【深度学习实验】注意力机制(三):打分函数——加性注意力模型

文章目录

  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
    • 2. 库版本介绍
  • 三、实验内容
    • 0. 理论介绍
      • a. 认知神经学中的注意力
      • b. 注意力机制
    • 1. 注意力权重矩阵可视化(矩阵热图)
    • 2. 掩码Softmax 操作
    • 3. 打分函数——加性注意力模型
      • 1. 初始化
      • 2. 前向传播
      • 3. 内部组件
      • 4. 实现细节
      • 5. 模拟实验
      • 6. 代码整合

一、实验介绍

  注意力机制作为一种模拟人脑信息处理的关键工具,在深度学习领域中得到了广泛应用。本系列实验旨在通过理论分析和代码演示,深入了解注意力机制的原理、类型及其在模型中的实际应用。

本文将介绍打分函数——加性注意力模型

二、实验环境

  本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

0. 理论介绍

a. 认知神经学中的注意力

  人脑每个时刻接收的外界输入信息非常多,包括来源于视
觉、听觉、触觉的各种各样的信息。单就视觉来说,眼睛每秒钟都会发送千万比特的信息给视觉神经系统。人脑通过注意力来解决信息超载问题,注意力分为两种主要类型:

  • 聚焦式注意力(Focus Attention):
    • 这是一种自上而下的有意识的注意力,通常与任务相关。
    • 在这种情况下,个体有目的地选择关注某些信息,而忽略其他信息。
    • 在深度学习中,注意力机制可以使模型有选择地聚焦于输入的特定部分,以便更有效地进行任务,例如机器翻译、文本摘要等。
  • 基于显著性的注意力(Saliency-Based Attention)
    • 这是一种自下而上的无意识的注意力,通常由外界刺激驱动而不需要主动干预。
    • 在这种情况下,注意力被自动吸引到与周围环境不同的刺激信息上。
    • 在深度学习中,这种注意力机制可以用于识别图像中的显著物体或文本中的重要关键词。

  在深度学习领域,注意力机制已被广泛应用,尤其是在自然语言处理任务中,如机器翻译、文本摘要、问答系统等。通过引入注意力机制,模型可以更灵活地处理不同位置的信息,提高对长序列的处理能力,并在处理输入时动态调整关注的重点。

b. 注意力机制

  1. 注意力机制(Attention Mechanism):

    • 作为资源分配方案,注意力机制允许有限的计算资源集中处理更重要的信息,以应对信息超载的问题。
    • 在神经网络中,它可以被看作一种机制,通过选择性地聚焦于输入中的某些部分,提高了神经网络的效率。
  2. 基于显著性的注意力机制的近似: 在神经网络模型中,最大汇聚(Max Pooling)和门控(Gating)机制可以被近似地看作是自下而上的基于显著性的注意力机制,这些机制允许网络自动关注输入中与周围环境不同的信息。

  3. 聚焦式注意力的应用: 自上而下的聚焦式注意力是一种有效的信息选择方式。在任务中,只选择与任务相关的信息,而忽略不相关的部分。例如,在阅读理解任务中,只有与问题相关的文章片段被选择用于后续的处理,减轻了神经网络的计算负担。

  4. 注意力的计算过程:注意力机制的计算分为两步。首先,在所有输入信息上计算注意力分布,然后根据这个分布计算输入信息的加权平均。这个计算依赖于一个查询向量(Query Vector),通过一个打分函数来计算每个输入向量和查询向量之间的相关性。

    • 注意力分布(Attention Distribution):注意力分布表示在给定查询向量和输入信息的情况下,选择每个输入向量的概率分布。Softmax 函数被用于将分数转化为概率分布,其中每个分数由一个打分函数计算得到。

    • 打分函数(Scoring Function):打分函数衡量查询向量与输入向量之间的相关性。文中介绍了几种常用的打分函数,包括加性模型、点积模型、缩放点积模型和双线性模型。这些模型通过可学习的参数来调整注意力的计算。

