【机器学习】Overfitting and Regularization

Overfitting and Regularization

    • 1. 过拟合
    • 添加正则化
    • 2. 具有正则化的损失函数
      • 2.1 正则化线性回归的损失函数
      • 2.2 正则化逻辑回归的损失函数
    • 3. 具有正则化的梯度下降
      • 3.1 使用正则化计算梯度(线性回归 / 逻辑回归)
      • 3.2 正则化线性回归的梯度函数
      • 3.3 正则化逻辑回归的梯度函数
    • 4. 重新运行过拟合示例
    • 附录

导入所需的库

import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from ipywidgets import Output
from plt_overfit import overfit_example, output
from lab_utils_common import sigmoid
plt.style.use('./deeplearning.mplstyle')
np.set_printoptions(precision=8)

1. 过拟合

plt.close("all")
display(output)
ofit = overfit_example(False)

在这里插入图片描述

在这里插入图片描述

从图中可以看出,拟合度= 1的数据;为“欠拟合”。拟合度= 6的数据;为“过拟合”

添加正则化

在这里插入图片描述
在这里插入图片描述

线性回归和逻辑回归之间的损失函数存在差异,但在方程中添加正则化是相同的。
线性回归和逻辑回归的梯度函数非常相似。它们的区别仅在于 f w b f_{wb} fwb 的实现。

2. 具有正则化的损失函数

2.1 正则化线性回归的损失函数

正则化线性回归的损失函数等式表示为:
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 + λ 2 m ∑ j = 0 n − 1 w j 2 (1) J(\mathbf{w},b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=0}^{n-1} w_j^2 \tag{1} J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2+2mλj=0n1wj2(1)

其中,
f w , b ( x ( i ) ) = w ⋅ x ( i ) + b (2) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x}^{(i)} + b \tag{2} fw,b(x(i))=wx(i)+b(2)

与没有正则化的线性回归相比,区别在于正则化项,即: λ 2 m ∑ j = 0 n − 1 w j 2 \frac{\lambda}{2m} \sum_{j=0}^{n-1} w_j^2 2mλj=0n1wj2

带有正则化可以激励梯度下降最小化参数的大小。需要注意的是,在这个例子中,参数 b b b没有被正则化,这是标准做法。

等式(1)和(2)的实现如下:

def compute_cost_linear_reg(X, y, w, b, lambda_ = 1):"""Computes the cost over all examplesArgs:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:total_cost (scalar):  cost """m  = X.shape[0]n  = len(w)cost = 0.for i in range(m):f_wb_i = np.dot(X[i], w) + b                                   #(n,)(n,)=scalar, see np.dotcost = cost + (f_wb_i - y[i])**2                               #scalar             cost = cost / (2 * m)                                              #scalar  reg_cost = 0for j in range(n):reg_cost += (w[j]**2)                                          #scalarreg_cost = (lambda_/(2*m)) * reg_cost                              #scalartotal_cost = cost + reg_cost                                       #scalarreturn total_cost                                                  #scalar
np.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print("Regularized cost:", cost_tmp)

在这里插入图片描述

2.2 正则化逻辑回归的损失函数

对于正则化的逻辑回归,损失函数表示为:
J ( w , b ) = 1 m ∑ i = 0 m − 1 [ − y ( i ) log ⁡ ( f w , b ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − f w , b ( x ( i ) ) ) ] + λ 2 m ∑ j = 0 n − 1 w j 2 (3) J(\mathbf{w},b) = \frac{1}{m} \sum_{i=0}^{m-1} \left[ -y^{(i)} \log\left(f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) - \left( 1 - y^{(i)}\right) \log \left( 1 - f_{\mathbf{w},b}\left( \mathbf{x}^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=0}^{n-1} w_j^2 \tag{3} J(w,b)=m1i=0m1[y(i)log(fw,b(x(i)))(1y(i))log(1fw,b(x(i)))]+2mλj=0n1wj2(3)

