文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《计及电动汽车需求响应的高速公路服务区光储充鲁棒优化配置》

这个标题涉及到一个关于高速公路服务区的优化配置问题,其中考虑了电动汽车需求响应和光储充的因素。让我们逐步解读这个标题:

  1. 高速公路服务区: 涉及到高速公路上的服务区,这是供驾驶员休息、加油、用餐等的地方。

  2. 电动汽车需求响应: 意味着在服务区的规划中,考虑了电动汽车的需求。这可能包括电动汽车的充电设施,停车位的规划等,以满足电动汽车用户的需求。

  3. 光储充: 这可能指的是采用太阳能光伏发电(光)、电能储存技术(储)、以及电动汽车充电设施(充)的综合方案。

  4. 鲁棒优化配置: 表明这是一个优化配置问题,并强调了鲁棒性。鲁棒性通常指的是在面对不确定性或变化时系统的稳定性和性能,因此在这个上下文中可能是指服务区配置的方案应该对各种变化和不确定性具有较好的适应性。

因此,整个标题可能描述了一个关于在高速公路服务区中采用光伏发电和电能储存技术,以及考虑电动汽车需求的优化配置问题,并且该配置方案应该具有一定的鲁棒性,以应对不同条件下的需求和变化。

摘要:为践行“双碳”战略和“交通强国”战略,新能源与交通的融合发展成为必然趋势,构建清洁、高效、弹性、智能的高速公路绿色能源系统已成为实现经济社会可持续发展的必然选择。针对高速公路服务区光储充一体化系统的规划配置问题,以日均总成本最小为目标函数,建立了计及源荷不确定性的min-max-min两阶段鲁棒优化模型。通过在电源侧配置超级电容器-锂离子电池混合储能系统,实现平抑光伏出力波动与参与净负荷削峰填谷等多场景应用;同时在负荷侧考虑电动汽车参与由分时电价引导的需求响应机制,促进供需两端适配平衡。根据所提模型的特点,采用嵌套列和约束生成算法予以求解。算例分析表明,所提方法能够合理优化配置高速公路服务区光储充容量,指导高速公路绿色能源系统的建设。

这段摘要介绍了一个针对高速公路服务区的光储充一体化系统规划配置问题的研究。以下是对摘要的详细解读:

  1. 背景:

    • “双碳”战略和“交通强国”战略: 指的是应对气候变化的“双碳”战略,以及发展交通行业的“交通强国”战略。这表明研究的目标与国家的发展战略相一致。
    • 新能源与交通融合发展: 强调了新能源和交通的结合,这可能包括电动汽车等新能源交通工具。
  2. 目标:

    • 构建清洁、高效、弹性、智能的高速公路绿色能源系统: 突出了对高速公路服务区绿色能源系统的要求,包括清洁、高效、弹性和智能等特性。
  3. 问题描述:

    • 规划配置问题: 涉及到对高速公路服务区光储充一体化系统的规划配置问题。
    • 目标函数: 以日均总成本最小为目标函数,说明研究的优化目标是在降低总成本的基础上实现系统配置。
  4. 方法:

    • 建立了计及源荷不确定性的min-max-min两阶段鲁棒优化模型: 说明了采用了鲁棒优化方法来应对系统中源荷不确定性的挑战。
    • 配置超级电容器-锂离子电池混合储能系统: 在电源侧采用混合储能系统来平抑光伏出力波动,同时实现净负荷的削峰填谷。
    • 考虑电动汽车参与需求响应机制: 在负荷侧考虑电动汽车的参与,通过分时电价引导实现需求响应,促进供需平衡。
  5. 求解方法:

    • 采用嵌套列和约束生成算法: 描述了所采用的求解方法,这些方法可能是用于解决鲁棒优化问题的高效算法。
  6. 算例分析:

    • 提出的方法能够合理优化配置高速公路服务区光储充容量: 通过算例分析表明,所提出的方法在实际问题中能够合理地优化配置光储充一体化系统的容量。
  7. 结论:

    • 指导高速公路绿色能源系统的建设: 表明该研究的成果具有指导实际高速公路绿色能源系统建设的实际应用意义。

总体来说,这个摘要突出了在实现“双碳”和“交通强国”战略的背景下,通过融合新能源与交通,构建高速公路服务区清洁、高效、弹性、智能的绿色能源系统的重要性,并提供了一个具体的鲁棒优化模型和方法来解决光储充一体化系统的规划配置问题。

关键词:高速公路服务区; 光储充-体化系统;混合储能;需求响应;鲁棒优化;

这些关键词涉及到一个关于高速公路服务区能源系统的研究,具体涉及以下几个方面:

  1. 高速公路服务区:

    • 这是研究的背景场景,指的是位于高速公路上的服务区,通常用于供车辆休息、加油、用餐等。
  2. 光储充一体化系统:

    • 这指的是将光伏发电(光)和储能系统(储)以及电动汽车充电(充)整合在一起的系统。光伏发电是通过太阳能光伏板将光能转化为电能,而储能系统则可以在能量充裕时储存电能,在需要时释放。这种一体化系统可能涉及多种技术,以实现能源的高效利用。
  3. 混合储能:

    • 这可能是指在储能系统中采用多种储能技术的组合,如超级电容器和锂离子电池。这种混合储能系统可以提供更好的性能,应对能量波动等挑战。
  4. 需求响应:

    • 意味着系统能够根据电力需求的变化做出相应的调整。在这个上下文中,可能指电动汽车能够根据电力价格或其他信号参与电力系统的调整,以平衡供需关系。
  5. 鲁棒优化:

    • 这是一种考虑不确定性的优化方法,即在面对系统中各种不确定性和变化时,系统仍能够保持鲁棒性,即稳定性和性能。在这个研究中,鲁棒优化用于规划配置光储充一体化系统,以确保系统在不同条件下都能够有效运行。

综合起来,这些关键词指向了一个研究方向,旨在通过光储充一体化系统,包括混合储能技术,以及考虑需求响应和鲁棒优化的方法,来改善高速公路服务区的能源系统,使其更清洁、高效、灵活,并能够适应不同的环境条件和需求。

仿真算例:以图 1 所示高速公路服务区微能网为测试对象,验证本文所提模型及求解算法的有效性。本文设定光伏出力、常规负荷以及 EV 负荷功率的不确定性调节参数分别为 6、12、8,相应的最大波动偏差分别为预测值的 15%、10%、5%。此外,假设电力需求价格弹性系数矩阵中的自弹性系数为-0.20,互弹性系数为 0.03,设置 EV 负荷参与DR 的比例为 5%。蒙特卡洛模拟参数见附录 C 表C1,服务区微能网其他相关参数见附录 C 表 C2。所提模型通过 MATLAB 软件平台基于 YALMIP工具箱调用 GUROBI 求解器进行求解。


仿真程序复现思路:

仿真的复现思路可以分为以下步骤:

  1. 模型搭建:

    • 使用 MATLAB 平台,借助 YALMIP 工具箱搭建服务区微能网的优化模型。这个模型应该包括光储充一体化系统、混合储能、需求响应等相关变量和约束。
  2. 不确定性建模:

    • 根据给定的不确定性调节参数,对光伏出力、常规负荷和EV负荷功率进行不确定性建模。可以采用蒙特卡洛模拟,使用附录 C 表C1中的参数进行多次随机抽样。
  3. 约束生成:

    • 利用 NC&CG 算法,将问题的约束进行嵌套列和逐步生成。这有助于有效处理大规模问题,并逐步求解。
  4. 参数设置:

    • 设定模型中的其他参数,包括电力需求价格弹性系数矩阵的各项参数、EV负荷参与 DR 的比例等,以满足仿真条件。
  5. 调用求解器:

    • 利用 MATLAB 平台调用 GUROBI 求解器,对嵌套列和约束生成算法生成的子问题进行求解。确保 GUROBI 的相关接口在 MATLAB 中正确设置。
  6. 仿真运行:

    • 运行仿真脚本,多次调用嵌套列和约束生成算法,每次使用不同的随机参数进行优化求解。记录每次求解的结果。
  7. 结果分析:

    • 对多次仿真结果进行分析,验证模型及求解算法的有效性。可以通过比较不同参数设置下的最优解、收敛速度等指标,来评估模型的性能。

下面是一个简化的 MATLAB 仿真脚本示例,注意这只是一个伪代码示例,具体情况需要根据模型的复杂性进行适当的调整:

% 1. 模型搭建
function model = build_microgrid_model()% 在这里定义你的微能网模型,包括变量、约束和目标函数% 使用 YALMIP 来声明变量、约束和目标% 示例:P_pv = sdpvar(1, 1, 'full');P_load = sdpvar(1, 1, 'full');P_ev = sdpvar(1, 1, 'full');% ... 定义其他变量constraints = [P_pv >= 0, P_load >= 0, P_ev >= 0];% ... 添加其他约束objective = ... % 定义你的目标函数% 创建模型model = optimizer(constraints, objective, sdpsettings('solver', 'gurobi'), [P_pv; P_load; P_ev], objective);
end% 2. 不确定性建模
function uncertainty_samples = generate_uncertainty_samples(num_samples)% 在这里生成不确定性样本% 示例:随机生成光伏出力、常规负荷和EV负荷功率的样本uncertainty_samples = rand(num_samples, 3); % 这里需要根据具体分布进行调整
end% 3. 参数设置
function set_parameters(model, uncertainty_sample, elasticity_matrix, ev_participation_ratio)% 在这里设置模型参数% 示例:将不确定性样本传递给模型setvalue(model.input, uncertainty_sample);% ... 其他参数设置
end% 4. NC&CG算法实现
function [solution, convergence] = nested_column_constraint_generation(model)% 在这里实现 NC&CG 算法% 示例:调用 YALMIP 和 GUROBI 进行优化[solution, diagnostics] = model();% ... 其他处理% 记录收敛信息convergence.status = diagnostics.problem;convergence.iterations = diagnostics.iterations;
end% 5. 结果分析
function analyze_results(results)% 在这里对仿真结果进行分析% 示例:输出最优解和收敛信息的统计信息disp('Optimal solutions:');for i = 1:length(results)disp(['Sample ', num2str(i), ': ', num2str(results(i).solution)]);enddisp('Convergence information:');for i = 1:length(results)disp(['Sample ', num2str(i), ': Status - ', num2str(results(i).convergence.status), ', Iterations - ', num2str(results(i).convergence.iterations)]);end
end% 6. 主程序
% 设置仿真次数
num_samples = 100;% 模型搭建
model = build_microgrid_model();% 不确定性建模
uncertainty_samples = generate_uncertainty_samples(num_samples);% 参数设置
elasticity_matrix = [-0.20, 0.03];
ev_participation_ratio = 0.05;% 循环进行仿真
for i = 1:num_samples% 设置当前随机参数set_parameters(model, uncertainty_samples(i, :), elasticity_matrix, ev_participation_ratio);% 调用 NC&CG 算法进行优化[solution, convergence] = nested_column_constraint_generation(model);% 记录结果results(i).solution = solution;results(i).convergence = convergence;
end% 结果分析
analyze_results(results);

请注意,上述代码仅为一个通用的框架,具体的微能网模型和算法需要根据实际情况进行详细的实现。此外,确保你的 MATLAB 环境已经正确配置 YALMIP 和 GUROBI。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/158017.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

上海亚商投顾:北证50指数大涨 机器人概念股掀涨停潮

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 三大指数昨日震荡反弹,黄白二线有所分化,题材热点轮动表现。北证50指数大涨超3%&#…

el-table 表格表头、单元格、滚动条样式修改

.2023.11.21今天我学习了如何对el-table表格样式进行修改&#xff0c;如图&#xff1a; 运用的两个样式主要是 1.header-cell-class-name&#xff08;设置表头&#xff09; 2.class-name&#xff08;设置行单元格&#xff09; 代码如下&#xff1a; <el-table :data&quo…

主播产品话术

以电子产品为例 一、产品特点 1.高效性能:这款产品采用了最先进的技术&#xff0c;确保高效运行&#xff0c;让你的工作更加流畅。 2.便捷操作:设计简洁&#xff0c;操作方便&#xff0c;即使是不熟悉电子产品的人也能轻松上手。 3.时尚外观:多种颜色可选&#xff0c;满足你…

springboot+bootstrap+java农业电商服务商城系统_30249

本农业电商服务系统是为了提高用户查阅信息的效率和管理人员管理信息的工作效率&#xff0c;可以快速存储大量数据&#xff0c;还有信息检索功能&#xff0c;这大大的满足了管理员、会员和商家这三者的需求。操作简单易懂&#xff0c;合理分析各个模块的功能&#xff0c;尽可能…

实时云渲染 助力破解智慧园区痛点困局

智慧园区是运用先进的信息技术&#xff0c;如物联网&#xff08;IoT&#xff09;、大数据、云计算、人工智能、三维可视化等&#xff0c;对园区内的各类设施、资源以及管理进行智能化和数字化升级。其目标是通过科技手段提升园区的运营效率、资源利用率&#xff0c;提供更便捷、…

什么是软件需求?以及需求的最佳实践?

什么是软件需求 业务需求是反应企业组织对软件系统的高层次目标要求&#xff0c;换句话说就是软件系统的建设目标&#xff0c;常常体现在这两个方面&#xff1a;问题和机会。 要记住&#xff1a;出发点不同&#xff0c;精神面貌就完全不一样&#xff0c;当然如果目标过于夸大也…

机器人算法—ROS TF坐标变换

1.TF基本概念 &#xff08;1&#xff09;什么是TF&#xff1f; TF是Transformations Frames的缩写。在ROS中&#xff0c;是一个工具包&#xff0c;提供了坐标转换等方面的功能。 tf工具包&#xff0c;底层实现采用的是一种树状数据结构&#xff0c;根据时间缓冲并维护多个参考…

