【考研数学】数学一“背诵”手册(一)| 高数部分(2)

文章目录

  • 引言
  • 一、高数
    • 级数
    • 空间解析几何
    • 球坐标变换公式
    • 零碎公式
  • 写在最后


引言

高数一篇文章还是写不太下,再分一些到这里来吧


一、高数

级数

阿贝尔定理:若级数 ∑ a n x n \sum a_nx^n anxn x = x 0 x=x_0 x=x0 时收敛,则适合不等式 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_0| x<x0 的一切 x x x 都使得该幂级数绝对收敛;反之,若级数 ∑ a n x n \sum a_nx^n anxn x = x 0 x=x_0 x=x0 时发散,则适合不等式 ∣ x ∣ > ∣ x 0 ∣ |x|>|x_0| x>x0 的一切 x x x 都使得该幂级数发散。

注意,阿贝尔定理未给出 x = − x 0 x=-x_0 x=x0 时的敛散性,而且最后算收敛域时的两个端点要单独判定。当已知一个幂级数在某点处收敛时,就可以得到一个收敛范围。

对于缺项的幂级数,如 ∑ a n x 2 n − 1 \sum a_nx^{2n-1} anx2n1 ,一般把幂级数的一般项看成常数项级数 u n = a n x 2 n − 1 u_n=a_nx^{2n-1} un=anx2n1 ,然后根据比值判别法 ∣ u n + 1 / u n ∣ < 1 |u_{n+1}/u_n|<1 un+1/un<1 计算出收敛半径。

幂级数 ∑ a n x n \sum a_nx^n anxn 的收敛半径 R R R 的计算方法为: lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ , o r lim ⁡ n → ∞ ∣ a n ∣ n = ρ \lim_{n\to\infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=\rho,or\space \lim_{n\to\infty}\sqrt[n]{|a_n|}=\rho nlim anan+1 =ρ,or nlimnan =ρ R = { 1 / ρ , ρ ≠ 0 , + ∞ + ∞ , ρ = 0 0 , ρ = + ∞ R=\begin{cases} 1/\rho&,\rho\ne0,+\infty \\ +\infty&,\rho=0 \\ 0&,\rho=+\infty\end{cases} R= 1/ρ+0,ρ=0,+,ρ=0,ρ=+ 区间 ( − R , R ) (-R,R) (R,R) 称为幂级数的收敛区间,一定是开区间,而收敛域有可能有闭有开。

在这里插入图片描述

空间解析几何

1. 平面

平面的一般式方程: A x + B y + C z = D Ax+By+Cz=D Ax+By+Cz=D ,其中 n → = { A , B , C } \overrightarrow{n}=\{A,B,C\} n ={A,B,C} 为法向量。点法式为平面上找一点,截距式为三轴交点,三点式为找三点,用叉乘求出法向量。

2. 空间直线

一般式方程是两个平面交线,对称式是找一点和方向向量,还有参数式。

M 1 ( x 1 , y 1 , z 1 ) M_1(x_1,y_1,z_1) M1(x1,y1,z1) 到空间直线 L : ( x − x 0 ) / m = ( y − y 0 ) / n = ( z − z 0 ) / p L:(x-x_0)/m=(y-y_0)/n=(z-z_0)/p L:(xx0)/m=(yy0)/n=(zz0)/p 的距离公式: d = ∣ s × M 1 M 0 → ∣ ∣ s ∣ d=\frac{|s\times\overrightarrow{M_1M_0}|}{|s|} d=ss×M1M0 其中, M 0 ( x 0 , y 0 , z 0 ) , s = ( m , n , p ) M_0(x_0,y_0,z_0),s=(m,n,p) M0(x0,y0,z0),s=(m,n,p)

P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 到平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0 的距离为 d = ∣ A x 0 + B y 0 + C z 0 ∣ A 2 + B 2 + C 2 d=\frac{|Ax_0+By_0+Cz_0|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0

球坐标变换公式

r r r 表示几何体上一点到原点距离,从原点引一条射线看范围; θ \theta θ 表示 r r r x O y xOy xOy 平面的投影直线与 x x x 轴正向的夹角,范围是 [ 0 , 2 π ] [0,2\pi] [0,2π] φ \varphi φ 表示和 z z z 轴正向夹角,范围是 [ 0 , π ] [0,\pi] [0,π] ,想象喇叭开花。

变换公式为 { x = r cos ⁡ θ sin ⁡ φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ φ , d x d y d z = r 2 sin ⁡ φ d r d θ d φ . \begin{cases} x=r\cos\theta \sin\varphi\\ y=r\sin \theta \sin\varphi \\ z=r\cos\varphi\end{cases},dxdydz=r^2\sin\varphi \space drd\theta d\varphi. x=rcosθsinφy=rsinθsinφz=rcosφ,dxdydz=r2sinφ drdθdφ.