其中,
f w , b ( x ( i ) ) = s i g m o i d ( w ⋅ x ( i ) + b ) (4) f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = sigmoid(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \tag{4} fw,b(x(i))=sigmoid(wx(i)+b)(4)

同样,与没有正则化的逻辑回归相比,区别在于正则化项,即: λ 2 m ∑ j = 0 n − 1 w j 2 \frac{\lambda}{2m} \sum_{j=0}^{n-1} w_j^2 2mλj=0n1wj2

代码实现为:

def compute_cost_logistic_reg(X, y, w, b, lambda_ = 1):"""Computes the cost over all examplesArgs:Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:total_cost (scalar):  cost """m,n  = X.shapecost = 0.for i in range(m):z_i = np.dot(X[i], w) + b                                      #(n,)(n,)=scalar, see np.dotf_wb_i = sigmoid(z_i)                                          #scalarcost +=  -y[i]*np.log(f_wb_i) - (1-y[i])*np.log(1-f_wb_i)      #scalarcost = cost/m                                                      #scalarreg_cost = 0for j in range(n):reg_cost += (w[j]**2)                                          #scalarreg_cost = (lambda_/(2*m)) * reg_cost                              #scalartotal_cost = cost + reg_cost                                       #scalarreturn total_cost                                                  #scalar
np.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print("Regularized cost:", cost_tmp)

在这里插入图片描述

3. 具有正则化的梯度下降

运行梯度下降的基本算法不会随着正则化发生改变,正则化改变的是计算梯度。

3.1 使用正则化计算梯度(线性回归 / 逻辑回归)

线性回归和逻辑回归的梯度计算几乎相同,只是在 f w b f_{\mathbf{w}b} fwb的计算上有所不同。
∂ J ( w , b ) ∂ w j = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) x j ( i ) + λ m w j ∂ J ( w , b ) ∂ b = 1 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) \begin{align*} \frac{\partial J(\mathbf{w},b)}{\partial w_j} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})x_{j}^{(i)} + \frac{\lambda}{m} w_j \tag{2} \\ \frac{\partial J(\mathbf{w},b)}{\partial b} &= \frac{1}{m} \sum\limits_{i = 0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}) \tag{3} \end{align*} wjJ(w,b)bJ(w,b)=m1i=0m1(fw,b(x(i))y(i))xj(i)+mλwj=m1i=0m1(fw,b(x(i))y(i))(2)(3)

  • 对于线性回归模型,
    f w , b ( x ) = w ⋅ x + b f_{\mathbf{w},b}(x) = \mathbf{w} \cdot \mathbf{x} + b fw,b(x)=wx+b
  • 对于逻辑回归模型,
    z = w ⋅ x + b z = \mathbf{w} \cdot \mathbf{x} + b z=wx+b
    f w , b ( x ) = g ( z ) f_{\mathbf{w},b}(x) = g(z) fw,b(x)=g(z)
    其中, g ( z ) g(z) g(z) 是sigmoid 函数:
    g ( z ) = 1 1 + e − z g(z) = \frac{1}{1+e^{-z}} g(z)=1+ez1

添加正则化的项是 λ m w j \frac{\lambda}{m} w_j mλwj

3.2 正则化线性回归的梯度函数

def compute_gradient_linear_reg(X, y, w, b, lambda_): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar):       The gradient of the cost w.r.t. the parameter b. """m,n = X.shape           #(number of examples, number of features)dj_dw = np.zeros((n,))dj_db = 0.for i in range(m):                             err = (np.dot(X[i], w) + b) - y[i]                 for j in range(n):                         dj_dw[j] = dj_dw[j] + err * X[i, j]               dj_db = dj_db + err                        dj_dw = dj_dw / m                                dj_db = dj_db / m   for j in range(n):dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]return dj_db, dj_dw
np.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp =  compute_gradient_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )

