多线程,线程池,线程的创建,线程池的参数

文章目录

  • 多线程
    • -1 高并发
    • 〇、使用多线程的场景
      • 1. 为什么使用多线程
    • 1. 线程概述
      • 1.1 线程和进程
      • 1.2 并发和并行
      • 1.3 多线程的优势
      • 1.4 程序运行原理
      • 1.5 主线程
    • 1.6 线程的 6 种状态
    • 2. 线程的创建和启动
      • 2.1 Thread类
      • 2.2创建线程有哪几种方法
        • 2.2.1 继承**Thread**类,重写**Run**方法(其中**Thread**类本身也是实现了**Runnable**接口)
        • 2.2.2 实现**Runnable**接口,重写**run**方法
        • 2.2.3 实现 **Callable** 接口,重写 **call**方法(有返回值)
        • 2.2.4 通过线程池创建线程
    • 4 线程池的核心参数有哪些:
          • 4个参数的设计:

来谈谈多线程,线程的创建,

多线程

-1 高并发

参考文章: 【多线程高并发编程】二 实现多线程的几种方式

〇、使用多线程的场景

1. 为什么使用多线程

通俗的解释一下多线程先:

多线程用于堆积处理,就像一个大土堆,一个推土机很慢,那么10个推土机一起来处理,当然速度就快了,不过由于位置的限制,如果20个推土机,那么推土机之间会产生相互的避让,相互摩擦,相互拥挤,反而不如10个处理的好,所以,多线程处理,线程数要开的恰当,就可以提高效率。

多线程使用的目的:

1、吞吐量:做WEB,容器帮你做了多线程,但是它只能帮你做请求层面的,简单的说,就是一个请求一个线程(如struts2,是多线程的,每个客户端请求创建一个实例,保证线程安全),或多个请求一个线程,如果是单线程,那只能是处理一个用户的请求。

2、伸缩性:通过增加CPU核数来提升性能。

多线程的使用场景:

1、常见的浏览器、Web服务(现在写的web是中间件帮你完成了线程的控制),web处理请求,各种专用服务器(如游戏服务器)

2、servlet多线程

3、FTP下载,多线程操作文件

4、数据库用到的多线程

5、分布式计算

6、tomcat,tomcat内部采用多线程,上百个客户端访问同一个WEB应用,tomcat接入后就是把后续的处理扔给一个新的线程来处理,这个新的线程最后调用我们的servlet程序,比如doGet或者dpPost方法

7、后台任务:如定时向大量(100W以上)的用户发送邮件;定期更新配置文件、任务调度(如quartz),一些监控用于定期信息采集

8、自动作业处理:比如定期备份日志、定期备份数据库

9、异步处理:如发微博、记录日志

10、页面异步处理:比如大批量数据的核对工作(有10万个手机号码,核对哪些是已有用户)

11、数据库的数据分析(待分析的数据太多),数据迁移

12、多步骤的任务处理,可根据步骤特征选用不同个数和特征的线程来协作处理,多任务的分割,由一个主线程分割给多个线程完成

1. 线程概述

1.1 线程和进程

​ 进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位。

线程也被称为轻量级进程,线程是进程的组成部分,一个进程可以拥有多个线程,一个线程必须有一个父进程。线程可以拥有自己的堆栈、自己的程序计数器和自己的局部变量,但不拥有系统资源,它与父进程的其它线程共享该进程所拥有的全部资源。一个线程可以创建和撤销另一个线程,同一个进程中的多个线程之间可以并发执行。

1.2 并发和并行

​ 并行指在同一时刻,有多条指令在多个处理器上同时执行;并发指在同一时刻只能有一条指令执行,但多个进程指令被快速轮换执行,使得在宏观上具有多个进程同时执行的效果。

1.3 多线程的优势

(1)进程之间不能共享内存,但线程之间共享内存却非常容易。

(2)系统创建进程时需要为该进程重新分配系统资源,但创建线程代价小得多,因此使用多线程来实现多任务并发比多进程的效率高。

(3)java语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了java的多线程编程。

1.4 程序运行原理

​ 分时调度:

