反射编程
reflect.TypeOf vs reflect.ValueOf
func TestTypeAndValue(t *testing.T) {var a int64 = 10t.Log(reflect.TypeOf(a), reflect.ValueOf(a))t.Log(reflect.ValueOf(a).Type())
}
判断类型 - Kind()
当我们需要对反射回来的类型做判断时,Go 语言内置了一个枚举,可以通过 Kind()
来返回这个枚举值:
const (Invalid Kind = iotaBoolIntInt8Int16Int32Int64UintUint8Uint16Uint32Uint64// ...
)
package reflectimport ("fmt""reflect""testing"
)// 检查反射类型
// 用空接口接收任意类型
func CheckType(v interface{}) {t := reflect.TypeOf(v)switch t.Kind() {case reflect.Int, reflect.Int32, reflect.Int64:fmt.Println("Int")case reflect.Float32, reflect.Float64:fmt.Println("Float")default:fmt.Println("unknown type")}
}func TestBasicType(t *testing.T) {var f float32 = 1.23CheckType(f)
}
利用反射编写灵活的代码
reflect.TypeOf()
和 reflect.ValueOf()
都有 FieldByName()
方法。
// s必须是一个 struct 类型// reflect.ValueOf()只会返回一个值
reflect.ValueOf(s).FieldByName("Name")// reflect.TypeOf()可以返回两个值,第二个值可以用来判断这个值有没有;
reflect.TypeOf(s).FieldByName("Name")
FieldByName()
方法返回的是一个 StructField
类型的值。
我们可以通过这个 StructField
来访问 Struct Tag
:
type StructField struct {// Name是字段的名字。PkgPath是非导出字段的包路径,对导出字段该字段为""。// 参见http://golang.org/ref/spec#Uniqueness_of_identifiersName stringPkgPath stringType Type // 字段的类型Tag StructTag // 字段的标签Offset uintptr // 字段在结构体中的字节偏移量Index []int // 用于Type.FieldByIndex时的索引切片Anonymous bool // 是否匿名字段
}
FieldByName()
方法调用者必须是一个 struct
,而不是指针,源码如下:
// 访问 MethodByName() 必须是指针类型
reflect.ValueOf(&s).MethodByName("method_name").Call([]reflect.Value{reflect.ValueOf("new_value")})
type Employee struct {EmployeeID string// 注意后面的 struct tag 的写法,详情见第5点讲解Name string `format:"normal"`Age int
}// 更新名字,注意这里的 e 是指针类型
func (e *Employee) UpdateName(newVal string) {e.Name = newVal
}// 通过反射调用结构体的方法
func TestInvokeByName(t *testing.T) {e := Employee{"1", "Jane", 18}// reflect.TypeOf()可以返回两个值,第二个值可以用来判断这个值有没有;// 而reflect.ValueOf()只会返回一个值t.Logf("Name: value(%[1]v), Type(%[1]T)", reflect.ValueOf(e).FieldByName("Name"))if nameField, ok := reflect.TypeOf(e).FieldByName("Name"); !ok {t.Error("Failed to get 'Name' field")} else {// 获取反射取到的字段的 tag 的值t.Log("Tag:Format", nameField.Tag.Get("format"))}// 访问 MethodByName() 必须是指针类型 reflect.ValueOf(&e).MethodByName("UpdateName").Call([]reflect.Value{reflect.ValueOf("Mike")})t.Log("After update name: ", e)
}
Elem()
因为 FieldByName()
必须要结构体才能调用,如果参数是一个指向结构体的指针,我们需要用到 Elem()
方法,它会帮你获得指针指向的结构。
Elem()
用来获取指针指向的值- 如果参数不是指针,会报 panic 错误
- 如果参数值是 nil,获取的值为 0
// reflect.ValueOf(demoPtr)).Elem() 返回的是字段的值
reflect.ValueOf(demoPtr).Elem()// reflect.ValueOf(st)).Elem().Type() 返回的是字段类型
reflect.ValueOf(demoPtr).Elem().Type()// 传递指针类型参数调用 FieldByName() 方法
reflect.ValueOf(demoPtr).Elem().FieldByName("Name")// 传递指针类型参数调用 FieldByName() 方法
reflect.ValueOf(demoPtr).Elem().Type().FieldByName("Name")
Struct Tag
结构体里面可以对某些字段做特殊的标记,它是一个 `key: “value”` 的格式。
type Demo struct {// 先用这个符号(``)包起来,然后写上 key: value 的格式Name string `format:"normal"`
}
Go 内置的 Json 解析会用到 tag 来做一些标记。
反射是把双刃剑