在这里插入图片描述

3.3 正则化逻辑回归的梯度函数

def compute_gradient_logistic_reg(X, y, w, b, lambda_): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturnsdj_dw (ndarray Shape (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar)            : The gradient of the cost w.r.t. the parameter b. """m,n = X.shapedj_dw = np.zeros((n,))                            #(n,)dj_db = 0.0                                       #scalarfor i in range(m):f_wb_i = sigmoid(np.dot(X[i],w) + b)          #(n,)(n,)=scalarerr_i  = f_wb_i  - y[i]                       #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + err_i * X[i,j]      #scalardj_db = dj_db + err_idj_dw = dj_dw/m                                   #(n,)dj_db = dj_db/m                                   #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]return dj_db, dj_dw  
np.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp =  compute_gradient_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )

在这里插入图片描述

4. 重新运行过拟合示例

plt.close("all")
display(output)
ofit = overfit_example(True)

以分类任务(逻辑回归)为例,将拟合度设置为6, λ \lambda λ为0(没有正则化),开始拟合数据,出现了过拟合现象。
在这里插入图片描述
现在,将 λ \lambda λ为1(增加正则化),开始拟合数据。
在这里插入图片描述
很明显,增加正则化能够减小过拟合。

附录

plot_overfit.py 源码:

"""
plot_overfitclass and assocaited routines that plot an interactive example of overfitting and its solutions
"""
import math
from ipywidgets import Output
from matplotlib.gridspec import GridSpec
from matplotlib.widgets import Button, CheckButtons
from sklearn.linear_model import LogisticRegression, Ridge
from lab_utils_common import np, plt, dlc, predict_logistic, plot_data, zscore_normalize_featuresdef map_one_feature(X1, degree):"""Feature mapping function to polynomial features"""X1 = np.atleast_1d(X1)out = []string = ""k = 0for i in range(1, degree+1):out.append((X1**i))string = string + f"w_{{{k}}}{munge('x_0',i)} + "k += 1string = string + ' b' #add b to text equation, not to datareturn np.stack(out, axis=1), stringdef map_feature(X1, X2, degree):"""Feature mapping function to polynomial features"""X1 = np.atleast_1d(X1)X2 = np.atleast_1d(X2)out = []string = ""k = 0for i in range(1, degree+1):for j in range(i + 1):out.append((X1**(i-j) * (X2**j)))string = string + f"w_{{{k}}}{munge('x_0',i-j)}{munge('x_1',j)} + "k += 1#print(string + 'b')return np.stack(out, axis=1), string + ' b'def munge(base, exp):if exp == 0:return ''if exp == 1:return basereturn base + f'^{{{exp}}}'def plot_decision_boundary(ax, x0r,x1r, predict,  w, b, scaler = False, mu=None, sigma=None, degree=None):"""Plots a decision boundaryArgs:x0r : (array_like Shape (1,1)) range (min, max) of x0x1r : (array_like Shape (1,1)) range (min, max) of x1predict : function to predict z valuesscalar : (boolean) scale data or not"""h = .01  # step size in the mesh# create a mesh to plot inxx, yy = np.meshgrid(np.arange(x0r[0], x0r[1], h),np.arange(x1r[0], x1r[1], h))# Plot the decision boundary. For that, we will assign a color to each# point in the mesh [x_min, m_max]x[y_min, y_max].points = np.c_[xx.ravel(), yy.ravel()]Xm,_ = map_feature(points[:, 0], points[:, 1],degree)if scaler:Xm = (Xm - mu)/sigmaZ = predict(Xm, w, b)# Put the result into a color plotZ = Z.reshape(xx.shape)contour = ax.contour(xx, yy, Z, levels = [0.5], colors='g')return contour# use this to test the above routine
def plot_decision_boundary_sklearn(x0r, x1r, predict, degree,  scaler = False):"""Plots a decision boundaryArgs:x0r : (array_like Shape (1,1)) range (min, max) of x0x1r : (array_like Shape (1,1)) range (min, max) of x1degree: (int)                  degree of polynomialpredict : function to predict z valuesscaler  : not sure"""h = .01  # step size in the mesh# create a mesh to plot inxx, yy = np.meshgrid(np.arange(x0r[0], x0r[1], h),np.arange(x1r[0], x1r[1], h))# Plot the decision boundary. For that, we will assign a color to each# point in the mesh [x_min, m_max]x[y_min, y_max].points = np.c_[xx.ravel(), yy.ravel()]Xm = map_feature(points[:, 0], points[:, 1],degree)if scaler:Xm = scaler.transform(Xm)Z = predict(Xm)# Put the result into a color plotZ = Z.reshape(xx.shape)plt.contour(xx, yy, Z, colors='g')#plot_data(X_train,y_train)#for debug, uncomment the #@output statments below for routines you want to get error output from
# In the notebook that will call these routines, import  `output`
# from plt_overfit import overfit_example, output
# then, in a cell where the error messages will be the output of..
#display(output)output = Output() # sends hidden error messages to display when using widgetsclass button_manager:''' Handles some missing features of matplotlib check buttonson init:creates button, links to button_click routine,calls call_on_click with active index and firsttime=Trueon click:maintains single button on state, calls call_on_click'''@output.capture()  # debugdef __init__(self,fig, dim, labels, init, call_on_click):'''dim: (list)     [leftbottom_x,bottom_y,width,height]labels: (list)  for example ['1','2','3','4','5','6']init: (list)    for example [True, False, False, False, False, False]'''self.fig = figself.ax = plt.axes(dim)  #lx,by,w,hself.init_state = initself.call_on_click = call_on_clickself.button  = CheckButtons(self.ax,labels,init)self.button.on_clicked(self.button_click)self.status = self.button.get_status()self.call_on_click(self.status.index(True),firsttime=True)@output.capture()  # debugdef reinit(self):self.status = self.init_stateself.button.set_active(self.status.index(True))      #turn off