零碎公式

关于 sec ⁡ x , csc ⁡ x \sec x,\csc x secx,cscx 的不定积分: ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C , ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int \sec xdx=\ln |\sec x+\tan x|+C,\int \csc xdx=\ln|\csc x-\cot x|+C secxdx=lnsecx+tanx+C,cscxdx=lncscxcotx+C


写在最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/159808.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT搭建的Ros/librviz的GUI软件

1.前言 开发初期学习了下面博主的文章&#xff0c;也报了他在古月局的课&#xff0c;相当于感谢吧。 ROS Qt5 librviz人机交互界面开发一&#xff08;配置QT环境&#xff09;-CSDN博客​​​​​​​r 软件前期也是参考他的开源项目 GitHub - chengyangkj/Ros_Qt5_Gui_App …

Linux-编译器

编译器 gcc-arm-linux-gnueabihf gcc-arm-linux-gnueabihf 是一个针对 ARM 架构 Linux 系统的交叉编译工具链&#xff0c;它包括了 C、C、Objective-C 和 Fortran 编译器以及一些辅助工具&#xff0c;用于将源代码编译成可在 ARM 架构的 Linux 系统上运行的二进制程序。arm架…

2024贵州大学计算机考研分析

24计算机考研|上岸指南 贵州大学 贵州大学计算机科学与技术学院&#xff08;贵州大学省级示范性软件学院&#xff09;位于贵州省贵阳市花溪区贵州大学东校区。 计算机科学与技术学院&#xff08;软件学院&#xff09;自1972年创办计算机软件本科专业开始&#xff0c;至今已有…

算法刷题-动态规划-1

算法刷题-动态规划-1 不同路径不同路径||方法一&#xff1a;方法二 第N个泰波那契数递归写法滚动数组 三步问题递归操作滚动数组 使用最小画法爬楼梯递归 解码方法方法一方法二&#xff1a;&#xff08;大佬讲解&#xff09; 不同路径 //机器人不同的路径进入到指定的地点 publ…

人工智能-循环神经网络的简洁实现

循环神经网络的简洁实现 如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。 我们仍然从读取时光机器数据集开始。 import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2lbatch_size, num_steps 32, 35…

最常用的5款报表系统

在这个信息化飞速发展的时代&#xff0c;报表系统已经成为了企业管理和决策的重要工具。随着市场的需求不断增长&#xff0c;报表系统也在不断地更新和完善。如今&#xff0c;市面上有数不尽的报表系统&#xff0c;但是哪款才是最常用的呢&#xff1f;接下来&#xff0c;我们将…

开源之夏 2023 | Databend 社区项目总结与分享

开源之夏是由中科院软件所“开源软件供应链点亮计划”发起并长期支持的一项暑期开源活动&#xff0c;旨在鼓励在校学生积极参与开源软件的开发维护&#xff0c;培养和发掘更多优秀的开发者&#xff0c;促进优秀开源软件社区的蓬勃发展&#xff0c;助力开源软件供应链建设。 官…

【正点原子STM32连载】第五十六章 DSP BasicMath实验 摘自【正点原子】APM32F407最小系统板使用指南

1&#xff09;实验平台&#xff1a;正点原子stm32f103战舰开发板V4 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id609294757420 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html## 第五…

ChinaSoft 论坛巡礼 | 新兴系统软件论坛

2023年CCF中国软件大会&#xff08;CCF ChinaSoft 2023&#xff09;由CCF主办&#xff0c;CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办&#xff0c;将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…

算法 全排列的应用

#include <iostream> #include <string>using namespace std;// 交换字符串中两个字符的位置 void swap(char& a, char& b) {char temp a;a b;b temp; }void fun(string str) {string a str.substr(0,4); int aa;sscanf(a.c_str(), "%d",…

