目录
1.三次握手和四次挥手
2 滑动窗口
3 函数封装思想
4 高并发服务器
学习目标:
- 掌握三次握手建立连接过程
- 掌握四次握手关闭连接的过程
- 掌握滑动窗口的概念
- 掌握错误处理函数封装
- 实现多进程并发服务器
- 实现多线程并发服务器
1.三次握手和四次挥手
思考: 为什么TCP是面向连接的安全可靠的传输????
TCP是面向连接的安全的数据传输, 在客户端与服务端建立建立的时候要经过三次握手的过程, 在客户端与服务端断开连接的时候要经历四次挥手的过程, 下图是客户端与服务端三次握手建立连接, 数据传输和断开连接四次挥手的全过程.
TCP时序:
说明讲义中图的含义.
SYN: 表示请求, ACK:表示确认
服务端发送的SYN和客户端发送的SYN本身也会占1位.
单独讲解三次握手过程, 以图解形式说明.
上图中ACK表示确认序号, 确认序号的值是对方发送的序号值+数据的长度, 特别注意的是SYN和FIN本身也会占用一位.
注: SYS----->synchronous
ACK----->acknowledgement
FIN------>finish
三次握手和四次挥手的过程都是在内核实现的.
下图是TCP数据报格式
窗口大小: 指的是缓冲区大小
通信的时候不再需要SYN标识位了, 只有在请求连接的时候需要SYN标识位.
传输数据的时候的随机序号seq就是最近一次对方发送给自己的ACK的随机序号值, 而发给对方的ACK就是上次刚刚发给对方的ACK的值.
图中发送的ACK确认包表示给对方发送数据的一个确认, 表示你发送的数据我都收到了, 同时告诉对方下次发送该序号开始的数据.
由于每次发送数据都会收到对方发来的确认包, 所以可以确认对方是否收到了, 若没有收到对方发来的确认包, 则会进行重发.
mss: 最大报文长度, 告诉对方我这边最多一次能收多少, 你不能超过这个长度.
win: 表示告诉对方我这边缓存大小最大是多少.
2 滑动窗口
主要作用: 滑动窗口主要是进行流量控制的.
见下图:如果发送端发送的速度较快,接收端接收到数据后处理的速度较慢,而接收缓冲区的大小是固定的,就会导致接收缓冲区满而丢失数据。TCP协议通过“滑动窗口(Sliding Window)”机制解决这一问题。
详细说明参考讲义
图中win表示告诉对方我这边缓冲区大小是多少, mss表示告诉对方我这边最多一次可以接收多少数据, 你最好不要超过这个长度.
在客户端给服务端发包的时候, 不一定是非要等到服务端返回响应包, 由于客户端知道服务端的窗口大小, 所以可以持续多次发送, 当发送数据达到对方窗口大小了就不再发送, 需要等到对方进行处理, 对方处理之后可继续发送.
mss和MTU
MTU: 最大传输单元
MTU:通信术语最大传输单元(Maximum Transmission Unit,MTU)
是指一种通信协议的某一层上面所能通过的最大数据包大小(以字节为 单位). 最大传输单元这个参数通常与通信接口有关(网络接口卡、串 口等), 这个值如果设置为太大会导致丢包重传的时候重传的数据量较大, 图中的最大值是1500, 其实是一个经验值.
mss: 最大报文长度, 只是在建立连接的时候, 告诉对方我最大能够接收多少 数据, 在数据通信的过程中就没有mss了.
3 函数封装思想
函数封装的思想-处理异常情况
结合man-page和errno进行封装.
在封装的时候起名可以把第一个函数名的字母大写, 如socket可以封装成Socket, 这样可以按shift+k进行搜索, shift+k搜索函数说明的时候不区分大小写, 使用man page也可以查看, man page对大小写不区分.
像accept,read这样的能够引起阻塞的函数,若被信号打断,由于信号的优先级较高, 会优先处理信号, 信号处理完成后,会使accept或者read解除阻塞, 然后返回, 此时返回值为 -1,设置errno=EINTR;
errno=ECONNABORTED表示连接被打断,异常.
errno宏:
在/usr/include/asm-generic/errno.h文件中包含了errno所有的宏和对应的错误描述信息.