      • 加性模型 s ( x , q ) = v T tanh ⁡ ( W x + U q ) \mathbf{s}(\mathbf{x}, \mathbf{q}) = \mathbf{v}^T \tanh(\mathbf{W}\mathbf{x} + \mathbf{U}\mathbf{q}) s(x,q)=vTtanh(Wx+Uq)

      • 点积模型 s ( x , q ) = x T q \mathbf{s}(\mathbf{x}, \mathbf{q}) = \mathbf{x}^T \mathbf{q} s(x,q)=xTq

      • 缩放点积模型 s ( x , q ) = x T q D \mathbf{s}(\mathbf{x}, \mathbf{q}) = \frac{\mathbf{x}^T \mathbf{q}}{\sqrt{D}} s(x,q)=D xTq (缩小方差,增大softmax梯度)

      • 双线性模型 s ( x , q ) = x T W q \mathbf{s}(\mathbf{x}, \mathbf{q}) = \mathbf{x}^T \mathbf{W} \mathbf{q} s(x,q)=xTWq (非对称性)

  5. 软性注意力机制

    • 定义:软性注意力机制通过一个“软性”的信息选择机制对输入信息进行汇总,允许模型以概率形式对输入的不同部分进行关注,而不是强制性地选择一个部分。

    • 加权平均:软性注意力机制中的加权平均表示在给定任务相关的查询向量时,每个输入向量受关注的程度,通过注意力分布实现。

    • Softmax 操作:注意力分布通常通过 Softmax 操作计算,确保它们成为一个概率分布。

1. 注意力权重矩阵可视化(矩阵热图)

【深度学习实验】注意力机制(一):注意力权重矩阵可视化(矩阵热图heatmap)

在这里插入图片描述

2. 掩码Softmax 操作

【深度学习实验】注意力机制(二):掩码Softmax 操作
在这里插入图片描述
PS:记录~一天两上热搜榜

3. 打分函数——加性注意力模型

s ( x , q ) = v T tanh ⁡ ( W x + U q ) \mathbf{s}(\mathbf{x}, \mathbf{q}) = \mathbf{v}^T \tanh(\mathbf{W}\mathbf{x} + \mathbf{U}\mathbf{q}) s(x,q)=vTtanh(Wx+Uq)

class AdditiveAttention(nn.Module):"""加性注意力"""def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):super(AdditiveAttention, self).__init__(**kwargs)self.W_k = nn.Linear(key_size, num_hiddens, bias=False)self.W_q = nn.Linear(query_size, num_hiddens, bias=False)self.w_v = nn.Linear(num_hiddens, 1, bias=False)self.dropout = nn.Dropout(dropout)def forward(self, queries, keys, values, valid_lens):queries, keys = self.W_q(queries), self.W_k(keys)# queries的形状:(batch_size,查询的个数,1,num_hidden)# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)# 使用广播方式进行求和features = queries.unsqueeze(2) + keys.unsqueeze(1)features = torch.tanh(features)# self.w_v仅有一个输出,因此从形状中移除最后那个维度。# scores的形状:(batch_size,查询的个数,“键-值”对的个数)scores = self.w_v(features).squeeze(-1)self.attention_weights = masked_softmax(scores, valid_lens)# values的形状:(batch_size,“键-值”对的个数,值的维度)return torch.bmm(self.dropout(self.attention_weights), values)

AdditiveAttention 类实现了加性注意力机制。下面对该类的主要组件和功能进行详细介绍:

1. 初始化

  • 参数:
    • key_size: 键的维度。
    • query_size: 查询的维度。
    • num_hiddens: 隐藏层的维度。
    • dropout: Dropout 正则化的概率。
  • 说明: 定义了模型的各个组件,包括线性变换层和 Dropout 层。

2. 前向传播

  • 参数:
    • queries: 查询张量,形状为 (batch_size, num_queries, query_size).
    • keys: 键张量,形状为 (batch_size, num_kv_pairs, key_size).
    • values: 值张量,形状为 (batch_size, num_kv_pairs, value_size).
    • valid_lens: 有效长度张量,形状为 (batch_size,).
  • 返回值: 加权平均后的值张量,形状为 (batch_size, num_queries, value_size)