在AWS VPC中运行Nagios检查时指定自定义DNS解析器的选项

在AWS VPC中运行Nagios检查&#xff0c;并希望能够指定自定义DNS解析器来处理请求。我想使用Python requests库来实现这个目标。 根据问题描述&#xff0c;您想在AWS VPC中运行Nagios检查&#xff0c;并希望使用Python的requests库来指定自定义DNS解析器。 要解决这个问题&…

获取当前用户信息的几种方式

说明&#xff1a;在开发中&#xff0c;我们经常需要获取当前操作的用户信息&#xff0c;如创建用户、创建订单时&#xff0c;我们需要记录下创建人&#xff0c;本文介绍获取当前用户信息的三种方式。 方式一&#xff1a;使用ThreadLocal ThreadLocal本质上是一个Map&#xff…

一个c语言的hello world的本质是什么?

文章目录 hello world程序源文件的本质是0和1hello world文件的ASCII表示程序被其他程序翻译成不同的格式预处理阶段编译阶段汇编阶段链接阶段 为什么需要了解编译系统的工作原理&#xff1f;优化程序性能理解链接时出现的错误避免安全漏洞 参考 hello world 程序源文件的本质是…

Django 创建项目时找不到数据库sqlite3

原因:PyCharm创建Django项目,找不到数据库sqlite3 解决&#xff1a;如果没有默认的db文件&#xff0c;则应在PyCharm终端中执行以下命令&#xff1a; python manage.py makemigrations python manage.py migrate

文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《就地无常规电源支撑下考虑新能源基地频率稳定的储能优化配置方法》

这个标题涉及到一个关于新能源基地频率稳定的储能优化配置方法的主题。让我们逐步解读&#xff1a; 就地无常规电源支撑下&#xff1a; 就地 (On-site): 意味着在特定地点或场地进行操作&#xff0c;而不是依赖外部地点的资源。无常规电源 (Non-conventional Power): 指的是不传…

python报错ModuleNotFoundError: No module named ‘docx‘解决方案

python报错ModuleNotFoundError: No module named docx解决方案 执行报错分析原因解决方案 执行报错 ModuleNotFoundError: No module named ‘docx’ pip install docx 后报错 分析原因 导错包了&#xff0c;不是docx而是python-docx 解决方案 卸载安装错的 docx pip uni…

足底筋膜炎症状及治疗方法

足底筋膜炎是一种常见的足部疾病&#xff0c;通常会引起足跟疼痛和不适。这种疼痛通常在早晨起床后或者长时间休息后更为明显&#xff0c;行走一段时间后可能会减轻。下面我们将详细介绍足底筋膜炎的症状及治疗方法。 一、足底筋膜炎的症状 足跟疼痛&#xff1a;这是足底筋膜…

2023/11/21JAVAweb学习

优先级高低id > 类 > 元素 格式化ctrl alt L

探索无限自然之美——Terragen Professional 4渲染软件

Terragen Professional 4是一款强大的自然环境渲染软件&#xff0c;为设计师、艺术家和电影制作人们带来了无限的创作可能性。无论是为游戏、电影、动画还是虚拟现实体验创建逼真的自然场景&#xff0c;Terragen Professional 4都能为您提供令人难以置信的结果。 Terragen Pro…

电商数据|淘宝商品数据接口接入|参数|获取商品订单物流|电商数据分析

授权认证 授权不是开放平台对服务商应用的授权 &#xff0c;而是需要开放平台的客户&#xff08;用户&#xff09;对服务商应用的授予&#xff0c;比如ERP应用&#xff0c;也就是淘宝的店铺商家对应用进行授权&#xff0c;使其能够拉取到店铺的订单来完成订单履约。 淘宝授权页…

C题目11:数组a[m]排序

每日小语 双手&#xff0c;且放下一切劳作&#xff0c;前额&#xff0c;也忘掉忧思&#xff0c;此时此刻我所有的感觉就想沉入安睡。 自己敲写 这个问题老师上课讲了一种方法&#xff0c;叫做冒泡排序。基本思想是 1.找最小值&#xff0c;放到a[0] 2.从a[1]~a[3]找最小值&a…

数据结构之二叉树

前言&#xff1a;我们前面已经学习了数据结构的栈和队列&#xff0c;今天我们就来学习一下数据结构中的二叉树&#xff0c;那么作为二叉树我们就得先了解树的一些概念&#xff0c;还有二叉树一些特点。 树的概念&#xff1a; 树是一种非线性的数据结构&#xff0c;它是由n&…

golang指针学习

package mainimport "fmt"func main() {name:"飞雪无情"nameP:&name//取地址fmt.Println("name变量的内存地址为:",&name)fmt.Println("name变量的值为:",name)fmt.Println("name变量的内存地址为:",nameP)fmt.Prin…