Spring Cloud学习(十一)【深入Elasticsearch 分布式搜索引擎03】

文章目录

  • 数据聚合
    • 聚合的种类
    • DSL实现聚合
    • RestAPI实现聚合
  • 自动补全
    • 拼音分词器
    • 自定义分词器
    • 自动补全查询
      • completion suggester查询
      • RestAPI实现自动补全
  • 数据同步
    • 数据同步思路分析
    • 实现elasticsearch与数据库数据同步
  • 集群
    • 搭建ES集群
      • 创建es集群
      • 集群状态监控
      • 创建索引库
        • 1)利用kibana的DevTools创建索引库
        • 2)利用cerebro创建索引库
      • 查看分片效果
    • ES集群的节点角色
    • 集群脑裂问题
    • 集群分布式存储
    • 集群分布式查询
    • 集群故障转移


数据聚合

聚合的种类

聚合(aggregations)可以实现对文档数据的统计、分析、运算。聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

可以类比mysql数据库,(桶=》group by 分组,度量=》聚合函数,管道=》)

参与聚合的字段类型必须是:

  • keyword
  • 数值
  • 日期
  • 布尔

DSL实现聚合

DSL实现Bucket聚合

现在,我们要统计所有数据中的酒店品牌有几种,此时可以根据酒店品牌的名称做聚合。
类型为 term 类型,DSL示例:

GET /hotel/_search
{"size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果"aggs": { // 定义聚合"brandAgg": { //给聚合起个名字"terms": { // 聚合的类型,按照品牌值聚合,所以选择term"field": "brand", // 参与聚合的字段"size": 20 // 希望获取的聚合结果数量}}}
}

Bucket聚合-聚合结果排序

默认情况下,Bucket 聚合会统计 Bucket 内的文档数量,记为 _count,并且按照 _count 降序排序。
我们可以修改结果排序方式:

GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","order": {"_count": "asc" // 按照_count升序排列},"size": 20}}}
}

Bucket聚合-限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,我们可以限定要聚合的文档范围,只要添加 query 条件即可:

GET /hotel/_search
{"query": {"range": {"price": {"lte": 200 // 只对200元以下的文档聚合}}}, "size": 0, "aggs": {"brandAgg": {"terms": {"field": "brand","size": 20}}}
}

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

DSL实现Metrics 聚合

例如,我们要求获取每个品牌的用户评分的 min、max、avg 等值.
我们可以利用 stats 聚合:

GET /hotel/_search
{"size": 0, "aggs": {"brandAgg": { "terms": { "field": "brand", "size": 20},"aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算"score_stats": { // 聚合名称"stats": { // 聚合类型,这里stats可以计算min、max、avg等"field": "score" // 聚合字段,这里是score}}}}}
}

RestAPI实现聚合

我们以品牌聚合为例,演示下 JavaRestClient 使用,先看请求组装:

在这里插入图片描述

再看下聚合结果解析

在这里插入图片描述

在IUserService中定义方法,实现对品牌、城市、星级的聚合

需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:

在这里插入图片描述

在IUserService中定义一个方法,实现对品牌、城市、星级的聚合,方法声明如下:

在这里插入图片描述

对接前端接口

前端页面会向服务端发起请求,查询品牌、城市、星级等字段的聚合结果:
在这里插入图片描述

可以看到请求参数与之前search时的RequestParam完全一致,这是在限定聚合时的文档范围。
例如:用户搜索“外滩”,价格在300~600,那聚合必须是在这个搜索条件基础上完成。
因此我们需要:

  1. 编写controller接口,接收该请求
  2. 修改IUserService#getFilters()方法,添加RequestParam参数
  3. 修改getFilters方法的业务,聚合时添加query条件
@Test
void testAggregation() throws IOException {// 1. 准备RequestSearchRequest request = new SearchRequest("hotel");// 2. 准备DSL// 2.1 设置sizerequest.source().size(0);// 2.2 聚合request.source().aggregation(AggregationBuilders.terms("brandAgg").field("brand").size(10));// 3. 发出请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4. 解析结果Aggregations aggregations = response.getAggregations();// 4.1 根据聚合名称获取聚合结果Terms brandTerms = aggregations.get("brandAgg");// 4.2 获取 bucketsList<? extends Terms.Bucket> buckets = brandTerms.getBuckets();for (Terms.Bucket bucket : buckets) {String key = bucket.getKeyAsString();System.out.println(key);}
}

Controller

@PostMapping("filters")
public Map<String, List<String>> getFilters(@RequestBody RequestParams params){return hotelService.filters(params);
}

Service接口

@Override
public Map<String, List<String>> filters(RequestParams params) {try {// 1. 准备RequestSearchRequest request = new SearchRequest("hotel");// 2. 准备DSL// 2.1 querybuildBasicQuery(params, request);// 2.2 设置sizerequest.source().size(0);// 2.3 聚合buildAggregation(request);// 3. 发出请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4. 解析结果Map<String, List<String>> result = new HashMap<>();Aggregations aggregations = response.getAggregations();// 4.1 根据品牌名称,获取品牌结果List<String> brandList = getAggByName(aggregations, "brandAgg");// 4.2 根据城市名称,获取城市结果List<String> cityList = getAggByName(aggregations, "cityAgg");// 4.3 根据星级名称,获取星级结果List<String> starList = getAggByName(aggregations, "starAgg");// 4.4 放入mapresult.put("品牌", brandList);result.put("城市", cityList);result.put("星级", starList);return result;} catch (IOException e) {throw new RuntimeException(e);} 
}private List<String> getAggByName(Aggregations aggregations, String aggName) {// 4.1 根据聚合名称获取聚合结果Terms brandTerms = aggregations.get(aggName);// 4.2 获取 bucketsList<? extends Terms.Bucket> buckets = brandTerms.getBuckets();// 4.3 遍历List<String> brandList = new ArrayList<>();for (Terms.Bucket bucket : buckets) {String key = bucket.getKeyAsString();brandList.add(key);}return brandList;
}private void buildAggregation(SearchRequest request) {request.source().aggregation(AggregationBuilders.terms("brandAgg").field("brand").size(100));request.source().aggregation(AggregationBuilders.terms("cityAgg").field("city").size(100));request.source().aggregation(AggregationBuilders.terms("starAgg").field("star").size(100));
}private void buildBasicQuery(RequestParams params, SearchRequest request) {// 1. 构建BooleanQueryBoolQueryBuilder boolQuery = QueryBuilders.boolQuery();// 关键字搜索String key = params.getKey();if(key == null || "".equals(key)){boolQuery.must(QueryBuilders.matchAllQuery());}else{boolQuery.must(QueryBuilders.matchQuery("all", key));}// 条件过滤// 城市条件if (params.getCity() != null && !params.getCity().equals("")){boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));}// 品牌条件if (params.getBrand() != null && !params.getBrand().equals("")){boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));}// 星级条件if (params.getStarName() != null && !params.getStarName().equals("")){boolQuery.filter(QueryBuilders.termQuery("starName", params.getBrand()));}// 价格if (params.getMinPrice() != null && params.getMaxPrice() != null){boolQuery.filter(QueryBuilders.rangeQuery("price").gte(params.getMinPrice()).lte(params.getMaxPrice()));}// 2. 算分控制FunctionScoreQueryBuilder functionScoreQuery = QueryBuilders.functionScoreQuery(// 原始查询,相关性算分查询boolQuery,// function score 的数组new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{// 其中的一个 function score 元素new FunctionScoreQueryBuilder.FilterFunctionBuilder(// 过滤条件QueryBuilders.termQuery("isAD", true),// 算分函数ScoreFunctionBuilders.weightFactorFunction(10))});request.source().query(functionScoreQuery);
}

自动补全

自动补全需求说明

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

在这里插入图片描述

拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

安装方式与IK分词器一样,分三步:

  1. 解压
  2. 上传到虚拟机中,elasticsearch的plugin目录
  3. 重启elasticsearch
  4. 测试
POST /_analyze
{"text": "如家酒店整挺好","analyzer": "pinyin"
}

在这里插入图片描述

自定义分词器

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

在这里插入图片描述

我们可以在创建索引库(自定义分词器只对指定的索引库适用)时,通过settings来配置自定义的analyzer(分词器):

在这里插入图片描述

拼音分词器适合在创建倒排索引的时候使用,但不能在搜索的时候使用。
创建倒排索引时:

在这里插入图片描述

因此字段在创建倒排索引时应该用 my_analyzer 分词器;字段在搜索时应该使用 ik_smart 分词器;

在这里插入图片描述

DELETE /test# 自定义拼音分词器
PUT /test
{"settings": {"analysis": {"analyzer": { "my_analyzer": {"tokenizer": "ik_max_word","filter": "py"}},"filter": {"py": { "type": "pinyin","keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"name":{"type": "text","analyzer": "my_analyzer",  "search_analyzer": "ik_smart"}}}
}POST /test/_doc/1
{"id": 1,"name": "狮子"
}
POST /test/_doc/2
{"id": 2,"name": "虱子"
}GET /test/_search
{"query": {"match": {"name": "掉入狮子笼咋办"}}
}

如何使用拼音分词器?

  1. 下载pinyin分词器
  2. 解压并放到elasticsearch的plugin目录
  3. 重启即可

如何自定义分词器?

  1. 创建索引库时,在settings中配置,可以包含三部分
  2. character filter
  3. tokenizer
  4. filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

自动补全查询

completion suggester查询

elasticsearch提供了Completion Suggester 查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。
  • 字段的内容一般是用来补全的多个词条形成的数组。

在这里插入图片描述
查询语法如下:

在这里插入图片描述

# 自动补全的索引库
PUT test2
{"mappings": {"properties": {"title":{"type": "completion"}}}
}
# 示例数据
POST test2/_doc
{"title": ["Sony", "WH-1000XM3"]
}
POST test2/_doc
{"title": ["SK-II", "PITERA"]
}
POST test2/_doc
{"title": ["Nintendo", "switch"]
}# 自动补全查询
GET /test2/_search
{"suggest": {"titelSuggest": {"text": "s","completion": {"field": "title","skip_duplicates": true,"size": 10}}}
}

在这里插入图片描述
自动补全对字段的要求:

  • 类型是completion类型
  • 字段值是多词条的数组

酒店数据自动补全

实现hotel索引库的自动补全、拼音搜索功能

实现思路如下:

  1. 修改hotel索引库结构,设置自定义拼音分词器
  2. 修改索引库的name、all字段,使用自定义分词器
  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器
  4. 给HotelDoc类添加suggestion字段,内容包含brand、business
  5. 重新导入数据到hotel库

注意:name、all是可分词的,自动补全的brand、business是不可分词的,要使用不同的分词器组合

# 酒店数据索引库
PUT /hotel
{"settings": {"analysis": {"analyzer": {"text_anlyzer": {"tokenizer": "ik_max_word","filter": "py"},"completion_analyzer": {"tokenizer": "keyword","filter": "py"}},"filter": {"py": {"type": "pinyin","keep_full_pinyin": false,"keep_joined_full_pinyin": true,"keep_original": true,"limit_first_letter_length": 16,"remove_duplicated_term": true,"none_chinese_pinyin_tokenize": false}}}},"mappings": {"properties": {"id":{"type": "keyword"},"name":{"type": "text","analyzer": "text_anlyzer","search_analyzer": "ik_smart","copy_to": "all"},"address":{"type": "keyword","index": false},"price":{"type": "integer"},"score":{"type": "integer"},"brand":{"type": "keyword","copy_to": "all"},"city":{"type": "keyword"},"starName":{"type": "keyword"},"business":{"type": "keyword","copy_to": "all"},"location":{"type": "geo_point"},"pic":{"type": "keyword","index": false},"all":{"type": "text","analyzer": "text_anlyzer","search_analyzer": "ik_smart"},"suggestion":{"type": "completion","analyzer": "completion_analyzer"}}}
}GET /hotel/_search
{"query": {"match_all": {}}
}GET /hotel/_search
{"suggest": {"titelSuggest": {"text": "h","completion": {"field": "suggestion","skip_duplicates": true,"size": 10}}}
}