反射是一个强大并富有表现力的工具,能让我们写出更灵活的代码。但是反射不应该被滥用,原因有以下三个:
- 基于反射的代码是极其脆弱的,反射中的类型错误会在真正运行的时候才会引发 panic,那很可能是在代码写完的很长时间之后。
- 大量使用反射的代码通常难以理解。
- 反射的性能低下,基于反射实现的代码通常比正常代码运行速度慢一到两个数量级。
万能程序
DeepEqual
我们都知道两个 map
类型之间是不能互相比较的,两个 slice 类型之间也不能进行比较,但是反射包中的 DeepEqual()
可以帮我们实现这个功能。
用 DeepEqual() 比较 map
// 用 DeepEqual() 比较两个 map 类型
func TestMapComparing(t *testing.T) {m1 := map[int]string{1: "one", 2: "two", 3: "three"}m2 := map[int]string{1: "one", 2: "two", 3: "three"}if reflect.DeepEqual(m1, m2) {t.Log("yes")} else {t.Log("no")}
}
用 DeepEqual() 比较 slice
// 用 DeepEqual() 比较两个切片类型
func TestSliceComparing(t *testing.T) {s1 := []int{1, 2, 3, 4}s2 := []int{1, 2, 3, 5}if reflect.DeepEqual(s1, s2) {t.Log("yes")} else {t.Log("no")}
}
用反射实现万能程序
场景:我们有 Employee
和 Customer
两个结构体,二者有两个相同的字段(Name 和 Age),我们希望写一个通用的程序,可以同时填充这两个不同的结构体。
type Employee struct {EmployeeId intName stringAge int
}type Customer struct {CustomerId intName stringAge int
}// 用同一个数据填充不同的结构体
// 思路:既然是不同的结构体,那么要想通用,所以参数必须是一个空接口才行。
// 因为是空接口,所有我们需要对参数类型写断言
func fillDifferentStructByData(st interface{}, data map[string]interface{}) error {// 先判断传过来的类型是不是指针if reflect.TypeOf(st).Kind() != reflect.Ptr {return errors.New("第一个参数必须传一个指向结构体的指针")}// 再判断指针指向的类型是否为结构体// Elem() 用来获取指针指向的值// 如果参数不是指针,会报 panic 错误// 如果参数值是 nil, 获取的值为 0if reflect.TypeOf(st).Elem().Kind() != reflect.Struct {return errors.New("第一个参数必须是一个结构体类型")}if data == nil {return errors.New("填充用的数据不能为nil")}var (field reflect.StructFieldok bool)for key, val := range data {// 如果结构体里面没有 key 这个字段,则跳过// reflect.ValueOf(st)).Elem().Type() 返回的是字段类型// reflect.ValueOf(st)).Elem().Type() 等价于 reflect.TypeOf(st)).Elem()if field, ok = reflect.TypeOf(st).Elem().FieldByName(key); !ok {continue}// 如果字段的类型相同,则用 data 的数据填充这个字段的值if field.Type == reflect.TypeOf(val) {// reflect.ValueOf(st)).Elem() 返回的是字段的值reflect.ValueOf(st).Elem().FieldByName(key).Set(reflect.ValueOf(val))}}return nil
}// 填充姓名和年龄
func TestFillNameAndAge(t *testing.T) {// 声明一个 map,用来存放数据,这些数据将会填充到 Employee 和 Customer 这两个结构体中data := map[string]interface{}{"Name": "Jane", "Age": 18}e := Employee{}// 传给通用的填充方法if err := fillDifferentStructByData(&e, data); err != nil {t.Fatal(err)}c := Customer{}// 传给通用的填充方法if err := fillDifferentStructByData(&c, data); err != nil {t.Fatal(err)}t.Log(e)t.Log(c)
}
两个结构体的 name 和 age 都填充上了,符合预期。
不安全编程-UnSafe
不安全编程指的是 go 语言中有一个 package 叫:unsafe
,它的使用场景一般是要和外部 c 程序实现的一些高效的库来进行交互。
“不安全行为”的危险性
Go 语言中是不支持强制类型转换的,而我们一旦使用 unsafe.Pointer
拿到指针后,我们可以将它转换为任意类型的指针,这样我们是否能利用它来实现强制类型转换呢?我们可以用代码来测试一下:
func TestUnsafe(t *testing.T) {i := 10f := *(*float64)(unsafe.Pointer(&i))t.Log(unsafe.Pointer(&i))t.Log(f)
}
可以看到结果根本不是 10
,是一串数字字母的组合,所以这是非常危险的。
合理的类型转换
在 Go 语言中,不同类型的指针是不允许相互赋值的,但是通过合理地使用 unsafe
包,则可以打破这种限制。
例如:int 类型是可以进行转换赋值的。
func TestConvert1(t *testing.T) {var num int = 10var uintNum uint = *(*uint)(unsafe.Pointer(&num))var int32Num int32 = *(*int32)(unsafe.Pointer(&num))t.Log(num, uintNum, int32Num)t.Log(reflect.TypeOf(num), reflect.TypeOf(uintNum), reflect.TypeOf(int32Num))