所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间。

​ 抢占式调度:

优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个(线程随机性),Java使用的为抢占式调度。

1.5 主线程

jvm启动后,必然有一个执行路径(线程)从main方法开始的,一直执行到main方法结束,这个线程在java中称之为主线程。当程序的主线程执行时,如果遇到了循环而导致程序在指定位置停留时间过长,则无法马上执行下面的程序,需要等待循环结束后能够执行。

1.6 线程的 6 种状态

就像生物从出生到长大、最终死亡的过程一样,线程也有自己的生命周期,在 Java 中线程的生命周期中一共有 6 种状态。

  • New(新创建)

  • Runnable(可运行)

  • Blocked(被阻塞)

  • Waiting(等待)

  • Timed Waiting(计时等待)

  • Terminated(被终止)

如果想要确定线程当前的状态,可以通过 getState() 方法,并且线程在任何时刻只可能处于 1 种状态。

运行状态可能会有阻塞:

在这里插入图片描述

2. 线程的创建和启动

2.1 Thread类

Java使用Thread类代表线程,所有的线程对象都必须是Thread类或其子类的实例。每个线程的作用是完成一定的任务,实际上就是执行一段程序流。Java使用县城执行体来表示这段流。

2.2创建线程有哪几种方法

2.2.1 继承Thread类,重写Run方法(其中Thread类本身也是实现了Runnable接口)

(1)定义Thread类的子类,并重写该类的run方法,该run方法的方法体就代表了线程要完成的任务。因此把run()方法称为执行体。
(2)创建Thread子类的实例,即创建了线程对象。
(3)调用线程对象的start()方法来启动该线程。

示例代码:

package com.thread;
public class FirstThreadTest extends Thread{int i = 0;//重写run方法,run方法的方法体就是现场执行体public void run(){for(;i<100;i++){System.out.println(getName()+"  "+i);}}public static void main(String[] args){for(int i = 0;i< 100;i++){System.out.println(Thread.currentThread().getName()+"  : "+i);if(i==20){new FirstThreadTest().start();new FirstThreadTest().start();}}}
}
2.2.2 实现Runnable接口,重写run方法

(1)定义runnable接口的实现类,并重写该接口的run()方法,该run()方法的方法体同样是该线程的线程执行体。

(2)创建 Runnable实现类的实例,并依此实例作为Thread的target来创建Thread对象,该Thread对象才是真正的线程对象。

(3)调用线程对象的start()方法来启动该线程。

示例代码:

public class RunnableThreadTest implements Runnable{private int i;public void run()	{for(i = 0;i <100;i++){System.out.println(Thread.currentThread().getName()+" "+i);}}public static void main(String[] args){for(int i = 0;i < 100;i++) {System.out.println(Thread.currentThread().getName()+" "+i);if(i==20) {RunnableThreadTest rtt = new RunnableThreadTest();new Thread(rtt,"新线程1").start();new Thread(rtt,"新线程2").start();}}}
}
2.2.3 实现 Callable 接口,重写 call方法(有返回值)

通过Callable和Future创建线程

(1)创建Callable接口的实现类,并实现**call()方法,该call()**方法将作为线程执行体,并且有返回值。

(2)创建Callable实现类的实例,使用FutureTask类来包装Callable对象,该FutureTask对象封装了该Callable对象的**call()**方法的返回值。

(3)使用FutureTask对象作为Thread对象的target创建并启动新线程。

(4)调用FutureTask对象的get()方法来获得子线程执行结束后的返回值

实例代码:

package com.thread;import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;public class CallableThreadTest implements Callable<Integer> {public static void main(String[] args) {CallableThreadTest ctt = new CallableThreadTest();FutureTask<Integer> ft = new FutureTask<>(ctt);for (int i = 0; i < 100; i++) {System.out.println(Thread.currentThread().getName() + " 的循环变量i的值" + i);if (i == 20) {new Thread(ft, "有返回值的线程").start();}}try {System.out.println("子线程的返回值:" + ft.get());} catch (InterruptedException e) {e.printStackTrace();} catch (ExecutionException e) {e.printStackTrace();}}@Overridepublic Integer call() throws Exception {int i = 0;for (; i < 100; i++) {System.out.println(Thread.currentThread().getName() + " " + i);}return i;}}
2.2.4 通过线程池创建线程