RestAPI实现自动补全

先看请求参数构造的API:

在这里插入图片描述

再来看结果解析:

在这里插入图片描述

实现酒店搜索页面输入框的自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

在这里插入图片描述

在服务端编写接口,接收该请求,返回补全结果的集合,类型为List<String>

controller

@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix){return hotelService.getSuggestions(prefix);
}

service

@Override
public List<String> getSuggestions(String prefix) {try {// 1. 准备RequestSearchRequest request = new SearchRequest("hotel");// 2. 准备DSLrequest.source().suggest(new SuggestBuilder().addSuggestion("suggestions",SuggestBuilders.completionSuggestion("suggestion").prefix(prefix).skipDuplicates(true).size(10)));// 3. 发送请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);// 4. 解析结果Suggest suggest = response.getSuggest();// 4.1 根据补全查询名称,获取补全结果CompletionSuggestion suggestions =  suggest.getSuggestion("suggestions");// 4.2 获取optionsList<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();// 4.3 遍历List<String> list = new ArrayList<>(options.size());for (CompletionSuggestion.Entry.Option option : options) {String text = option.getText().toString();list.add(text);}return list;} catch (IOException e) {throw new RuntimeException();}
}

数据同步

数据同步思路分析

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

在这里插入图片描述

方案一:同步调用

在这里插入图片描述

方案二:异步通知

在这里插入图片描述

方案三:监听binlog

在这里插入图片描述

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

实现elasticsearch与数据库数据同步

利用MQ实现mysql与elasticsearch数据同步

利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。
步骤:

  • 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD
  • 声明exchange、queue、RoutingKey
  • 在hotel-admin中的增、删、改业务中完成消息发送
  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据
  • 启动并测试数据同步功能

在这里插入图片描述

  1. 导入项目
    在这里插入图片描述
  2. 声明exchange、queue、RoutingKey(两类消息,两种队列)

导入amqp依赖

<!--amqp-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

yaml文件中配置rabbitmq

spring:rabbitmq:host: 10.211.55.6port: 5672username: itcastpassword: 123321virtual-host: /

MqConstants.java

public class MqConstants {/*** 交换机*/public final static String HOTEL_EXCHANGE = "hotel.topic";/*** 监听新增和修改的队列*/public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";/*** 监听删除的队列*/public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";/*** 新增或修改的RoutingKey*/public final static String HOTEL_INSERT_KEY = "hotel.insert";/*** 删除的RoutingKey*/public final static String HOTEL_DELETE_KEY = "hotel.delete";
}

MqConfig.java

@Configuration
public class MqConfig {@Beanpublic TopicExchange topicExchange(){return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);}@Beanpublic Queue insertQueue(){return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);}@Beanpublic Queue deleteQueue(){return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);}@Beanpublic Binding insertQueueBinding(){return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);}@Beanpublic Binding deleteQueueBinding(){return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);}
}
  1. 在hotel-admin中的增、删、改业务中完成消息发送