Harmony 应用开发之size 脚本

作者&#xff1a;麦客奥德彪 在应用开发中&#xff0c;最终呈现在用户面前的UI&#xff0c;是用户能否继续使用应用的强力依据之一&#xff0c;在之前的开发中&#xff0c;Android 屏幕碎片化严重&#xff0c;所以出现了很多尺寸适配方案。 最小宽适配、百分比适配等等。 还有一…

知虾shopee收费,多少钱一个月

在当今电商行业的竞争激烈的环境下&#xff0c;许多商家都在寻求更好的方式来推广和销售他们的产品。这就是为什么越来越多的商家选择使用知虾shopee这样的平台来展示和销售他们的商品。但是&#xff0c;对于许多商家来说&#xff0c;他们可能会对知虾shopee的收费情况感到好奇…

MySql 计算同比、环比

一、理论 国家统计局同比、环比计算公式 增长速度是反映经济社会某一领域发展变化情况的重要数据&#xff0c;而同比和环比是反映增长速度最基础、最核心的数据指标&#xff0c;也是国际上通用的指标。在统计中&#xff0c; 同比和环比通常是同比变化率和环比变化率的简称&…

关于2023年11月25日PMI认证考试有关事项的通知

PMP项目管理学习专栏https://blog.csdn.net/xmws_it/category_10954848.html?spm1001.2014.3001.54822023年8月PMP考试成绩出炉|微思通过率95%以上-CSDN博客文章浏览阅读135次。国际注册项目管理师(PMP) 证书是项目管理领域含金量最高的职业资格证书&#xff0c;获得该资质是项…

微软Copilot即将对大陆开放,一起来看看都有什么好用的功能

微软发布了Copilot&#xff0c;12月1日起对大陆用户开放&#xff0c;以下是Copilot的11个新功能&#xff0c;你一定不想错过&#xff1a;1. PowerPoint&#xff1a; 将Word文档转换为演示文稿。从文件中快速创建演示文稿。通过关键幻灯片总结冗长的演示文稿。使用提示添加新的…

基于MS16F3211芯片的触摸控制灯的状态变化和亮度控制总结版(11.22)

1.任务需求 基于MS16F3211芯片实现功能一个按键通过长按可以控制当前处于亮状态的灯的亮度&#xff0c;当灯从最亮达到最暗时&#xff0c;所用时为3s。现有三盏颜色分别为红绿蓝的灯&#xff0c;在处于关机状态时红灯亮&#xff0c;处于开机状态时红灯灭。点按第一次仅绿灯亮&…

慕尼黑电子展Samtec Demo | 回环测试带来Samtec产品组合优异表现

【摘要/前言】 大家好&#xff01;Electronica虎家展台Demo系列回来咯。 实践出真知&#xff0c;再好的纸面数据都不如来一场实际的测试和演示。Samtec团队始终在努力为客户带来卓越的产品和优质服务。而这其中&#xff0c;Demo演示的存在至关重要。演示过程可以为大家带来了…

关于Flink的旁路缓存与异步操作

1. 旁路缓存 1. 什么是旁路缓存? 将数据库中的数据,比较经常访问的数据,保存起来,以减少和硬盘数据库的交互 比如: 我们使用mysql时 经常查询一个表 , 而这个表又一般不会变化,就可以放在内存中,查找时直接对内存进行查找,而不需要再和mysql交互 2. 旁路缓存例子使用 dim层…

Vue-报错No “exports“ main defined in xx

vue报错&#xff1a;No "exports" main defined in F:\wjh\vue#Practice\EasyQuestionnaire-web-master\EasyQuestionnaire-web-master\node_modules\babel\helper-compilation-targets\package.json 1.在文件中找到该路径的package.json文件&#xff0c; 2.按照提示…

MEMS制造的基本工艺——晶圆键合工艺

晶圆键合是一种晶圆级封装技术&#xff0c;用于制造微机电系统 (MEMS)、纳米机电系统 (NEMS)、微电子学和光电子学&#xff0c;确保机械稳定和气密密封。用于 MEMS/NEMS 的晶圆直径范围为 100 毫米至 200 毫米&#xff08;4 英寸至 8 英寸&#xff09;&#xff0c;用于生产微电…