创建线程的三种方式的对比

  1. 采用实现Runnable、Callable接口的方式创见多线程时
    优势:
    线程类只是实现了Runnable接口或Callable接口,还可以继承其他类。
    在这种方式下,多个线程可以共享同一个target对象,所以非常适合多个相同线程来处理同一份资源的情况,从而可以将CPU、代码和数据分开,形成清晰的模型,较好地体现了面向对象的思想。
    劣势:
    编程稍微复杂,如果要访问当前线程,则必须使用Thread.currentThread()方法。
  2. 使用继承Thread类的方式创建多线程时
    优势:
    编写简单,如果需要访问当前线程,则无需使用Thread.currentThread()方法,直接使用this即可获得当前线程。
    劣势:
    线程类已经继承了Thread类,所以不能再继承其他父类。

4 线程池的核心参数有哪些:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

为什么使用线程池?

使用线程池最大的原因就是可以根据系统的需求和硬件环境灵活的控制线程的数量,且可以对所有线程进行统一的管理和控制,从而提高系统的运行效率,降低系统运行运行压力;当然了,使用线程池的原因不仅仅只有这些,我们可以从线程池自身的优点上来进一步了解线程池的好处;

使用线程池的优势有哪些?

  1. 线程和任务分离,提升线程重用性;
  2. 控制线程并发数量,降低服务器压力,统一管理所有线程;
  3. 提升系统响应速度,假如创建线程用的时间为T1,执行任务用的时间为T2,销毁线程用的时间为T3,那么使用线程池就免去了T1和T3的时间;
构造方法:
public ThreadPoolExecutor(int corePoolSize, //核心线程数量int maximumPoolSize,//     最大线程数long keepAliveTime, //       最大空闲时间TimeUnit unit,         //        时间单位BlockingQueue<Runnable> workQueue,   //   任务队列ThreadFactory threadFactory,    // 线程工厂RejectedExecutionHandler handler  //  饱和处理机制) 
{ ... }
4个参数的设计:

1:核心线程数(corePoolSize)
核心线程数的设计需要依据任务的处理时间和每秒产生的任务数量来确定,例如:执行一个任务需要0.1秒,系统百分之80的时间每秒都会产生100个任务,那么要想在1秒内处理完这100个任务,就需要10个线程,此时我们就可以设计核心线程数为10;当然实际情况不可能这么平均,所以我们一般按照8020原则设计即可,既按照百分之80的情况设计核心线程数,剩下的百分之20可以利用最大线程数处理;
2:任务队列长度(workQueue)
任务队列长度一般设计为:核心线程数/单个任务执行时间*2即可;例如上面的场景中,核心线程数设计为10,单个任务执行时间为0.1秒,则队列长度可以设计为200;
3:最大线程数(maximumPoolSize)
最大线程数的设计除了需要参照核心线程数的条件外,还需要参照系统每秒产生的最大任务数决定:例如:上述环境中,如果系统每秒最大产生的任务是1000个,那么,最大线程数=(最大任务数-任务队列长度)*单个任务执行时间;既: 最大线程数=(1000-200)*0.1=80个;
4:最大空闲时间(keepAliveTime)
这个参数的设计完全参考系统运行环境和硬件压力设定,没有固定的参考值,用户可以根据经验和系统产生任务的时间间隔合理设置一个值即可;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/165795.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

centos7 安装docker

1.卸载旧版本&#xff0c;不管装没装过&#xff0c;执行一下&#xff0c;防止版本冲突 yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker-latest \ docker-latest-logrotate \ docker-logrotate \ docker-engine 2. yum安装gcc相关 以及 安…

electron27-react-mateos:基于electron+react18仿matePad桌面系统

基于Electron27React18ArcoDesign搭建桌面版OS管理系统。 electron-react-mateos 基于最新前端跨端技术栈electron27.xreact18arco-designzustand4sortablejs构建的一款仿制matePad界面多层级路由管理OS系统。 ElectronReactOS支持桌面多路由配置&#xff0c;新开窗口弹窗开启路…