导入依赖,配置 yaml 文件

controller中

@RestController
@RequestMapping("hotel")
public class HotelController {@Autowiredprivate IHotelService hotelService;@Autowiredprivate RabbitTemplate rabbitTemplate;@GetMapping("/{id}")public Hotel queryById(@PathVariable("id") Long id){return hotelService.getById(id);}@GetMapping("/list")public PageResult hotelList(@RequestParam(value = "page", defaultValue = "1") Integer page,@RequestParam(value = "size", defaultValue = "1") Integer size){Page<Hotel> result = hotelService.page(new Page<>(page, size));return new PageResult(result.getTotal(), result.getRecords());}@PostMappingpublic void saveHotel(@RequestBody Hotel hotel){hotelService.save(hotel);rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_INSERT_KEY, hotel.getId());}@PutMapping()public void updateById(@RequestBody Hotel hotel){if (hotel.getId() == null) {throw new InvalidParameterException("id不能为空");}hotelService.updateById(hotel);rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_INSERT_KEY, hotel.getId());}@DeleteMapping("/{id}")public void deleteById(@PathVariable("id") Long id) {hotelService.removeById(id);rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_DELETE_KEY, id);}
}

在这里插入图片描述

  1. 在hotel-demo中完成消息监听,并更新elasticsearch中数据

HotelListener.java

@Component
public class HotelListener {@Autowiredprivate IHotelService hotelService;/*** 监听酒店新增或修改的业务* @param id*/@RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)public void listenHotelInsertOrUpdate(Long id){hotelService.insertById(id);}/*** 监听酒店新删除的业务* @param id*/@RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)public void listenHotelDelete(Long id){hotelService.deleteById(id);}
}

service

@Override
public void deleteById(Long id) {try {// 1. 准备RequestDeleteRequest request = new DeleteRequest("hotel", id.toString());// 2. 准备发送请求client.delete(request, RequestOptions.DEFAULT);} catch (IOException e) {throw new RuntimeException(e);}
}@Override
public void insertById(Long id) {try {// 0. 根据id查询酒店数据Hotel hotel = getById(id);// 转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 1. 准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());// 2. 准备Json文档request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);// 3. 发送请求client.index(request, RequestOptions.DEFAULT);} catch (IOException e) {throw new RuntimeException(e);}
}

集群

ES集群结构

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

在这里插入图片描述

搭建ES集群

我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

创建es集群

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:es01:image: elasticsearch:7.12.1container_name: es01environment:- node.name=es01- cluster.name=es-docker-cluster- discovery.seed_hosts=es02,es03- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data01:/usr/share/elasticsearch/dataports:- 9200:9200networks:- elastices02:image: elasticsearch:7.12.1container_name: es02environment:- node.name=es02- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es03- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data02:/usr/share/elasticsearch/dataports:- 9201:9200networks:- elastices03:image: elasticsearch:7.12.1container_name: es03environment:- node.name=es03- cluster.name=es-docker-cluster- discovery.seed_hosts=es01,es02- cluster.initial_master_nodes=es01,es02,es03- "ES_JAVA_OPTS=-Xms512m -Xmx512m"volumes:- data03:/usr/share/elasticsearch/datanetworks:- elasticports:- 9202:9200
volumes:data01:driver: localdata02:driver: localdata03:driver: localnetworks:elastic:driver: bridge

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

通过docker-compose启动集群:

docker-compose up -d

集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro

解压即可使用,非常方便。

解压好的目录如下:

在这里插入图片描述

进入对应的bin目录:

在这里插入图片描述

双击其中的cerebro.bat文件即可启动服务。

在这里插入图片描述

访问http://localhost:9000 即可进入管理界面:

在这里插入图片描述

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:

在这里插入图片描述

绿色的条,代表集群处于绿色(健康状态)。

创建索引库

1)利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /itcast
{"settings": {"number_of_shards": 3, // 分片数量"number_of_replicas": 1 // 副本数量},"mappings": {"properties": {// mapping映射定义 ...}}
}
2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

在这里插入图片描述

填写索引库信息:

在这里插入图片描述

点击右下角的create按钮:

在这里插入图片描述

查看分片效果

回到首页,即可查看索引库分片效果:

在这里插入图片描述

每个索引库的分片数量、副本数量都是在创建索引库时指定的,并且分片数量一旦设置以后无法修改。语法如下:

在这里插入图片描述

ES集群的节点角色

elasticsearch中集群节点有不同的职责划分:

在这里插入图片描述

elasticsearch中的每个节点角色都有自己不同的职责,因此建议集群部署时,每个节点都有独立的角色。

在这里插入图片描述

集群脑裂问题

默认情况下,每个节点都是master eligible节点,因此一旦master节点宕机,其它候选节点会选举一个成为主节点。当主节点与其他节点网络故障时,可能发生脑裂问题。

为了避免脑裂,需要要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

在这里插入图片描述

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点
  • 合并查询到的结果,返回给用户

集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?
elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

在这里插入图片描述

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档流程:

在这里插入图片描述

集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片
  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

在这里插入图片描述

分布式新增如何确定分片?

  • coordinating node根据id做hash运算,得到结果对shard数量取余,余数就是对应的分片

分布式查询的两个阶段

  • 分散阶段: coordinating node将查询请求分发给不同分片
  • 收集阶段:将查询结果汇总到coordinating node ,整理并返回给用户

集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

故障转移:

  • master宕机后,EligibleMaster选举为新的主节点。
  • master节点监控分片、节点状态,将故障节点上的分片转移到正常节点,确保数据安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/161259.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【RocketMq系列-02】RocketMq的架构解析和高性能设计

RocketMq系列整体栏目 内容链接地址【一】RocketMq安装和基本概念https://zhenghuisheng.blog.csdn.net/article/details/134486709【二】RocketMq的架构解析和高性能设计/font>https://zhenghuisheng.blog.csdn.net/article/details/134559514 RocketMq的架构解析和高性能设…

leetcode:520. 检测大写字母

一、题目&#xff1a; 链接&#xff1a;520. 检测大写字母 - 力扣&#xff08;LeetCode&#xff09; 函数原型&#xff1a;bool detectCapitalUse(char* word) 二、思路&#xff1a; 本题较为简单&#xff0c;分为三种情况&#xff1a; 1.首字母大写&#xff0c;其余小写 2.首字…

外网IP和内网ip的区别

首先得先知道什么是ip地址&#xff0c;它就是唯一标识连接网络的设备的&#xff0c;即IP地址充当了设备在网络中的“住址”&#xff0c;使得设备能够相互通信和交换数据。 我们常听开发人员说外网内网&#xff0c;那么它们有什么区别呢&#xff1f; 外网可以理解为互联网&…

【Docker】从零开始:6.配置镜像加速器

【Docker】从零开始&#xff1a;5.配置镜像加速器 什么是镜像加速器&#xff1f;为什么要配置docker镜像加速器?常见的Docker镜像加速器有哪些&#xff1f;如何申请Docker镜像加速器如何配置Docker镜像加速器 什么是镜像加速器&#xff1f; 镜像加速器是一个位于Docker Hub之…

PHP反序列化简单使用

注&#xff1a;比较简陋&#xff0c;仅供参考。 编写PHP代码&#xff0c;实现反序列化的时候魔法函数自动调用计算器 PHP反序列化 serialize(); 将对象序列化成字符串 unserialize(); 将字符串反序列化回对象 创建类 class Stu{ public $name; public $age; public $sex; publi…

智慧储能边缘计算网关应用,提升能源效率

智慧储能通过边缘计算网关物联网技术来实现对储能电池等设备的在线监控和远程管理。边缘计算网关可以将储能数据转化为可用的信息&#xff0c;并传输到储能系统中&#xff0c;为储能管理提供优化与调度等数据支持。 边缘计算网关在智慧储能系统中起到了关键的作用。IR4000边缘计…

探究Kafka原理-1.初识Kafka

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44…

Postman API Enterprise 10.18.1 Crack

适合您企业的 Postman API 平台 掌控您的 API 环境。构建更好的 API。加快产品开发。 无论您处于 API 之旅的哪个阶段&#xff0c;Postman 都会为您提供帮助 想让您团队的 API 更容易被发现吗&#xff1f;希望减少开发和质量检查之间的滞后时间&#xff1f;想要更快地让新开发…

