图形数据库的实战应用:如何在 Neo4j 中有效管理复杂关系

关系数据库管理系统( RDBMS ) 代表了最先进的技术,这在一定程度上要归功于其由周边技术、工具和广泛的专业技能组成的完善的生态系统。

在这个涵盖信息技术(IT) 和运营技术(OT) 的技术革命时代,人们普遍认识到性能方面出现了重大挑战,特别是在NoSQL 解决方案优于传统方法的特定用例中。事实上,市场提供了许多解释和利用各种不同数据模型的NoSQL DBMS解决方案:

  • 键值存储(例如,最简单的存储,其中对持久数据的访问必须是即时的,并且通过像哈希映射或字典这样的键进行检索);

  • 面向文档(例如,在无服务器解决方案和 lambda 函数架构中广泛采用,其中客户端需要直接从数据库获取结构良好的 DTO);

  • 面向图的(例如,对于知识管理、语义网或社交网络有用);

  • 面向列(例如,在查询驱动的建模方法中提供高度优化的“即用型”数据投影);

  • 时间序列(例如,用于处理物联网场景中的传感器和样本数据);

  • 多模型存储(例如,组合不同类型的数据模型以实现混合功能目的)。

“与那些完全不使用数据的人相比,使用不充分的数据时出现错误要少得多。” 

一个较少被研究的问题是依赖于关系解决方案的软件架构能够灵活地适应软件领域和功能需求快速而频繁的变化。类似敏捷的软件开发方法加剧了这一挑战,这些方法旨在满足客户处理由其业务市场主导的不断出现的需求。

特别是,RDBMS 就其本质而言,当软件需求随着时间的推移而变化时,可能会受到影响,通过引入新的关联表(也替换预先存在的外键)并在 SQL 查询中生成新的 JOIN 子句,对数据库表格模式产生快速影响,从而导致更复杂且更难维护的解决方案。

根据我们的企业经验,我们已经成功实施并试验了基于Neo4j 图形数据库的面向图形的 DBMS 解决方案,以便在具有不同用户和角色的数字社交社区的典型操作环境中减轻需求变更的架构后果。

在这篇文章中,我们:

  • 举例说明面向图形的 DBMS 如何更能满足功能需求;

  • 讨论在经典的N层(分层)架构中采用面向图的DBMS的可行性,提出一些克服主要困难的方法;

  • 强调在各种环境和用例中采用它们的优点和缺点以及威胁。

Neo4j 图形数据库

面向图的数据模型背后的思想是采用原生方法来处理实体(即节点)及其背后的关系(即边),以便通过导航实体之间的关系来查询知识库(即知识 图)。

Neo4j 图形数据库适用 于面向属性图,其中节点和边都拥有不同类型的属性属性。

我们选择它作为 DBMS,主要是为了:

  • 它的“本机”实现是通过数字图元模型具体建模的,其运行时实例由节点(包含具有域属性的实体)和边(表示互连概念之间的可导航关系)组成。这样,关系的遍历时间为O(1);

  • Cypher查询语言被采用为图形中持久知识的非常强大且直观的查询系统。

此外,Neo4j 图形数据库还提供用于对象图形映射(OGM) 的Java 库,可帮助开发人员实现映射、持久化和管理模型实体、节点和关系的自动化过程。实际上,OGM 对于面向图形的 DBMS 的解释与对象关系映射( ORM )模式对于关系持久层的作用相同。

与为 RDBMS 设计的 ORM 模式相比,OGM 模式用于简化数据访问对象( DAO )的实现。它的主要功能是在源代码中正确配置和注释的持久域模型实体中启用半自动细化。

相对于被广泛认为是领先的 ORM 技术的Java Persistence API ( JPA )/Hibernate,Neo4j的 OGM 库以独特的方式运行:

写操作

  • OGM 在托管实体的所有关系中传播持久性更改(从托管对象开始分析整个对象关系树);

  • JPA从托管实体开始逐表执行更新,并基于级联配置处理关系。

读操作

  • OGM通过查询检索一整棵具有固定深度的“关系树”,从指定节点开始,充当“树的根”;

  • JPA允许配置EAGER和LAZY加载方法之间的关系。

示例性案例研究的解决方案优势

为了举例说明我们分析的意义,我们引入一个简单的操作场景:图 1.1 中的 UML 类图描述了一个与实体 Auth(授权的缩写)具有 1 对 N 关系的 User 实体,该实体定义了应用程序内的权限和授权。这种领域模型可以通过类似于表 1.1 和表 1.2 的架构在关系型数据库管理系统(RDBMS)中支持,或者在面向图形的数据库管理系统中,如图 1.2 中的知识图所示。

图 1.1:领域模型的 UML 类图。

USERS TABLE
idfirstNamelastName
.........

