回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测

回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现SCN随机配置网络多输入单输出回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现SCN随机配置网络多变量回归预测
1.data为数据集,7个输入特征,1个输出特征,运行环境Matlab2018b及以上。
2.main.m为主程序文件,其余为函数文件,无需运行。
3.命令窗口输出MAE、MAPE、RMSE和R2,可在下载区获取数据和程序内容。
4.赠送一个PDF学习资料。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现SCN随机配置网络多输入单输出回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/166304.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Python实现汽车销售数据可视化+预测【500010086.1】

导入模块 import numpy as np import pandas as pd from pylab import mpl import plotly.express as px import matplotlib.pyplot as plt import seaborn as sns设置全局字体 plt.rcParams[font.sans-serif][kaiti]获取数据 total_sales_df pd.read_excel(r"./data/中…

机器学习第13天:模型性能评估指标

☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 交叉验证 保留交叉验证 k-折交叉验证 留一交叉验证 混淆矩阵 精度与召回率 介绍 精度 召回率 区别 使用代码 偏差与方差 介绍 区…

zerotier 搭建 moon中转服务器 及 自建planet

搭建moon 服务器 环境准备 # 安装依赖 yum install wget gcc gcc-c git -y yum install json-devel -y# 下载及安装 curl -s https://install.zerotier.com/ | sudo bash节点ID 配置 配置moon.json文件 cd /var/lib/zerotier-one/# 导出依赖 zerotier-idtool initmoon ide…

SpringBoot项目连接,有Kerberos认证的Kafka

在连接Kerberos认证kafka之前,需要了解Kerberos协议 二、什么是Kerberos协议 Kerberos是一种计算机网络认证协议 ,其设计目标是通过密钥系统为网络中通信的客户机(Client)/服务器(Server)应用程序提供严格的身份验证服务,确保通信双方身份的真…

历时三个月,我发布了一款外卖返钱小程序

近几年,推广外卖红包爆火,各种推广外卖红包的公众号层出不穷。于是,我就在想外卖红包究竟是怎么一回事。就这样,我带着问题开始了关于外卖红包的研究。 在研究的过程中,我开始了解商品联盟、推广分成、cps等一系列相关…

Springboot3+vue3从0到1开发实战项目(一)

一. 可以在本项目里面自由发挥拓展 二. 知识整合项目使用到的技术 后端开发 : Validation, Mybatis,Redis, Junit,SpringBoot3 ,mysql,Swagger, JDK17 ,项目部署 前端开发: Vue3,Vite,Router…

DNS的各种进阶新玩法

你们好,我的网工朋友,今天和你聊聊DNS。 01 什么是DNS? mac地址诞生,可是太不容易记忆了,出现了简化了IP形式,它被直接暴露给外网不说,还让人类还是觉得比较麻烦,干脆用几个字母算了…

【Git】一文教你学会 submodule 的增、删、改、查

添加子模块 $ git submodule add <url> <path>url 为想要添加的子模块路径path 为子模块存放的本地路径 示例&#xff0c;添加 r-tinymaix 为子模块到主仓库 ./sdk/packages/online-packages/r-tinymaix 路径下&#xff0c;命令如下所示&#xff1a; $ git subm…

用自己热爱的事赚钱,是多么的幸福

挖掘天赋可能有些困难&#xff0c;但挖掘爱好就简单多啦&#xff01;最幸福的事情就是能用自己喜欢的事情赚钱。 我们要说的是一个博主&#xff0c;他非常喜欢骑自行车&#xff0c;虽然他的工作是在外贸公司做销售&#xff0c;但每当有空时&#xff0c;他都会骑自行车。而且他…

Go iota简介

当声明枚举类型或定义一组相关常量时&#xff0c;Go语言中的iota关键字可以帮助我们简化代码并自动生成递增的值。本文档将详细介绍iota的用法和行为。 iota关键字 iota是Go语言中的一个预定义标识符&#xff0c;它用于创建自增的无类型整数常量。iota的行为类似于一个计数器…

3款免费次数多且功能又强大的国产AI绘画工具

hi&#xff0c;同学们&#xff0c;本期是我们第55 期 AI工具教程 最近两个月&#xff0c;国内很多AI绘画软件被关停&#xff0c;国外绝大部分AI绘画工具费用不低&#xff0c;因此 这两天我 重新整理 国产 AI绘画 工具 &#xff0c; 最终 筛选了 3款功能强大&#xf…

LeeCode前端算法基础100题(3)- N皇后

一、问题详情&#xff1a; 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回所有不同的 n 皇后…

虚拟机系列:vmware和Oracle VM VirtualBox虚拟机的区别,简述哪一个更适合我?以及相互转换

一. VMware和Oracle VM VirtualBox虚拟机的区别主要体现在以下几个方面: 首先两种软件的安装使用教程如下: VMware ESXI 安装使用教程 Oracle VM VirtualBox安装使用教程 商业模式:VMware是一家商业公司,而Oracle VM VirtualBox是开源软件; 功能:VMware拥有更多的功能和…

Leetcode200. 岛屿数量

Every day a Leetcode 题目来源&#xff1a;200. 岛屿数量 解法1&#xff1a;深度优先搜索 设目前指针指向一个岛屿中的某一点 (i, j)&#xff0c;寻找包括此点的岛屿边界。 从 (i, j) 向此点的上下左右 (i1,j)&#xff0c;(i-1,j)&#xff0c;(i,j1)&#xff0c;(i,j-1) …

“圆柱-计算公式“技术支持网址

该软件可以计算圆柱的底面圆周长、底面积、侧面积和体积。 您在使用中有遇到任何问题都可以和我们联系。我们会在第一时间回复您。 邮箱地址&#xff1a;elmo30zeongmail.com 谢谢&#xff01;

如何将本地websocket发布至公网并实现远程访问?

本地websocket服务端暴露至公网访问【cpolar内网穿透】 文章目录 本地websocket服务端暴露至公网访问【cpolar内网穿透】1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功…

VR云游:让旅游产业插上数字化翅膀,打造地方名片

自多地入冬降温以来&#xff0c;泡温泉成了许多人周末度假的选择&#xff0c;在气温持续走低的趋势下&#xff0c;温泉游也迎来了旺季&#xff1b;但是依旧有些地区温度依旧温暖&#xff0c;例如南京的梧桐美景也吸引了不少游客前去打卡&#xff0c;大家穿着汉服与金黄的树叶合…

【AI考证笔记】NO.1人工智能的基础概念

以下部分内容来自于百度智能云人才认证培训讲义&#xff0c;腾讯等也有人工智能类似的讲义&#xff0c;限时免费&#xff0c;也就是不报考&#xff0c;也能系统学习&#xff0c;课程做的都是不错的。有感兴趣的朋友&#xff0c;可以去检索学习。 本系列是学习笔记&#xff0c;…

6个常用的聚类评价指标

评估聚类结果的有效性&#xff0c;即聚类评估或验证&#xff0c;对于聚类应用程序的成功至关重要。它可以确保聚类算法在数据中识别出有意义的聚类&#xff0c;还可以用来确定哪种聚类算法最适合特定的数据集和任务&#xff0c;并调优这些算法的超参数(例如k-means中的聚类数量…

C语言——从键盘输人三角形的三个边长 a、b、c,求出三角形的面积。

从键盘输人三角形的三个边长 a、b、c,求出三角形的面积。求三角形的面积用公式areasqrt(s*(s-a)*(s-b)*(s-c)),其中 s1/2(a十bc)。注:要求对输人三角形的三个边长做出有效性判断。 #define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h> #include<math.h> int main…