warp.h
#ifndef __WRAP_H_
#define __WRAP_H_
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <strings.h>void perr_exit(const char *s);
int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr);
int Bind(int fd, const struct sockaddr *sa, socklen_t salen);
int Connect(int fd, const struct sockaddr *sa, socklen_t salen);
int Listen(int fd, int backlog);
int Socket(int family, int type, int protocol);
ssize_t Read(int fd, void *ptr, size_t nbytes);
ssize_t Write(int fd, const void *ptr, size_t nbytes);
int Close(int fd);
ssize_t Readn(int fd, void *vptr, size_t n);
ssize_t Writen(int fd, const void *vptr, size_t n);
ssize_t my_read(int fd, char *ptr);
ssize_t Readline(int fd, void *vptr, size_t maxlen);
int tcp4bind(short port,const char *IP);
#endif
warp.c
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <strings.h>
//绑定错误显示和退出
void perr_exit(const char *s)
{perror(s);exit(-1);
}int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr)
{int n;again:if ((n = accept(fd, sa, salenptr)) < 0) {if ((errno == ECONNABORTED) || (errno == EINTR))//ECONNABORTED 代表连接失败 ETINTR 代表被信号打断goto again;elseperr_exit("accept error");}return n;
}int Bind(int fd, const struct sockaddr *sa, socklen_t salen)
{int n;if ((n = bind(fd, sa, salen)) < 0)perr_exit("bind error");return n;
}int Connect(int fd, const struct sockaddr *sa, socklen_t salen)
{int n;if ((n = connect(fd, sa, salen)) < 0)perr_exit("connect error");return n;
}int Listen(int fd, int backlog)
{int n;if ((n = listen(fd, backlog)) < 0)perr_exit("listen error");return n;
}int Socket(int family, int type, int protocol)
{int n;if ((n = socket(family, type, protocol)) < 0)perr_exit("socket error");return n;
}ssize_t Read(int fd, void *ptr, size_t nbytes)
{ssize_t n;again:if ( (n = read(fd, ptr, nbytes)) == -1) {if (errno == EINTR)//被信号打断应该继续读goto again;elsereturn -1;}return n;
}ssize_t Write(int fd, const void *ptr, size_t nbytes)
{ssize_t n;again:if ( (n = write(fd, ptr, nbytes)) == -1) {if (errno == EINTR)goto again;elsereturn -1;}return n;
}int Close(int fd)
{int n;if ((n = close(fd)) == -1)perr_exit("close error");return n;
}/*参三: 应该读取的字节数*/
ssize_t Readn(int fd, void *vptr, size_t n)
{size_t nleft; //usigned int 剩余未读取的字节数ssize_t nread; //int 实际读到的字节数char *ptr;ptr = vptr;nleft = n;while (nleft > 0) {if ((nread = read(fd, ptr, nleft)) < 0) {if (errno == EINTR)nread = 0;elsereturn -1;} else if (nread == 0)break;nleft -= nread;//防止一次数据没有读完ptr += nread;//指针需要向后移动}return n - nleft;
}ssize_t Writen(int fd, const void *vptr, size_t n)
{size_t nleft;ssize_t nwritten;const char *ptr;ptr = vptr;nleft = n;while (nleft > 0) {if ( (nwritten = write(fd, ptr, nleft)) <= 0) {if (nwritten < 0 && errno == EINTR)nwritten = 0;elsereturn -1;}nleft -= nwritten;ptr += nwritten;}return n;
}static ssize_t my_read(int fd, char *ptr)
{static int read_cnt;static char *read_ptr;static char read_buf[100];//定义了100的缓冲区if (read_cnt <= 0) {
again://使用缓冲区可以避免多次从底层缓冲读取数据--为了提高效率if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {if (errno == EINTR)goto again;return -1;} else if (read_cnt == 0)return 0;read_ptr = read_buf;}read_cnt--;*ptr = *read_ptr++;//从缓冲区取数据return 1;
}
//读取一行
ssize_t Readline(int fd, void *vptr, size_t maxlen)
{ssize_t n, rc;char c, *ptr;ptr = vptr;for (n = 1; n < maxlen; n++) {if ( (rc = my_read(fd, &c)) == 1) {*ptr++ = c;if (c == '\n')//代表任务完成break;} else if (rc == 0) {//对端关闭*ptr = 0;//0 = '\0'return n - 1;} elsereturn -1;}*ptr = 0;return n;
}int tcp4bind(short port,const char *IP)
{struct sockaddr_in serv_addr;int lfd = Socket(AF_INET,SOCK_STREAM,0);bzero(&serv_addr,sizeof(serv_addr));//清空serv_addr地址 对比 memset()if(IP == NULL){//如果这样使用 0.0.0.0,任意ip将可以连接serv_addr.sin_addr.s_addr = INADDR_ANY;}else{if(inet_pton(AF_INET,IP,&serv_addr.sin_addr.s_addr) <= 0){perror(IP);//转换失败exit(1);}}serv_addr.sin_family = AF_INET;serv_addr.sin_port = htons(port);int opt = 1;setsockopt(lfd,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(opt));Bind(lfd,(struct sockaddr *)&serv_addr,sizeof(serv_addr));return lfd;
}
粘包的概念
粘包: 多次数据发送, 收尾相连, 接收端接收的时候不能正确区分第一次发 送多少, 第二次发送多少.
粘包问题分析和解决??
方案1: 包头+数据
如4位的数据长度+数据 -----------> 00101234567890
其中0010表示数据长度, 1234567890表示10个字节长度的数据.
另外, 发送端和接收端可以协商更为复杂的报文结构, 这个报文结 构就相当于双方约定的一个协议.
方案2: 添加结尾标记.
如结尾最后一个字符为\n \$等.
方案3: 数据包定长
如发送方和接收方约定, 每次只发送128个字节的内容, 接收方接收定 长128个字节就可以了.
wrap.c代码解读和分析.
要求能看懂代码, 会使用即可.