old, will trigger update and set to status@output.capture()  # debugdef button_click(self, event):''' maintains one-on state. If on-button is clicked, will process correctly '''#new_status = self.button.get_status()#new = [self.status[i] ^ new_status[i] for i in range(len(self.status))]#newidx = new.index(True)self.button.eventson = Falseself.button.set_active(self.status.index(True))  #turn off old or reenable if sameself.button.eventson = Trueself.status = self.button.get_status()self.call_on_click(self.status.index(True))class overfit_example():""" plot overfit example """# pylint: disable=too-many-instance-attributes# pylint: disable=too-many-locals# pylint: disable=missing-function-docstring# pylint: disable=attribute-defined-outside-initdef __init__(self, regularize=False):self.regularize=regularizeself.lambda_=0fig = plt.figure( figsize=(8,6))fig.canvas.toolbar_visible = Falsefig.canvas.header_visible = Falsefig.canvas.footer_visible = Falsefig.set_facecolor('#ffffff') #whitegs  = GridSpec(5, 3, figure=fig)ax0 = fig.add_subplot(gs[0:3, :])ax1 = fig.add_subplot(gs[-2, :])ax2 = fig.add_subplot(gs[-1, :])ax1.set_axis_off()ax2.set_axis_off()self.ax = [ax0,ax1,ax2]self.fig = figself.axfitdata = plt.axes([0.26,0.124,0.12,0.1 ])  #lx,by,w,hself.bfitdata  = Button(self.axfitdata , 'fit data', color=dlc['dlblue'])self.bfitdata.label.set_fontsize(12)self.bfitdata.on_clicked(self.fitdata_clicked)#clear data is a future enhancement#self.axclrdata = plt.axes([0.26,0.06,0.12,0.05 ])  #lx,by,w,h#self.bclrdata  = Button(self.axclrdata , 'clear data', color='white')#self.bclrdata.label.set_fontsize(12)#self.bclrdata.on_clicked(self.clrdata_clicked)self.cid = fig.canvas.mpl_connect('button_press_event', self.add_data)self.typebut = button_manager(fig, [0.4, 0.07,0.15,0.15], ["Regression", "Categorical"],[False,True], self.toggle_type)self.fig.text(0.1, 0.02+0.21, "Degree", fontsize=12)self.degrbut = button_manager(fig,[0.1,0.02,0.15,0.2 ], ['1','2','3','4','5','6'],[True, False, False, False, False, False], self.update_equation)if self.regularize:self.fig.text(0.6, 0.02+0.21, r"lambda($\lambda$)", fontsize=12)self.lambut = button_manager(fig,[0.6,0.02,0.15,0.2 ], ['0.0','0.2','0.4','0.6','0.8','1'],[True, False, False, False, False, False], self.updt_lambda)#self.regbut =  button_manager(fig, [0.8, 0.08,0.24,0.15], ["Regularize"],#                               [False], self.toggle_reg)#self.logistic_data()def updt_lambda(self, idx, firsttime=False):# pylint: disable=unused-argumentself.lambda_ = idx * 0.2def toggle_type(self, idx, firsttime=False):self.logistic = idx==1self.ax[0].clear()if self.logistic:self.logistic_data()else:self.linear_data()if not firsttime:self.degrbut.reinit()@output.capture()  # debugdef logistic_data(self,redraw=False):if not redraw:m = 50n = 2np.random.seed(2)X_train = 2*(np.random.rand(m,n)-[0.5,0.5])y_train = X_train[:,1]+0.5  > X_train[:,0]**2 + 0.5*np.random.rand(m) #quadratic + randomy_train = y_train + 0  #convert from boolean to integerself.X = X_trainself.y = y_trainself.x_ideal = np.sort(X_train[:,0])self.y_ideal =  self.x_ideal**2self.ax[0].plot(self.x_ideal, self.y_ideal, "--", color = "orangered", label="ideal", lw=1)plot_data(self.X, self.y, self.ax[0], s=10, loc='lower right')self.ax[0].set_title("OverFitting Example: Categorical data set with noise")self.ax[0].text(0.5,0.93, "Click on plot to add data. Hold [Shift] for blue(y=0) data.",fontsize=12, ha='center',transform=self.ax[0].transAxes, color=dlc["dlblue"])self.ax[0].set_xlabel(r"$x_0$")self.ax[0].set_ylabel(r"$x_1$")def linear_data(self,redraw=False):if not redraw:m = 30c = 0x_train = np.arange(0,m,1)np.random.seed(1)y_ideal = x_train**2 + cy_train = y_ideal + 0.7 * y_ideal*(np.random.sample((m,))-0.5)self.x_ideal = x_train #for redraw when new data included in Xself.X = x_trainself.y = y_trainself.y_ideal = y_idealelse:self.ax[0].set_xlim(self.xlim)self.ax[0].set_ylim(self.ylim)self.ax[0].scatter(self.X,self.y, label="y")self.ax[0].plot(self.x_ideal, self.y_ideal, "--", color = "orangered", label="y_ideal", lw=1)self.ax[0].set_title("OverFitting Example: Regression Data Set (quadratic with noise)",fontsize = 14)self.ax[0].set_xlabel("x")self.ax[0].set_ylabel("y")self.ax0ledgend = self.ax[0].legend(loc='lower right')self.ax[0].text(0.5,0.93, "Click on plot to add data",fontsize=12, ha='center',transform=self.ax[0].transAxes, color=dlc["dlblue"])if not redraw:self.xlim = self.ax[0].get_xlim()self.ylim = self.ax[0].get_ylim()@output.capture()  # debugdef add_data(self, event):if self.logistic:self.add_data_logistic(event)else:self.add_data_linear(event)@output.capture()  # debugdef add_data_logistic(self, event):if event.inaxes == self.ax[0]:x0_coord = event.xdatax1_coord = event.ydataif event.key is None:  #shift not pressedself.ax[0].scatter(x0_coord, x1_coord, marker='x', s=10, c = 'red', label="y=1")self.y = np.append(self.y,1)else:self.ax[0].scatter(x0_coord, x1_coord, marker='o', s=10, label="y=0", facecolors='none',edgecolors=dlc['dlblue'],lw=3)self.y = np.append(self.y,0)self.X = np.append(self.X,np.array([[x0_coord, x1_coord]]),axis=0)self.fig.canvas.draw()def add_data_linear(self, event):if event.inaxes == self.ax[0]:x_coord = event.xdatay_coord = event.ydataself.ax[0].scatter(x_coord, y_coord, marker='o', s=10, facecolors='none',edgecolors=dlc['dlblue'],lw=3)self.y = np.append(self.y,y_coord)self.X = np.append(self.X,x_coord)self.fig.canvas.draw()#@output.capture()  # debug#def clrdata_clicked(self,event):#    if self.logistic == True:#        self.X = np.#    else:#        self.linear_regression()@output.capture()  # debugdef fitdata_clicked(self,event):if self.logistic:self.logistic_regression()else:self.linear_regression()def linear_regression(self):self.ax[0].clear()self.fig.canvas.draw()# create and fit the model using our mapped_X feature set.self.X_mapped, _ =  map_one_feature(self.X, self.degree)self.X_mapped_scaled, self.X_mu, self.X_sigma  = zscore_normalize_features(self.X_mapped)#linear_model = LinearRegression()linear_model = Ridge(alpha=self.lambda_, normalize=True, max_iter=10000)linear_model.fit(self.X_mapped_scaled, self.y )self.w = linear_model.coef_.reshape(-1,)self.b = linear_model.intercept_x = np.linspace(*self.xlim,30)  #plot line idependent of data which gets disorderedxm, _ =  map_one_feature(x, self.degree)xms = (xm - self.X_mu)/ self.X_sigmay_pred = linear_model.predict(xms)#self.fig.canvas.draw()self.linear_data(redraw=True)self.ax0yfit = self.ax[0].plot(x, y_pred, color = "blue", label="y_fit")self.ax0ledgend = self.ax[0].legend(loc='lower right')self.fig.canvas.draw()def logistic_regression(self):self.ax[0].clear()self.fig.canvas.draw()# create and fit the model using our mapped_X feature set.self.X_mapped, _ =  map_feature(self.X[:, 0], self.X[:, 1], self.degree)self.X_mapped_scaled, self.X_mu, self.X_sigma  = zscore_normalize_features(self.X_mapped)if not self.regularize or self.lambda_ == 0:lr = LogisticRegression(penalty='none', max_iter=10000)else:C = 1/self.lambda_lr = LogisticRegression(C=C, max_iter=10000)lr.fit(self.X_mapped_scaled,self.y)#print(lr.score(self.X_mapped_scaled, self.y))self.w = lr.coef_.reshape(-1,)self.b = lr.intercept_#print(self.w, self.b)self.logistic_data(redraw=True)self.contour = plot_decision_boundary(self.ax[0],[-1,1],[-1,1], predict_logistic, self.w, self.b,scaler=True, mu=self.X_mu, sigma=self.X_sigma, degree=self.degree )self.fig.canvas.draw()@output.capture()  # debugdef update_equation(self, idx, firsttime=False):#print(f"Update equation, index = {idx}, firsttime={firsttime}")self.degree = idx+1if firsttime:self.eqtext = []else:for artist in self.eqtext:#print(artist)artist.remove()self.eqtext = []if self.logistic:_, equation =  map_feature(self.X[:, 0], self.X[:, 1], self.degree)string = 'f_{wb} = sigmoid('else:_, equation =  map_one_feature(self.X, self.degree)string = 'f_{wb} = ('bz = 10seq = equation.split('+')blks = math.ceil(len(seq)/bz)for i in range(blks):if i == 0:string = string +  '+'.join(seq[bz*i:bz*i+bz])else:string = '+'.join(seq[bz*i:bz*i+bz])string = string + ')' if i == blks-1 else string + '+'ei = self.ax[1].text(0.01,(0.75-i*0.25), f"${string}$",fontsize=9,transform = self.ax[1].transAxes, ma='left', va='top' )self.eqtext.append(ei)self.fig.canvas.draw()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16459.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决python-opencv:(-215:Assertion failed) _img.empty() in function ‘cv::imwrite‘在将视频分成帧图片,写入时出现的问题