表 1.1:在 RDBMS 架构中为 User 实体映射的表格。

AUTHS TABLE

idnameleveluser_fk
............

表 1.2:在 RDBMS 架构中为 Auth 实体映射的表格。

图1.2:与图1.1 的领域模型相关的知识图 。

现在,想象一下,在应用程序的生产生命周期期间出现了一个新的需求:出于管理原因,客户需要将授权限定在特定时间段内(即有效期的开始和结束日期),如图 2.1 所示,将 User 和 Auth 之间的关系转变为 N 对 N。这种领域模型可以通过类似于表 2.1 的架构在关系型数据库管理系统(RDBMS)中支持,或者在面向图形的数据库管理系统中,如图 2.2 中的知识图所示。

图 2.1:在定义新要求后的领域模型 UML 类图。

USERS TABLE

idfirstNamelastName
.........

表 2.1:在 RDBMS 架构中为 User 实体映射的表格。

USERS_AUTHS TABLE

user_fkauth_fkfromuntil
............

表 2.2:在 RDBMS 架构中用于存储 User 和 Auth 实体之间关联的表格。

AUTHS TABLE

idnamelevel
.........

表 2.3:在 RDBMS 架构中为 Auth 实体映射的表格。

图 2.2:与图 2.1 领域模型相关的知识图。

在架构层面上的优势已经很明显:实际上,面向图形的方法没有改变架构,只是在边缘(建模关系)上定义了两个新属性,而 RDBMS 方法则创建了新的关联表 users_auths,替代了 auths 表中引用用户表的外键。

进一步深入分析,我们可以尝试分析 SQL 查询和用 Cypher 查询语言语法编写的查询在这两种方法下的区别:我们想要识别名为“Paul”的用户,他们拥有名为“admin”的 Auth,并且级别大于或等于 3。

一方面,在 SQL 中,所需的查询(分别是第一个查询用于从表 1.1 和表 1.2 检索数据,第二个查询用于表 2.1、表 2.2 和表 2.3)是:

SELECT users.*FROM usersINNER JOIN auths ON users.id = auths.user_fkWHERE users.firstName = 'Paul' AND auths.name = 'admin' AND auths.level >= 3
SELECT users.*FROM usersINNER JOIN users_auths ON users.id = users_auths.user_fkINNER JOIN auths ON auths.id = users_auths.auth_fkWHERE users.firstName = 'Paul' AND auths.name = 'admin' AND auths.level >= 3

另一方面,在Cypher 查询语言中,所需的查询(对于这两种情况) 是:

MATCH (u:User)-[:HAS_AUTH]->(auth:Auth)WHERE u.firstName = 'Paul' AND auth.name = 'admin' AND auth.level >= 3RETURN u

虽然 SQL 查询需要多一个 JOIN 子句,但值得注意的是,在这种特定情况下,不仅用 Cypher 查询语言编写的查询没有额外的子句或 MATCH 路径的变化,而且它也保持不变。后端的“查询系统”上没有必要进行任何更改!

结论 

楔形工程作为国际项目中的技术合作伙伴,设计了一个协作社交平台,作为一个解耦的 Web 应用程序,在 3 层架构中由以下部分组成:

  1. 后端模块,一个分层的 RESTful 架构,利用 JakartaEE 框架; 

  2. 知识图,由 Neo4j 图形数据库提供的 NoSQL; 

  3. 前端模块,一个基于 HTML、CSS 和 JavaScript 的单页应用程序,利用 Angular 框架。 

我们面临的最具挑战性的设计选择是使用原生利用 Cypher 查询语言的驱动程序还是利用 OGM 库简化 DAO 实现:我们发现使用 Cypher 查询语言编写的自定义查询构建整个应用程序既不可行也不可扩展,而 OGM 在处理涉及大量涉及引用外部实体的关系的大型数据层次结构时可能不够高效。

我们最终选择了一种自定义方法,利用 OGM 作为映射节点和边缘的参考解决方案,以 ORM 类型的视角,并支持特定 DAO 的实现,因此通过无法表现良好的自定义查询方法优化了时间上的优化。