3. 内部组件

  • W_q: 将查询进行线性变换的层。
  • W_k: 将键进行线性变换的层。
  • w_v: 将特征进行线性变换的层,该层输出的形状为 (batch_size, num_queries, num_kv_pairs, 1),并通过 squeeze(-1) 操作得到注意力分数。
  • dropout: Dropout 正则化层。

4. 实现细节

  • 使用线性变换将查询和键映射到相同的隐藏维度。
  • 通过广播方式计算注意力得分。
  • 使用 tanh 激活函数将得分映射到 (-1, 1) 范围。
  • 计算注意力分数,并通过 masked_softmax 函数计算注意力权重。
  • 对注意力权重进行 Dropout 正则化。
  • 将注意力权重应用到值上,得到最终的加权平均结果。

  此加性注意力实现的目标是通过学习注意力权重,根据输入的查询和键对值进行加权平均,用于处理序列数据中的关联信息。

5. 模拟实验

  模拟输入数据并使用上述AdditiveAttention模型进行前向传播。

# 创建模拟的输入数据
queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
  • queries: 一个形状为 (2, 1, 20) 的张量,表示两个查询。这个张量的第一个维度是批量大小,第二个维度是查询的个数,第三个维度是查询的特征维度。
    在这里插入图片描述

  • keys: 一个形状为 (2, 10, 2) 的张量,表示两个样本,每个样本包含10个键值对。每个键值对的维度为2。
    在这里插入图片描述

# 创建模拟的values数据
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(2, 1, 1)
  • values: 一个形状为 (2, 10, 4) 的张量,表示两个样本,每个样本包含10个值。每个值的维度为4。
    在这里插入图片描述
# 创建模拟的有效长度数据
valid_lens = torch.tensor([2, 6])
  • valid_lens: 一个形状为 (2,) 的张量,表示两个样本的有效长度。在注意力机制中,这用于指定每个查询关注的键值对数量。
# 创建 AdditiveAttention 模型
attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8, dropout=0.1)
attention.eval()
  • 创建了一个 AdditiveAttention 的实例,指定了键的维度 key_size、查询的维度 query_size、隐藏层的维度 num_hiddens 和 Dropout 的概率 dropout
# 使用模型进行前向传播
attention(queries, keys, values, valid_lens)
  • 调用 attention 模型的前向传播方法,传入查询 queries、键 keys、值 values 和有效长度 valid_lens
  • 模型返回加权平均后的值,形状为 (2, 1, 4),表示两个查询的输出。

在这里插入图片描述

  • 绘制矩阵热图:
show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),xlabel='Keys', ylabel='Queries')

在这里插入图片描述

6. 代码整合

# 导入必要的库
import torch
from torch import nn
from d2l import torch as d2ldef show_heatmaps(matrices, xlabel, ylabel, titles=None, figsize=(2.5, 2.5), cmap='Reds'):"""显示矩阵热图"""d2l.use_svg_display()num_rows, num_cols = matrices.shape[0], matrices.shape[1]fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize,sharex=True, sharey=True, squeeze=False)for i, (row_axes, row_matrices) in enumerate(zip(axes, matrices)):for j, (ax, matrix) in enumerate(zip(row_axes, row_matrices)):pcm = ax.imshow(matrix.detach().numpy(), cmap=cmap)if i == num_rows - 1:ax.set_xlabel(xlabel)if j == 0:ax.set_ylabel(ylabel)if titles:ax.set_title(titles[j])fig.colorbar(pcm, ax=axes, shrink=0.6)def masked_softmax(X, valid_lens):"""通过在最后一个轴上掩蔽元素来执行softmax操作"""# X:3D张量,valid_lens:1D或2D张量if valid_lens is None:return nn.functional.softmax(X, dim=-1)else:shape = X.shapeif valid_lens.dim() == 1:valid_lens = torch.repeat_interleave(valid_lens, shape[1])else:valid_lens = valid_lens.reshape(-1)# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)return nn.functional.softmax(X.reshape(shape), dim=-1)class AdditiveAttention(nn.Module):"""加性注意力"""def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):super(AdditiveAttention, self).__init__(**kwargs)self.W_k = nn.Linear(key_size, num_hiddens, bias=False)self.W_q = nn.Linear(query_size, num_hiddens, bias=False)self.w_v = nn.Linear(num_hiddens, 1, bias=False)self.dropout = nn.Dropout(dropout)def forward(self, queries, keys, values, valid_lens):queries, keys = self.W_q(queries), self.W_k(keys)# queries的形状:(batch_size,查询的个数,1,num_hidden)# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)# 使用广播方式进行求和features = queries.unsqueeze(2) + keys.unsqueeze(1)features = torch.tanh(features)# self.w_v仅有一个输出,因此从形状中移除最后那个维度。# scores的形状:(batch_size,查询的个数,“键-值”对的个数)scores = self.w_v(features).squeeze(-1)self.attention_weights = masked_softmax(scores, valid_lens)# values的形状:(batch_size,“键-值”对的个数,值的维度)return torch.bmm(self.dropout(self.attention_weights), values)queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(2, 1, 1)
valid_lens = torch.tensor([2, 6])attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8, dropout=0.1)
attention.eval()
attention(queries, keys, values, valid_lens)
weights = attention.attention_weights
show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),xlabel='Keys', ylabel='Queries')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/159293.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