YB4051系列设备是高度集成的 Li-lon 和 Li-Pol 线性充电器,针对便携式应用的小容量电池。

YB4051H 300mA 单电池锂离子电池充电器0.1 mA 终端&#xff0c;45nA 电池漏电流 概述&#xff1a; YB4051系列设备是高度集成的 Li-lon 和 Li-Pol 线性充电器&#xff0c;针对便携式应用的小容量电池。它是一个完整的恒流/恒压线性充电器。不需要外部感应电阻&#xff0c;由于…

51单片机利用I/O口高阻状态实现触摸控制LED灯

51单片机利用I/O口高阻状态实现触摸控制LED灯 1.概述 这篇文章介绍使用I/O口的高阻状态实现一个触摸控制LED灯亮灭的实验。该实验通过手触摸P3.7引脚&#xff0c;改变电平信号控制灯的亮灭。 2.实验过程 2.1.实验材料 名称型号数量单片机STC12C20521LED彩灯无1晶振12MHZ1电…

Elasticsearch:ES|QL 函数及操作符

如果你对 ES|QL 还不是很熟悉的话&#xff0c;请阅读之前的文章 “Elasticsearch&#xff1a;ES|QL 查询语言简介​​​​​​​”。ES|QL 提供了一整套用于处理数据的函数和运算符。 功能分为以下几类&#xff1a; 目录 ES|QL 聚合函数 AVG COUNT COUNT_DISTINCT 计数为近…

geemap学习笔记013:为遥感动态GIF图添加图名

前言 遥感动态GIF图可以展示地理区域随时间的变化&#xff0c;这对于监测自然灾害、湿地变化、城市扩展、农田变化等方面非常有用&#xff0c;并且可以反复观察图像&#xff0c;以更深入地了解地表的动态变化。本节主要是对遥感动态GIF图添加图名&#xff0c;以便于更好地理解…

聚观早报 |一加12正式开启预订;OPPO Reno11系列卖点

【聚观365】11月24日消息 一加12正式开启预订 OPPO Reno11系列卖点 小鹏第三季度营收财报 Claude 2.1 聊天机器人公布 现代汽车将与伦敦大学学院合作 一加12正式开启预订 全新的一加12系列公开亮相已有一段时间&#xff0c;不久前一加官方宣布&#xff0c;该机将于12月4日…

ebpf实战(一)-------监控udp延迟

问题背景: 为了分析udp数据通信中端到端的延迟,我们需要对整个通信链路的每个阶段进行监控,找出延迟最长的阶段. udp接收端有2个主要路径 1.数据包到达本机后&#xff0c;由软中断处理程序将数据包接收并放入udp socket的接收缓冲区 数据接收流程 2. 应用程序调用recvmsg等a…

<JavaEE> 什么是进程控制块(PCB Process Control Block)?

目录 一、进程控制块的概念 二、进程控制块的重要属性 2.1 唯一身份标识&#xff08;PID&#xff09; 2.2 内存指针 2.3 文件描述符表 2.4 状态 2.5 优先级 2.6 记账信息 2.7 上下文 一、进程控制块的概念 进程控制块&#xff08;Process Control Block, PCB&#xff…

uni-app 跨端开发注意事项

文章目录 前言H5正常但App异常的可能性标题二H5正常但小程序异常的可能性小程序正常但App异常的可能性小程序或App正常&#xff0c;但H5异常的可能性App正常&#xff0c;小程序、H5异常的可能性使用 Vue.js 的注意区别于传统 web 开发的注意H5 开发注意微信小程序开发注意支付宝…