总之,我们可以说采用的软件架构很好地响应了知识图模式的变化,并完全满足了客户需求,同时减轻了楔形工程开发团队的努力。

然而,在采用这种架构之前,必须考虑一些威胁:

  • SQL 比 Cypher 查询语言更为常见 → 因此,更容易找到(并因此纳入开发团队)能够维护 RDBMS 而不是 Neo4j 图形数据库的代码的专家; 

  • ​Neo4j 的本地生产系统要求很高(即对于基于服务器的环境,至少推荐 8 GB)→ 这种解决方案可能不适合资源有限的场景和低成本实施; 

  • 在我们的最大努力下,我们没有找到任何“随时可以使用且易于使用”的开源编辑器来浏览 Neo4j 图形数据库的数据结构(Neo4j 的官方数据浏览器不允许通过 GUI 进行数据修改,除非自定义 MERGE/CREATE 查询),就像 RDBMS 有很多一样 → 这可能是由于特定的数据模型本身导致的,使得实现数据的表格视图变得困难。

作者:Cosimo Giani

更多技术干货请关注公号【云原生数据库

squids.cn,云数据库RDS,迁移工具DBMotion,云备份DBTwin等数据库生态工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/161184.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初识JVM(简单易懂),解开JVM神秘的面纱

目录 一、什么是JVM(Java虚拟机)? 二、JVM的功能 三、JVM的功能-即时编译 四、常见的JVM 五、JVM的组成 五、JVM的工作流程 参考资料 一、什么是JVM(Java虚拟机)? 在Java的世界里,Java虚…

代码文档浏览器 Dash mac中文版软件特色

Dash mac是一个基于 Python 的 web 应用程序框架,它可以帮助开发者快速构建数据可视化应用。Dash 的工作原理是将 Python 代码转换成 HTML、CSS 和 JavaScript,从而在浏览器中呈现交互式的数据可视化界面。Dash 提供了一系列组件,包括图表、表…

如何将设置为静态IP的VMware虚拟机进行克隆以便可以复刻相应的环境

一定要关闭需要克隆的虚拟机右键要选择克隆的虚拟机,选择管理->克隆,进入克隆虚拟机向导 设定克隆出来的虚拟机名称以及位置,选择完成 克隆完成之后将会生成虚拟机,示例中生成的虚拟机为ubuntu-dev2 因为原本的虚拟机为静态ip的…

区域人员超限AI算法的介绍及TSINGSEE视频智能分析技术的行业应用

视频AI智能分析已经渗透到人类生活及社会发展的各个方面。从生活中的人脸识别、停车场的车牌识别、工厂园区的翻越围栏识别、入侵识别、工地的安全帽识别、车间流水线产品的品质缺陷AI检测等,AI智能分析技术无处不在。在某些场景中,重点区域的人数统计与…

Java集合拓展01

1、List,Set,Map三者的区别 List:一个有序(元素存入集合的顺序和取出的顺序一致)容器,元素可以重复,可以插入多个null元素,元素都有索引。常用的实现类有 ArrayList、LinkedList 和…

EMG肌肉信号处理合集 (一)

本文归纳了常见的肌肉信号预处理流程,方便EMG信号的后续分析。使用pyemgpipeline库 来进行信号的处理。文中使用了 UC Irvine 数据库的下肢数据。 目录 1 使用wrappers 定义数据类,来进行后续的操作 2 肌电信号DC偏置去除 3 带通滤波器处理 4 对肌电…

SpringCloud - 新版淘汰 Ribbon,在 OpenFeign 中整合 LoadBalancer 负载均衡

目录 一、LoadBalancer 负载均衡 1.1、前言 1.2、LoadBalancer 负载均衡底层实现原理 二、整合 OpenFeign LoadBalancer 2.1、所需依赖 2.2、具体实现 2.3、自定义负载均衡策略 一、LoadBalancer 负载均衡 1.1、前言 在 2020 年以前的 SpringCloud 采用 Ribbon 作为负载…

OOM问题排查+Jvm优化

OOM问题排查: 1、top命令:查看cpu和内存的使用情况。 2、jstat命令:查看YGC和FGC情况,一般都是老年代不够用。导致OOM 3、jmap命令: 查看哪个类的实例过多,以每个类占用多少了内存。4、jstack 查看线程与线程之间的阻…