配电房智能综合监控系统

配电房智能综合监控系统是一种针对配电房环境和设备进行实时监控和管理的系统。依托电易云-智慧电力物联网,它集成了多种先进技术,如物联网、大数据、AI视频智能分析等,实现对配电房全方位、智能化的监控和管理。 这个系统的主要功能可能包括…

用Stable Diffusion帮助进行卡通风格渲染

用Stable Diffusion帮助进行卡通风格渲染 正常风格渲染卡通风格贴图增加涅斐尔边缘高光效果 正常风格渲染 正常的动物写实模型 卡通风格贴图 用Stable Diffusion可以帮助我们将写实贴图转化为卡通风格(具体参数可以自己调试,总体上是将提示词强度和图…

Redis整数集合

前言 整数集合(intset)是集合键的底层实现之一,当一个集合只包含整数值元素,并且这个集合的元素数量不多时,Redis就会使用整数集合作为集合键的底层实现。 一. 整数集合的实现 1.1 结构 整数集合(intset)是Redis用于保存整数值的集合抽象数据…

【漏洞复现】DPTech VPN存在任意文件读取漏洞

漏洞描述 DPtech是在网络、安全及应用交付领域集研发、生产、销售于一体的高科技企业。DPtech VPN智能安全网关是迪普科技面向广域互联应用场景推出的专业安全网关产品,集成了IPSec、SSL、L2TP、GRE等多种VPN技术,支持国密算法,实现分支机构…

redis的性能管理、主从复制和哨兵模式

一、redis的性能管理 redis的数据时缓存在内存中的 查看系统内存情况 info memory used_memory:853688 redis中数据占用的内存 used_memory_rss:10522624 redis向操作系统申请的内存 used_memory_peak:853688 redis使用内存的峰值 系统巡检:硬件巡检、数据库 n…

el-input限制输入整数等分析

文章目录 前言1、在 Vue 中,可以使用以下几种方式来限制 el-input 只能输入整数1.1 设置input 的 type为number1.2 使用inputmode1.3 使用自定义指令1.4 使用计算属性1.5 使用 onafterpaste ,onkeyup1.6 el-input-number 的precision属性 总结 前言 input 限制输入…

wvp分享视频访问页面

先登录查看视频 输入用户名密码登录 国标设备--点击通道 点击播放 点击复制 打开分享链接查看视频 直接在浏览器中打开 可以直接预览 原有标签退出登录 刷新分享的视频链接依然可以查看视频 iframe内嵌网页查看视频 获取iframe代码 点击复制 打开vscode,新建一…

有哪些好用的CFD软件?怎么选?