在Spring Boot中使用ECharts绘制数据图表

使用ECharts来完成一些花里胡哨的图表吧&#xff0c;一般这种需求我们在我们的客户端不太常见&#xff0c;但是&#xff0c;我们在后端进行各种数据统计的时候就会发现ECharts的优点了&#xff0c;比如我们常常做的柱状图&#xff0c;折线图&#xff0c;雷达图等可视化形式&…

Mac M1 安装Docker打包arm64的python项目的镜像包

1、首先安装Docker&#xff0c;到官网下载&#xff0c;选择apple chip版 Docker中文网 官网 2、双击下载的dmg文件&#xff0c;在弹出框中之间拖拽到右边 3、打开docker&#xff0c;修改国内镜像源&#xff0c;位置在配置-DockerEngine "registry-mirrors": ["…

『亚马逊云科技产品测评』活动征文|AWS 数据库产品类别及其适用场景详细说明

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 目录 前言、AWS 数据库产品类别 01、Amazon Aurora 02、Amazon Docum…

基于STM32的手势识别算法研究与应用

基于STM32的手势识别算法在人机交互和智能设备控制中具有重要的应用价值。本文将介绍基于STM32的手势识别算法的研究原理和实现步骤&#xff0c;并提供相应的代码示例。 1. 手势识别概述 手势识别是一种通过分析人体的手部动作和姿势来识别和理解人的意图的技术。基于STM32的…

【PHP】PHP生成全年日历

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

5-8输出水仙花数

#include<stdio.h> int main(){int i,j,k;int n;for(n100;n<1000;n){in/100;jn/10-i*10;kn%10;if(ni*i*ij*j*jk*k*k)printf("%d ",n);}printf("\n");return 0; }

Dubbo从入门到上天系列第十八篇:Dubbo引入注册中心简介以及DubboAdmin简要介绍,为后续详解Dubbo各种注册中心做铺垫!

一&#xff1a;Dubbo注册中心引言 1&#xff1a;什么是Dubbo的注册中心&#xff1f; Dubbo注册中心是Dubbo服务治理中极其重要的一个概念。它主要是用于对Rpc集群应用实例进行管理。 对于我们的Dubbo服务来讲&#xff0c;至少有两部分构成&#xff0c;一部分是Provider一部分是…

section header

section header table 是一个section header的集合&#xff0c;每个section header是一个描述section的结构体。在同一个ELF文件中&#xff0c;每个section header大小是相同的。 每个section都有一个section header描述它&#xff0c;但是一个section header可能在文件中没有…

云计算实验如何结合AI来提高效率!

随着AI助手的流行&#xff0c;我们现在无论是学习还是工作都会带着一个他/她&#xff0c;如何让AI助手提高我们的工作效率是我们需要进化的方向。下面结合“云计算实验”来分享一下如何让AI帮助我们学得更快学得更好。 一、学习某个软件或复杂命令 比如在学习RockyLinux9.2中…

Android Spannable 使用​注意事项

1、当前示例中间的 "评论"&#xff0c;使用SpannableStringBuilder实现&#xff0c;点击评论会有高亮效果加粗&#xff0c;但再点击其它Bar时无法恢复默认样式。 2、因为SpannableString或SpannableStringBuilder中的效果是叠加的&#xff0c;恢复默认样式需要先移除…

基于SSM的济南旅游网站设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

汽车级全保护型六路半桥驱动器NCV7708FDWR2G 原理、参数及应用

NCV7708FDWR2G 是一款全保护型六路半桥驱动器&#xff0c;特别适用于汽车和工业运动控制应用。六个高压侧和低压侧驱动器可自由配置&#xff0c;也可单独控制。因此可实现高压侧、低压侧和 H 桥控制。H 桥控制提供正向、逆向、制动和高阻抗状态。驱动器通过标准 SPI 接口进行控…