的掩码分解为多个补丁,并使用分类器和回归器对每个补丁进行细化来提高分割质量。在实验中,PatchDCT方法比Mask-RCNN和DCT-Mask方法表现更好,也与其他最先进的方法相当。

2.Recurrent Contour-based Instance Segmentation with Progressive Learning 【TPAMI2023】

渐进式学习的循环轮廓基础实例分割

简述:论文提出了一种名为PolySnake的新颖深度网络架构,用于轮廓基础实例分割。通过迭代和渐进式轮廓细化策略实现了卓越而稳健的分割性能。具体来说,PolySnake引入了循环更新操作符来迭代地估计物体轮廓,并逐渐将其变形朝向物体边界。在每次迭代中,PolySnake为当前轮廓构建了一个语义丰富的表示形式,并将其输入到循环操作符中进行进一步的轮廓调整。

3.Instance Segmentation in the Dark 【IJCV2023】

暗光实例分割

简述:论文发现低光图像中的噪声会引入高频率干扰到神经网络的特征图中,从而降低性能。为了解决这个问题,作者提出了一种新的学习方法,通过自适应加权下采样层、平滑面向卷积块和干扰抑制学习来减少特征噪声。此外,作者还发现使用高比特深度RAW图像可以更好地保留低光场景信息。通过采集现实世界的低光实例分割数据集并利用低光RAW合成管道生成逼真的低光数据,该方法在无需任何图像预处理的情况下实现了令人满意的性能。

4.OpenMask3D:Open-Vocabulary 3D Instance Segmentation 【NeurIPS2023】

开放词汇表的3D实例分割

简述:论文介绍了一种名为OpenMask3D的开放词汇表的3D实例分割方法。现有的3D实例分割方法只能识别预先定义的封闭类别集合中的物体,而OpenMask3D通过学习场景中每个点的可查询特征来解决这一问题。该方法使用基于CLIP的图像嵌入的多视角融合来聚合每个掩码的特征,并通过预测的类无关3D实例掩码指导模型。实验表明,OpenMask3D优于其他开放词汇表方法,尤其是在长尾分布上。

5.ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution 【CVPR2023】

一种具有实例感知采样和框感知动态卷积的3D点云实例分割网络

简述:该文介绍了一种新的无聚类3D实例分割方法ISBNet,它将实例表示为内核并通过动态卷积解码实例掩码。该方法采用实例感知最远点采样策略来高效地生成高召回率和有区别性的内核,并利用局部聚合层编码候选特征。此外,作者还展示了在动态卷积中预测和利用3D轴对齐边界框可以进一步提高性能。

6.Betrayed by Captions: Joint Caption Grounding and Generation for Open Vocabulary Instance Segmentation 【ICCV2023】

开放词汇实例分割的联合标题基础和生成

简述:作者提出了一种名为Caption Grounding and Generation(CGG)的框架,用于开放词汇实例分割,以扩展分割模型来分类和分割新的实例级别类别。CGG通过仅关注匹配对象名词的基础损失函数提高学习效率,并引入标题生成头提供额外的监督和上下文建模。实验结果表明,基础和生成组件相互补充,显著提高了新类别的分割性能。

7.DVIS: Decoupled Video Instance Segmentation Framework 【ICCV2023】

解耦的视频实例分割框架

简述:论文介绍了一种名为DVIS的解耦视频实例分割框架,将VIS分为三个子任务:分割、跟踪和细化。作者引入了一个新颖的引用跟踪器和时序细化器来构建DVIS框架,以解决现有方法在复杂和长视频上表现不佳的问题。DVIS在VIS和VPS上都取得了新的最先进的性能,并具有轻量级的优点,允许在单个GPU上进行高效训练和推理。

8.FastInst: A Simple Query-Based Model for Real-Time Instance Segmentation 【CVPR2023】

一种用于实时实例分割的简单查询模型

简述:论文提出了一种用于实时实例分割的简单查询模型框架FastInst,它可以在不使用非最大抑制(NMS)的情况下以端到端的方式执行,并在COCO测试集上达到超过40的AP和32.5 FPS的实时速度。作者提出了三个关键设计:实例激活引导查询、双路径更新策略和真实掩码引导学习,这些设计使得我们可以使用更轻量级的像素解码器和更少的Transformer解码器层,同时实现更好的性能。

9.E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation【CVPR2022】

一种基于端到端轮廓的高质量高速实例分割方法

简述:E2EC是一种全新的端到端轮廓基础的实例分割方法,它通过使用可学习的轮廓初始化、多方向对齐标签采样和动态匹配损失,实现了高质量的高速实例分割。在这种方法中,首先应用了一种新的可学习轮廓初始化架构来替代手动设计的轮廓初始化,该架构包括一个轮廓初始化模块用于构建更明确的学习目标,以及一个全局轮廓变形模块,可以更好地利用所有顶点的特征。其次,该方法还提出了一种名为多方向对齐的新型标签采样方案,以降低学习难度。最后,为了提高边界细节的质量,动态匹配预测的地面真实顶点对,并提出了相应的动态匹配损失函数。