最近在搞视频检测问题,在用到将视频分帧保存为图片时,图片可以保存,但是会出现(-215:Assertion failed) !_img.empty() in function cv::imwrite问题而不能正常运行,在检查代码、检查路径等措施均无果后,了解了视频分帧…

linux实现运行java分包部署

1.打好包之后 找到bin文件夹下的 startup.sh文件 2.cd 进入bin文件夹下 3.执行 sh startup.sh 运行命令 4.如果出现此错误 是Windows和Linux的.sh脚本文件格式不同,如果在脚本中有空行,脚本是在Windows下进行编辑之后上传到linux上去执行的话&#xff0c…

探究HTTP代理爬虫的反爬虫策略

在当前信息爆炸的时代,海量的数据成为了企业发展和决策的关键资源。然而,越来越多的网站为了保护数据和用户隐私的安全,采取了各种反爬虫策略。作为一家专业的HTTP代理产品供应商,我们一直在研究和优化反爬虫策略,为用…

JVM系统优化实践(23):GC生产环境案例(6)

您好,这里是「码农镖局」CSDN博客,欢迎您来,欢迎您再来~ 在互联网大厂中,对每天亿级流量的日志进行清洗、整理是非常常见的工作。在某个系统中,需要对用户的访问日志做脱敏处理,也就是清洗掉姓名…

fwft fifo和standard fifo

fifo共有两种,分别是standard fifo和fwft fifo,其中,前者的latency=1,即rd_en信号有效且fifo非空时,数据会在下一个周期出现在fifo的读数据端口。而后者,即fwft fifo的latency=0,也就是说,rd_en信号有效的当拍,数据就会出现在读端口上。这里,fwft是First-word-Fall-T…

【Spring Cloud】Gateway的配置与使用

文章目录 前言第一步,创建一个springboot工程第二步,添加依赖第三步,编写yml文件第四步,启动主启动类总结 前言 Gateway其实是springcloud 原生的东西,但是我还是想放在这里讲,因为我们使用nacos时&#x…

IPsec VPN小实验

IPSec 是什么: IPSec是一个框架,它不是具体指某个协议,而是定义了一个框架,由各种协议组和协商而成。该框架涉及到的主要有加密算法、验证算法、封装协议、封装模式、密钥有效期等等。 IPSecVPN建立的前提:要想在两个…

【Lua学习笔记】Lua进阶——垃圾回收

按照唐老师的课程本来要讲自带库的,但是想想这东西能看文档,ctrl左键还能看注解,并且最重要的许多自带库的方法基本大部分语言都有,其实看看就能懂了。所以还是重点讲讲垃圾回收 文章目录 GC辅助垃圾回收collectgarbage增量模式分…

Elasticsearch Query DSL

Elasticsearch Query DSL 这里使用的 Elasticsearch 的版本为 7.12.1。 1、基本概念 1.1 文档(Document) ElasticSearch 是面向文档的,文档是所有可搜索数据的最小单位,例如 MySQL 的一条数据记录。 文档会被序列化成为 json 格式,保存在…

iPhone 安装 iOS 17公测版(Public Beta)

文章目录 步骤1. 备份iPhone资料步骤2. 申请iOS 17 公测Beta 资格步骤3. 下载iOS 16 Beta 公测描述档步骤4. 选择iOS 17 Beta 公测描述档更新项目步骤5. 升级iOS 17 Public Beta 公开测试版 苹果已经开始向大众释出首个iOS 17 公开测试版/ 公测版( iOS 17 Public Beta)&#xf…