Docker实用篇

Docker实用篇 0.学习目标 1.初识Docker 1.1.什么是Docker 微服务虽然具备各种各样的优势&#xff0c;但服务的拆分通用给部署带来了很大的麻烦。 分布式系统中&#xff0c;依赖的组件非常多&#xff0c;不同组件之间部署时往往会产生一些冲突。在数百上千台服务中重复部署…

STM32入门笔记15_PWR电源管理模块

PWR和低功耗模式 PWR简介 PWR(Power Control) 电源控制PWR负责管理STM32内部的电源供电部分&#xff0c;可以实现可编程电压检测器和低功耗模式的功能可编程电压检测器(PVD) 可以监控VDD电源电压&#xff0c;当VDD下降到PVD阈值以下或上升到PVD阈值之上时&#xff0c;PVD会触…

C++学习之路(一)什么是C++?如何循序渐进的学习C++?【纯干货】

C是一种高级编程语言&#xff0c;是对C语言的扩展和增强。它在C语言的基础上添加了面向对象编程&#xff08;OOP&#xff09;的特性&#xff0c;使得开发者能够更加灵活和高效地编写代码。 C的名字中的“”符号表示在C语言的基础上向前发展一步&#xff0c;即“加加”&#x…

iOS APP包分析工具 | 京东云技术团队

介绍 分享一款用于分析iOSipa包的脚本工具&#xff0c;使用此工具可以自动扫描发现可修复的包体积问题&#xff0c;同时可以生成包体积数据用于查看。这块工具我们团队内部已经使用很长一段时间&#xff0c;希望可以帮助到更多的开发同学更加效率的优化包体积问题。 工具下载…

在VMware Workstation的Centos上实现KVM虚拟机的安装部署:详细安装部署过程(保姆级)

KVM概述 • 以色列qumranet公司研发&#xff0c;后被RedHad公司收购 &#xff08;1&#xff09;kvm只支持x86平台 &#xff08;2&#xff09;依赖于 HVM,inter VT AMD-v • KVM是&#xff08;Kernel-based Virtual Machine&#xff09;的简称&#xff0c;是一个开源的系统虚拟…

【Unity】 UGUI的PhysicsRaycaster (物理射线检测)组件的介绍及使用

1. 什么是PhysicsRaycaster组件&#xff1f; PhysicsRaycaster是Unity UGUI中的一个组件&#xff0c;用于在UI元素上进行物理射线检测。它可以检测鼠标或触摸事件是否发生在UI元素上&#xff0c;并将事件传递给相应的UI元素。 2. PhysicsRaycaster的工作原理 PhysicsRaycast…

【Proteus仿真】【51单片机】智能垃圾桶设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使用报警模块、LCD1602液晶模块、按键模块、人体红外传感器、HCSR04超声波、有害气体传感器、SG90舵机等。 主要功能&#xff1a; 系统运行后&#xf…

基于GPRS的汽车碰撞自动报警系统(论文+源码)

1. 系统设计 本次基于GPRS的汽车碰撞自动报警系统的设计中&#xff0c;其主要的目标功能如下&#xff1a;1、实时检测当前的GPS精度和纬度坐标&#xff1b;2.当发生碰撞后系统自动将当前的信息通过GPRS数据发送到远端数据进行报警&#xff1b;3、系统在碰撞后一方面进行本地报警…

听GPT 讲Rust源代码--src/tools(2)

题图来自AI生成 File: rust/src/tools/rust-analyzer/crates/hir-def/src/src.rs rust-analyzer 是一个 Rust 语言的语法分析器和语义分析器&#xff0c;用于提供代码补全、导航、重构等开发工具。而 rust-analyzer 的代码实现存储在 rust/src/tools/rust-analyzer 这个文件夹中…

010 OpenCV中的4种平滑滤波

目录 一、环境 二、平滑滤波 2.1、均值滤波 2.2、高斯滤波 2.3、中值滤波 2.4、双边滤波 三、完整代码 一、环境 本文使用环境为&#xff1a; Windows10Python 3.9.17opencv-python 4.8.0.74 二、平滑滤波 2.1、均值滤波 在OpenCV库中&#xff0c;blur函数是一种简…