10.Mask Transfiner for High-Quality Instance Segmentation【CVPR2022】

基于Transformer的高质量实例分割方法

简述:Mask Transfiner是一种用于高质量实例分割的方法,它将图像区域表示为四叉树,并使用Transformer处理易出错的节点。该方法可以以低计算成本预测高度准确的实例掩码,并在三个基准测试中优于当前实例分割方法。

11.SoftGroup for 3D Instance Segmentation on Point Clouds 【CVPR2022】

用于点云的三维实例分割SoftGroup

简述:作者提出了一种新的三维实例分割方法SoftGroup,它通过自底向上的软分组和自上而下的细化来解决现有方法中的问题。现有的最先进方法通常先进行语义分割,然后将每个点与单个类别相关联,但这些硬预测在执行语义分割时会产生误差,导致预测的实例与地面真实值之间的重叠度低,以及大量的误报。SoftGroup允许每个点与多个类别相关联,以减轻语义预测错误带来的问题,并通过学习将误报实例分类为背景来抑制误报实例。

12.OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of Point Clouds 【NeurIPS2022】

基于点云刚体动力学的无监督三维物体分割

简述:论文介绍了一种名为OGC的无监督三维物体分割方法,可以从原始点云中同时识别多个三维物体。该方法利用动态运动模式作为监督信号来自动发现刚体对象,不需要大量的人工注释来进行完全监督。该方法由三个主要组件组成:对象分割网络、辅助的自我监督场景流估计器和核心的对象几何一致性组件。通过精心设计一系列损失函数,该方法有效地考虑了多对象刚体一致性和对象形状不变性在时间和空间尺度上的影响。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“实例分割”领取论文原文及源码

码字不易,欢迎大家点赞评论收藏!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/167219.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LangChain的函数,工具和代理(一):OpenAI的函数调用

一、什么是函数调用功能 几个月前OpenAI官方发布了其API的函数调用功能(Function calling), 在 API 调用中,您可以描述函数,并让模型智能地选择输出包含调用一个或多个函数的参数的 JSON 对象。API函数“ChatCompletion” 虽然不会实际调用该函数&#…

一站式企业快递管理平台使用教程

因公寄件在企业中重要性的提升,催生出了企业快递管理平台。为什么这么说呢? 随着经济和快递行业的发展,因公寄件在企业中成了一件“常事”,寄文件合同、发票、节假日慰问品、样品等等,这种情况之下,因公寄件…

Vue3 设置点击后滚动条移动到固定的位置

需求&#xff1a; 点击不通过按钮&#xff0c;显示红框中表单&#xff0c;且滚动条滚动到底部 &#xff08;显示红框中表单默认不显示&#xff09; <el-button click"onApprovalPass">不通过</el-button> <div class"item" v-if"app…

pwn:[SWPUCTF 2021 新生赛]nc签到

题目 linux环境下显示为 配合题目的下载附件&#xff0c;发现过滤了一些&#xff0c;一旦输入这些会自动关闭程序 ls被过滤了&#xff0c;可以使用l\s cat和空格都被过滤了&#xff0c;cat可以换成c\at ,空格可以换成$IFS$9

Youtube0播放?运营教你需要的技巧、策略与工具!

对于有跨境意向的内容创作者或者品牌企业来说&#xff0c;YouTube是因其巨大的潜在受众群和商业价值成为最值得投入变现与营销计划的平台。 据统计&#xff0c;98% 的美国人每月访问 YouTube&#xff0c;近三分之二的人每天访问。但是&#xff0c;YouTube还远未达到过度饱和的…

酵母双杂交服务专题(一)

酵母双杂交系统是一种在酵母这种真核生物模型中执行的实验方法&#xff0c;用于探索活细胞内部蛋白质间的相互作用。这种技术能够敏感地捕捉蛋白质间的细微和短暂相互作用&#xff0c;通过检测报告基因的表达产物来实现。作为一种高度灵敏的技术&#xff0c;酵母双杂交系统被广…

Spring Cloud LoadBalancer 简单介绍与实战

前言 本文为SpringCloud的学习笔记&#xff0c;如有错误&#xff0c;希望各位高手能指出&#xff0c;主要介绍SpringCloudLoadBalancer的基本概念和实战 文章目录 前言什么是LoadBalancer负载均衡分类服务端负载均衡客户端负载均衡服务端负载均衡和客户端负载均衡的优缺点 常见…