4 高并发服务器
如何支持多个客户端---支持多并发的服务器
由于accept和read函数都会阻塞, 如当read的时候, 不能调用accept接受新的连接, 当accept阻塞等待的时候不能read读数据.
第一种方案: 使用多进程, 可以让父进程接受新连接, 让子进程处理与客户端通信
思路: 让父进程accept接受新连接, 然后fork子进程, 让子进程处理通信, 子进程处理完成后退出, 父进程使用SIGCHLD信号回收子进程.
代码实现:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <string.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include "warp.h"int main()
{// 创建socketint lfd = Socket(AF_INET, SOCK_STREAM, 0);// 绑定struct sockaddr_in serv;bzero(&serv, sizeof(serv));serv.sin_family = AF_INET;serv.sin_port =htons(8888);serv.sin_addr.s_addr = htonl(INADDR_ANY);Bind(lfd, (struct sockaddr *)&serv, sizeof(serv));pid_t pid;// 设置g监听Listen(lfd, 128);int cfd;struct sockaddr_in client;socklen_t len;char sIP[16];while (1){len=sizeof(client);memset(sIP,0x00,sizeof(sIP));// 接受新的连接,创建一个新的子进程,g让子进程完成数据的收发的工作cfd = Accept(lfd, (struct sockaddr *)&client, &len);//打印客户端的ip地址printf("client:[%s],[%d]\n",inet_ntop(AF_INET,&client.sin_addr.s_addr,sIP,sizeof(sIP)),ntohs(client.sin_port));pid = fork();if (pid < 0){perror("fork error");exit(-1);}// 父进程else if (pid > 0){// 关闭g通信文件描述符cfdclose(cfd);}// 子进程 --收发数据else if (pid == 0){// 关闭监听文件描述符号close(lfd);int n;int i = 0;char buf[1024];while (1){// 读数据n = Read(cfd, buf, sizeof(buf));if (n <= 0){printf("read error or client closed,n==[%d]\n", n);break;}//将收到的数据再服务端显示出来printf("[%d] --> n==[%d],buf==[%s]\n",ntohs(client.sin_port),n,buf);// 将小写转换为大写 之后再发送给客户端for (i = 0; i < n; i++){buf[i] = toupper(buf[i]);}// 发送数据Write(cfd, buf, n);}close(cfd);// 停止,n不让子进程继续创建exit(0);}}// 关闭监听文件描述符close(lfd);return 0;//note ::父子进程可以共享的内容有哪些 /*文件描述符(子进程是复制父进程的文件描述符)mmap 共享映射区*/
}
第二种方案: 使用多线程, 让主线程接受新连接, 让子线程处理与客户端通信; 使用多线程要将线程设置为分离属性, 让线程在退出之后自己回收资源.
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<unistd.h>
#include <sys/types.h>
#include<string.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include<ctype.h>
#include<pthread.h>
#include "warp.h"//子线程回调函数
void *thread_work(void * arg){int cfd=*(int *)arg;int n;int i;char buf[1024];while(1){//read 数据memset(buf,0x00,sizeof(buf));n=Read(cfd,buf,sizeof(buf));if(n<=0){printf("read error or client close,n==[%d]\n",n);break;}printf("n==[%d],buf==[%s]\n",n,buf);//将数据转换成大写再发送给客户端。for(i=0;i<n;i++){buf[i]=toupper(buf[i]);}//发送数据// printf("in");Write(cfd,buf,n);}//关闭通信文件描述符close(cfd);pthread_exit(NULL);}/*\ 续航符
*/int main()
{//创建socketint lfd=Socket(AF_INET,SOCK_STREAM,0);//设置端口复用 int opt=1;setsockopt(lfd,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(int));struct sockaddr_in serv;bzero(&serv,sizeof(serv));serv.sin_family=AF_INET;serv.sin_port=htons(8888);serv.sin_addr.s_addr=htonl(INADDR_ANY);Bind(lfd,(struct sockaddr *)&serv,sizeof(serv));//设置监听Listen(lfd,128);int cfd;pthread_t threadID;while (1){//接受新的连接cfd=Accept(lfd,NULL,NULL);//创建子线程pthread_create(&threadID,NULL,thread_work,&cfd);//i设置子线程为分离属性pthread_detach(threadID);}//关闭i监听i文件描述符close(lfd);return 0;
}/*1.子线程可以关闭监听文件描述符吗?原因是lfd 子线程和主线程共享文件描述符,而不是复制的。2.主线程不能 不能关闭cfd.原因是主线程和子线程共享一个cfd,close() 之后就会被真的关闭,他俩共享一个cfd 不是复制的cfd.3.多个子线程可以共享cfd 嘛?会发生什么问题。一个i·最后一个线程cfd 覆盖了之前的内容 struct INFO{int cfd;pthread_t threadID;struct sockaddr_in client;}struct INFO info[100];
*/
//多线程可以共享哪些东西
思考: 如何不使用多进程或者多线程完成多个客户端的连接请求
可以将accept和read函数设置为非阻塞, 调用fcntl函数可以将文件描述符设置为非阻塞, 让后再while循环中忙轮询.