}
访问修改结构体私有成员变量
type User struct {name stringid int
}func TestOperateStruct(t *testing.T) {user := new(User)user.name = "张三"fmt.Printf("%+v\n", user)// 突破第一个私有变量,因为是结构体的第一个字段,所以不需要额外的指针计算*(*string)(unsafe.Pointer(user)) = "李四"fmt.Printf("%+v\n", user)// 突破第二个私有变量,因为是第二个成员字段,需要偏移一个字符串占用的长度即 16 个字节*(*int)(unsafe.Pointer(uintptr(unsafe.Pointer(user)) + uintptr(16))) = 1fmt.Printf("%+v\n", user)
}
当然我们可以更简单的获取到结构体变量的偏移量,这样就不需要自己计算了:
type Person struct {Name stringAge intHeight float64
}func TestUnSafeOffSet(t *testing.T) {nameOffset := unsafe.Offsetof(Person{}.Name)ageOffset := unsafe.Offsetof(Person{}.Age)heightOffset := unsafe.Offsetof(Person{}.Height)t.Log(nameOffset, ageOffset, heightOffset) // 输出字段的偏移量
}
实现 []byte 和字符串的零拷贝转换
通过查看源码,可以发现 slice
切片类型和 string
字符串类型具有类似的结构。
// runtime/slice.go
type slice struct {array unsafe.Pointer // 底层数组指针,真正存放数据的地方len int // 切片长度,通过 len(slice) 返回cap int // 切片容量,通过 cap(slice) 返回
}// runtime/string.go
type stringStruct struct {str unsafe.Pointer // 底层数组指针len int // 字符串长度,可以通过 len(string) 返回
}
看到这里,你是不是发现很神奇,这两个数据结构底层实现基本相同,而 slice 只是多了一个cap 字段。可以得出结论:slice 和 string 在内存布局上是对齐的,我们可以直接通过 unsafe 包进行转换,而不需要申请额外的内存空间。
代码实现
func StringToBytes(str string) []byte {var b []byte// 切片的底层数组、len字段,指向字符串的底层数组,len字段*(*string)(unsafe.Pointer(&b)) = str// 切片的 cap 字段赋值为 len(str) 的长度,切片的指针、len 字段各占8个字节,直接偏移16个字节*(*int)(unsafe.Pointer(uintptr(unsafe.Pointer(&b)) + 2*uintptr(8))) = len(str)return b
}func BytesToString(data []byte) string {// 直接转换return *(*string)(unsafe.Pointer(&data))
}func TestStringAndBytesConvert(t *testing.T) {str := "hello"b := StringToBytes(str)t.Log(reflect.TypeOf(b), b)// 此时 b 已经是切片类型,我们再将它转换为string类型s := BytesToString(b)t.Log(reflect.TypeOf(s), s)
}
符合预期。
原子类型操作
我们会用到 golang 内置 package 中的 atomic
原子操作,它提供了指针的原子操作,通常用在并发读写一块共享缓存时,保证线程安全。
我们在写数据的时候写在另外一块空间,完全写完之后,我们使用原子操作把读的指针和写的指针指向我们新写入的空间,保证下次再读的时候就是新写好的内容了。指针的切换要具有线程安全
的特性。
func TestAtomic(t *testing.T) {var shareBufPtr unsafe.Pointer// 写方法writeDataFn := func() {data := []int{}for i := 0; i < 9; i++ {data = append(data, i)}// 使用原子操作将data的指针指向shareBufPtratomic.StorePointer(&shareBufPtr, unsafe.Pointer(&data))}// 读方法readDataFn := func() {data := atomic.LoadPointer(&shareBufPtr) // 使用原子操作读取shareBufPtrfmt.Println(data, *(*[]int)(data)) // 打印shareBufPtr中的数据}var wg sync.WaitGroupwriteDataFn()// 启动3个读协程,3个写协程,每个协程执行3次读/写操作for i := 0; i < 3; i++ {wg.Add(1)go func() {for i := 0; i < 3; i++ {writeDataFn()time.Sleep(time.Microsecond * 100)}wg.Done()}()wg.Add(1)go func() {for i := 0; i < 3; i++ {readDataFn()time.Sleep(time.Microsecond * 100)}wg.Done()}()}wg.Wait()
}
使用 atomic + unsafe
来实现共享 buffer 安全的读写。
总结
通过 unsafe 包,我们可以绕过 golang 编译器的检查,直接操作地址,实现一些高效的操作。但正如 golang 官方给它的命名一样,它是不安全的,滥用的话可能会导致程序意外的崩溃。关于 unsafe 包,我们应该更关注于它的用法,生产环境不建议使用!!!
- 笔记整理自极客时间视频教程:Go语言从入门到实战
- UnSafe部分内容参考:go unsafe包使用指南