测试|Selenium之WebDriver常见API使用

测试|Selenium之WebDriver常见API使用 文章目录 测试|Selenium之WebDriver常见API使用1.定位对象(findElement)css定位xpath定位css选择器语法:xpath语法:校验结果 2.操作对象鼠标点击对象在对象上模拟按键输入clear清除对象输入的文本内容su…

【Python】Web学习笔记_flask(1)——getpost

flask提供的request请求对象可以实现获取url或表单中的字段值 GET请求 从URL中获取name、age两个参数 from flask import Flask,url_for,redirect,requestappFlask(__name__)app.route(/) def index():namerequest.args.get(name)agerequest.args.get(age)messagef姓名:{nam…

[css]margin-top不起作用问题(外边距合并)

在初学css时&#xff0c;会遇到突然间margin-top不起作用的情况。如下面&#xff1a; 情况一&#xff1a; 代码&#xff1a; <html> <head><style type"text/css"> * {margin:0;padding:0;border:0; }#outer {width:300px;height:300px;backgroun…

ifcfg-ens33中的ONBOOT字段是什么作用?

在CentOS或其他基于Red Hat Enterprise Linux (RHEL)的Linux发行版中&#xff0c;ifcfg-ens33是网络配置文件&#xff0c;用于配置网卡设备ens33的网络参数。ifcfg-ens33文件位于/etc/sysconfig/network-scripts/目录下&#xff08;可能因系统版本而略有不同&#xff0c;例如/e…

Elasticsearch Java客户端和Spring data elasticsearch

文章目录 官网版本组件版本说明实现代码地址es Spring Data Repositories例子&#xff1a;ElasticsearchRepository分析 es Spring Data Repositories 关键字es Spring Data Repositories client 加载rest风格客户端直接执行dsl例子响应式客户端-ReactiveElasticsearchClientpo…

打卡力扣题目七

#左耳听风 ARST 打卡活动重启# 目录 一、题目 二、解题方法一 三、解题方法二 关于 ARTS 的释义 —— 每周完成一个 ARTS&#xff1a; ● Algorithm: 每周至少做一个 LeetCode 的算法题 ● Review: 阅读并点评至少一篇英文技术文章 ● Tips: 学习至少一个技术技巧 ● Share:…

【MTK平台】【wpa_supplicant】关于wpa_supplicant_8/src/p2p/p2p_go_neg.c文件的介绍

本文主要介绍external/wpa_supplicant_8/src/p2p/p2p_go_neg.c文件 这里主要介绍2个方法 1. p2p_connect_send接受来自 p2p.c 文件中调用p2p_connect方法发送的GON Request帧 2. p2p_process_go_neg_resp处理来自GON Response帧的处理流程 先看下p2p_connect_send方法 int p…

数据结构:顺序表(C实现)

个人主页 水月梦镜花 个人专栏 C语言 &#xff0c;数据结构 文章目录 一、顺序表二、实现思路1.存储结构2.初始化顺序表(SeqListInit)3.销毁顺序表(SeqListDestroty)4.打印顺序表(SeqListPrint)5.顺序表尾插(SeqListPushBack)and检查容量(SeqListCheckCapacity)6.顺序表头插(Se…

K8S群集调度

目录 一、调度约束二、Pod 启动典型创建过程三、K8S的调度过程3.1 Predicate&#xff08;预选策略&#xff09; 常见的算法使用3.2 常见优先级选项3.3 指定调度节点3.3.1 nodeName指定3.3.2 nodeSelector指定3.3.3 Pod亲和性与反亲和1.节点亲和硬策略示例2.节点亲和软策略示例3…

QEMU源码全解析18 —— QOM介绍(7)

接前一篇文章&#xff1a;QEMU源码全解析17 —— QOM介绍&#xff08;6&#xff09; 本文内容参考&#xff1a; 《趣谈Linux操作系统》 —— 刘超&#xff0c;极客时间 《QEMU/KVM》源码解析与应用 —— 李强&#xff0c;机械工业出版社 特此致谢&#xff01; 上一回完成了对…