ANSYS Fluent和COMSOL Multiphysics以及OpenFOAM这3款CFD软件哪个好?cfd软件中哪款最实用?cfd软件有哪些?今天就给大家带来这几款CFD软件对比分析,一起来看看吧。 ANSYS Fluent ANSYS Fluent 是一种流行的计算流体动力学 (CFD) …

<MySQL> 什么是JDBC?如何使用JDBC进行编程?

目录 一、JDBC是什么? 二、JDBC常用接口和类 2.1 DataSource 2.2 Connection 2.3 Statement 2.4 ResultSet 三、JDBC的使用 3.1 获得数据库驱动包 3.2 添加到项目依赖 3.3 描述数据库服务器 3.4 建立数据库连接 3.6 执行SQL语句和接收返回数据 3.7 释放…

busybox制作根文件系统1

使用Busybox构建根文件系统 **环境:**Ubuntu 20.04 ​ 野火imx6ull pro开发板 根文件系统里都有什么内容 在构建根文件系统之前,先来看一下根文件系统里面大概都有些什么内容,以Ubuntu为例,根文件系统的目录名字为/&#xff0…

581. 最短无序连续子数组

581. 最短无序连续子数组 题目: 给你一个整数数组 nums ,你需要找出一个 连续子数组 ,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序。 请你找出符合题意的 最短 子数组,并输出它的长度。 示例&…

数字化非遗之光:十八数藏的文化保护之道

在当今数字化的时代,文化传承正经历着一场前所未有的转变,而十八数藏以其独特的方式成为数字化非遗的典范。这个项目不仅仅是数字技术的应用,更是一种文化的使命,一道保护非物质文化遗产的光芒。 十八数藏以数字化的手段保护非遗&…

五金零件经营小程序商城的效果如何

五金零件无论批发还是零售都有很高的需求度,传统消费者往往是线下门店寻找购买,但如今更多的客户选择线上消费,而商家们也选择线上开店拓展更广的客源及生意增长。 除了第三方平台进驻外,私域开店对商家来说也是一种方式。微信场…

如何用惯性动作捕捉系统,快速创建数字人三维动画?

在动画制作领域,惯性动作捕捉技术已经逐渐成为一种重要的制作手段。通过动捕设备能够将动捕演员真实的动作转化为数字数据,然后在动画中再现这些动作。为了创造出逼真、流畅的数字人动画,惯性动作捕捉系统成为了一大工具。 根据采集方式的不…

Vulnhub 解决虚拟机网络问题

前言: 有的时候,我们从vulnhub官网下载ovf文件导入到虚拟机后,使用扫描器扫描存活的时候发现扫不到靶机的IP,这是因为虚拟机的网卡配置有问题。我们需要进安全模式修改一些配置。 1. 在虚拟机开机的时候按一下上下键,让…

Wagtail-基于Python Django的内容管理系统CMS如何实现公网访问

Wagtail-基于Python Django的内容管理系统CMS实现公网访问 文章目录 Wagtail-基于Python Django的内容管理系统CMS实现公网访问前言1. 安装并运行Wagtail1.1 创建并激活虚拟环境 2. 安装cpolar内网穿透工具3. 实现Wagtail公网访问4. 固定的Wagtail公网地址 前言 Wagtail是一个…

代码随想录二刷 | 链表 |链表相交

代码随想录二刷 | 链表 |链表相交 题目描述解题思路 & 代码实现 题目描述 160.链表相交 给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。 题目数据 保…

万界星空科技QMS质量管理系统功能

QMS质量管理系统结合质量决策、综合质量管理、过程质量控制三个层次要素,帮助企业实现产品全寿命周期质量数据的及时、灵活、准确和全面采集。 通过质量管理软件能够实现质量数据科学处理和应用,包括数据的系统化组织、结构化存贮、便捷式查询、定制化统…

什么是搜索相关性?AI如何驱动搜索相关性?

训练数据驱动机器学习,机器学习促进丰富的人机交互体验。在快速迭代的互联网时代,我们不断被各种广告铺盖,甚至经常细思极恐,“天呐,小红书怎么知道我面膜没了。”这都是算法和机器学习的鬼斧神工洞察着用户的搜索意图…