评测|PolarDB MySQL 版 Serverless

评测&#xff5c;PolarDB MySQL 版 Serverless 目录 一、测试背景 1.1、云原生数据库 PolarDB Serverless新架构概念 1.2、Serverless资源弹性扩缩触发条件 二、PolarDB的Serverless能力与同类型产品进行对比 三、动态弹性升降资源的能力测试 3.1、测试资源 3.2、测试一…

ubuntu22.04在线安装redis,可选择版本

安装脚本7.0.5版本 在线安装脚本&#xff0c;默认版本号是7.0.5&#xff0c;可以根据需要选择需要的版本进行下载编译安装 sudo apt-get install gcc -y sudo apt-get install pkg-config -y sudo apt-get install build-essential -y#安装redis rm -rf ./tmp.log systemctl …

freeRTOS下载链接(sourceForge)

FreeRTOS Real Time Kernel (RTOS) download | SourceForge.net 文件名&#xff1a;FreeRTOSv202212.00.exe 双击后会自动变成这个样子的&#xff1a; 文件夹大小&#xff1a;506M 可以看到跟那个教程里面的文件结构是一模一样的&#xff0c;所以很可能是同一个最新版本的文件…

Linux(Centos)上使用crontab实现定时任务(定时执行脚本)

场景 Windows中通过bat定时执行命令和mysqldump实现数据库备份&#xff1a; Windows中通过bat定时执行命令和mysqldump实现数据库备份_mysqldump bat-CSDN博客 上面讲windows中使用bat实现定时任务的方式&#xff0c;如果是在linux上可以通过crontab实现。 cron是服务名称。…

怎样提升伦敦银买卖技巧?

如果投资者想提升伦敦银的买卖技巧&#xff0c;可以学习一些有用的技术分析方法。所谓技术分析&#xff0c;就是通过对行情过往价格和相关交易数据进行收集&#xff0c;用图表的方式解读白银市场&#xff0c;进而预测行情未来主线走势、判断价格细节变化、寻找重要支撑点阻力点…

TikTok Shop 与英国皇家邮政合作:为卖家提供“Click and Drop”服务

11 月 21 日&#xff0c;TikTok Shop 宣布与皇家邮政 建立新的合作伙伴关系 &#xff0c;为平台上的商家推出 Click & Drop。此次合作将使各种规模的商家能够通过将皇家邮政的 Click & Drop 与其 TikTok Shop 帐户集成来改善其履行体验并更有效地发出订单&#xff0c;…

科普:多领域分布式协同仿真

分布式协同仿真是一种在分布式计算环境中进行协同工作的仿真方法。使用该方法进行协同仿真时&#xff0c;仿真任务将被分发到多个计算节点上&#xff0c;并且这些节点可以同时工作以模拟完整的系统行为。分布式协同仿真已被广泛应用于工程、科学和军事领域&#xff0c;以便更好…

医保线上购药系统:代码驱动的医疗创新

医保线上购药系统&#xff0c;这是一个融合技术和医疗的创新典范。本文将通过简单的技术代码示例&#xff0c;为您揭示这一系统是如何通过技术驱动医疗创新&#xff0c;为用户提供更智能、便捷的健康管理体验的。 1. 前端界面开发 使用React框架&#xff0c;我们可以轻松构建…

深度探究数据要素市场,企业为什么要参与数据资产化建设

我国正在发展数字经济&#xff0c;培育数字要素市场&#xff0c;推进数据市场化。在十四五数字经济发展规划中就已经将数据要素列为数字经济深化发展的核心引擎。今天和大家分享关于数据要素的前世今生&#xff0c;您将了解以下知识点&#xff1a; 1.什么是数据要素&#xff1f…

可视化工作流管理流程及工具

Leangoo领歌是一款永久免费的专业的敏捷开发管理工具&#xff0c;提供端到端敏捷研发管理解决方案&#xff0c;涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 Leangoo领歌上手快、实施成本低&#xff0c;可帮助企业快速落地敏捷&#xff0c;提质增效、缩短周期、加速创新…

广告屏LED屏断电检测远程控制开关方案应用钡铼技术S270

广告屏LED屏断电检测&#xff1a; 广告屏和LED屏在商业和公共场所的广泛应用中扮演着重要角色&#xff0c;但由于断电问题可能导致广告屏无法正常显示&#xff0c;进而影响广告宣传效果和客户体验。而S270作为一种高效稳定的远程控制开关&#xff0c;可以实现广告屏LED屏的断电…

Git 与 Maven:企业级版本管理与版本控制规范设计

一、背景 当今&#xff0c;许多开发人员熟悉 GitFlow 工作流程&#xff0c;但往往忽略了 GitFlow 如何与 Maven 版本控制结合&#xff0c;尤其是在管理 snapshot 和 release 版本时的最佳实践。本文旨在整合 GitFlow 工作流程与 Maven 版本管理&#xff0c;提出一个统一的企业…

案例012:Java+SSM+uniapp基于微信小程序的科创微应用平台设计与实现

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…