80基于matlab的小波包熵与模糊C均值聚类的故障诊断,以凯斯西储大学轴承数据为例进行分析

基于matlab的小波包熵与模糊C均值聚类的故障诊断,以凯斯西储大学轴承数据为例进行分析。对数据进行小波包分解后重构,然后提取各频带能量分布,后计算小波包熵进行故障诊断。输出特征可视化结果。数据可更换自己的,程序已调通&…

Git远程库操作(GitHub)

GitHub 网址:https://github.com/ 创建远程仓库 远程仓库操作 命令名称作用git remote -v查看当前所有远程地址别名git remote add 别名 远程地址起别名git push 别名 分支推送本地分支上的内容到远程仓库git clone 远程地址将远程仓库的内容克隆到本地git pull 别…

基于STM32的色彩识别与分类算法优化

基于STM32的色彩识别与分类算法优化是一项与图像处理和机器学习相关的研究任务,旨在实现高效的色彩识别和分类算法在STM32微控制器上的运行。本文将介绍基于STM32的色彩识别与分类算法优化的原理和实现步骤,并提供相应的代码示例。 1. 色彩识别与分类概…

[SIGGRAPH-23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering

pdf | proj | code 本文提出一种新的3D数据表达形式3D Gaussians。每个Gaussian由以下参数组成:中心点位置、协方差矩阵、可见性、颜色。通过世界坐标系到相机坐标系,再到图像坐标系的仿射关系,可将3D Gaussian映射到相机坐标系,通…

c语言:用迭代法解决递归问题

题目&#xff1a; 解释&#xff1a;题目的意思就是用迭代法的空间和时间复杂的太高了&#xff0c;需要我们减小空间与时间的复杂度&#xff0c;我就想到了迭代法&#xff0c;思路和代码如下&#xff1a; #include <stdio.h> //这里是递归法转迭代法 int main() {int x,i…

Rust语言特性探秘:宏的魔力

大家好&#xff01;我是lincyang。 今天我们继续深入探讨Rust语言中的一个有趣而强大的特性——宏&#xff08;Macros&#xff09;。 宏在Rust中扮演着特殊的角色&#xff0c;不仅提高了代码的灵活性&#xff0c;还增强了代码的可重用性。接下来&#xff0c;我们会通过具体的…

[ 云计算 | AWS 实践 ] 基于 Amazon S3 协议搭建个人云存储服务

本文收录于【#云计算入门与实践 - AWS】专栏中&#xff0c;收录 AWS 入门与实践相关博文。 本文同步于个人公众号&#xff1a;【云计算洞察】 更多关于云计算技术内容敬请关注&#xff1a;CSDN【#云计算入门与实践 - AWS】专栏。 本系列已更新博文&#xff1a; [ 云计算 | …

Redis-Redis缓存高可用集群

1、Redis集群方案比较 哨兵模式 在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态&#xff0c;如果master节点异常&#xff0c;则会做主从切换&#xff0c;将某一台slave作为master&#xff0c;哨兵的配置略微复杂&#xff0c;并且性能和高可…

深信服技术认证“SCSA-S”划重点:信息收集

为帮助大家更加系统化地学习网络安全知识&#xff0c;以及更高效地通过深信服安全服务认证工程师考核&#xff0c;深信服特别推出“SCSA-S认证备考秘笈”共十期内容&#xff0c;“考试重点”内容框架&#xff0c;帮助大家快速get重点知识~ 划重点来啦 深信服安全服务认证工程师…

OpenCvSharp从入门到实践-(02)图像处理的基本操作

目录 图像处理的基础操作 1、读取图像 1.1、读取当前目录下的图像 2、显示图像 2.1、Cv2.ImShow 用于显示图像。 2.2、Cv2.WaitKey方法用于等待用户按下键盘上按键的时间。 2.3、Cv2.DestroyAllWindows方法用于销毁所有正在显示图像的窗口。 2.4实例1-显示图像 2.4实例…

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测 目录 分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.多特…

校园圈子论坛,交友,帖子内短视频,二手市场,APP小程序H5三端交付,源码交付,支持二开

校园圈子论坛&#xff0c;交友频道&#xff0c;商城&#xff0c;二手市场&#xff0c;活动专区&#xff0c;短视频&#xff0c;从校园生活的方方面面展现出了充满活力和创造力的镜头。这个频道是一个让学生们相互交流、结识新朋友的平台&#xff0c;不仅有交友功能&#xff0c;…