25 - 单例模式:如何创建单一对象优化系统性能?

从这一讲开始,我们将一起探讨设计模式的性能调优。在《Design Patterns: Elements of Reusable Object-Oriented Software》一书中,有 23 种设计模式的描述,其中,单例设计模式是最常用的设计模式之一。无论是在开源框架,还是在我们的日常开发中,单例模式几乎无处不在。

1、什么是单例模式?

它的核心在于,单例模式可以保证一个类仅创建一个实例,并提供一个访问它的全局访问点。

该模式有三个基本要点:一是这个类只能有一个实例;二是它必须自行创建这个实例;三是它必须自行向整个系统提供这个实例。

结合这三点,我们来实现一个简单的单例:

// 饿汉模式
public final class Singleton {private static Singleton instance=new Singleton();// 自行创建实例private Singleton(){}// 构造函数public static Singleton getInstance(){// 通过该函数向整个系统提供实例return instance;}
}

由于在一个系统中,一个类经常会被使用在不同的地方,通过单例模式,我们可以避免多次创建多个实例,从而节约系统资源。

2、饿汉模式

我们可以发现,以上第一种实现单例的代码中,使用了 static 修饰了成员变量 instance,所以该变量会在类初始化的过程中被收集进类构造器即 方法中。在多线程场景下,JVM 会保证只有一个线程能执行该类的 方法,其它线程将会被阻塞等待。

等到唯一的一次 方法执行完成,其它线程将不会再执行 方法,转而执行自己的代码。也就是说,static 修饰了成员变量 instance,在多线程的情况下能保证只实例化一次。

这种方式实现的单例模式,在类加载阶段就已经在堆内存中开辟了一块内存,用于存放实例化对象,所以也称为饿汉模式。

饿汉模式实现的单例的优点是,可以保证多线程情况下实例的唯一性,而且 getInstance 直接返回唯一实例,性能非常高。

然而,在类成员变量比较多,或变量比较大的情况下,这种模式可能会在没有使用类对象的情况下,一直占用堆内存。试想下,如果一个第三方开源框架中的类都是基于饿汉模式实现的单例,这将会初始化所有单例类,无疑是灾难性的。

3、懒汉模式

懒汉模式就是为了避免直接加载类对象时提前创建对象的一种单例设计模式。该模式使用懒加载方式,只有当系统使用到类对象时,才会将实例加载到堆内存中。通过以下代码,我们可以简单地了解下懒加载的实现方式:

// 懒汉模式
public final class Singleton {private static Singleton instance= null;// 不实例化private Singleton(){}// 构造函数public static Singleton getInstance(){// 通过该函数向整个系统提供实例if(null == instance){// 当 instance 为 null 时,则实例化对象,否则直接返回对象instance = new Singleton();// 实例化对象}return instance;// 返回已存在的对象}
}

以上代码在单线程下运行是没有问题的,但要运行在多线程下,就会出现实例化多个类对象的情况。这是怎么回事呢?

当线程 A 进入到 if 判断条件后,开始实例化对象,此时 instance 依然为 null;又有线程 B 进入到 if 判断条件中,之后也会通过条件判断,进入到方法里面创建一个实例对象。

所以我们需要对该方法进行加锁,保证多线程情况下仅创建一个实例。这里我们使用 Synchronized 同步锁来修饰 getInstance 方法:

// 懒汉模式 + synchronized 同步锁
public final class Singleton {private static Singleton instance= null;// 不实例化private Singleton(){}// 构造函数public static synchronized Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例if(null == instance){// 当 instance 为 null 时,则实例化对象,否则直接返回对象instance = new Singleton();// 实例化对象}return instance;// 返回已存在的对象}
}

但我们前面讲过,同步锁会增加锁竞争,带来系统性能开销,从而导致系统性能下降,因此这种方式也会降低单例模式的性能。

还有,每次请求获取类对象时,都会通过 getInstance() 方法获取,除了第一次为 null,其它每次请求基本都是不为 null 的。在没有加同步锁之前,是因为 if 判断条件为 null 时,才导致创建了多个实例。基于以上两点,我们可以考虑将同步锁放在 if 条件里面,这样就可以减少同步锁资源竞争。

// 懒汉模式 + synchronized 同步锁
public final class Singleton {private static Singleton instance= null;// 不实例化private Singleton(){}// 构造函数public static Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例if(null == instance){// 当 instance 为 null 时,则实例化对象,否则直接返回对象synchronized (Singleton.class){instance = new Singleton();// 实例化对象} }return instance;// 返回已存在的对象}
}

看到这里,你是不是觉得这样就可以了呢?答案是依然会创建多个实例。这是因为当多个线程进入到 if 判断条件里,虽然有同步锁,但是进入到判断条件里面的线程依然会依次获取到锁创建对象,然后再释放同步锁。所以我们还需要在同步锁里面再加一个判断条件:

// 懒汉模式 + synchronized 同步锁 + double-check
public final class Singleton {private static Singleton instance= null;// 不实例化private Singleton(){}// 构造函数public static Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例if(null == instance){// 第一次判断,当 instance 为 null 时,则实例化对象,否则直接返回对象synchronized (Singleton.class){// 同步锁if(null == instance){// 第二次判断instance = new Singleton();// 实例化对象}} }return instance;// 返回已存在的对象}
}

以上这种方式,通常被称为 Double-Check,它可以大大提高支持多线程的懒汉模式的运行性能。那这样做是不是就能保证万无一失了呢?还会有什么问题吗?

其实这里又跟 Happens-Before 规则和重排序扯上关系了,这里我们先来简单了解下 Happens-Before 规则和重排序。

我们在第二期[加餐]中分享过,编译器为了尽可能地减少寄存器的读取、存储次数,会充分复用寄存器的存储值,比如以下代码,如果没有进行重排序优化,正常的执行顺序是步骤 1\2\3,而在编译期间进行了重排序优化之后,执行的步骤有可能就变成了步骤 1/3/2,这样就能减少一次寄存器的存取次数。

int a = 1;// 步骤 1:加载 a 变量的内存地址到寄存器中,加载 1 到寄存器中,CPU 通过 mov 指令把 1 写入到寄存器指定的内存中
int b = 2;// 步骤 2 加载 b 变量的内存地址到寄存器中,加载 2 到寄存器中,CPU 通过 mov 指令把 2 写入到寄存器指定的内存中
a = a + 1;// 步骤 3 重新加载 a 变量的内存地址到寄存器中,加载 1 到寄存器中,CPU 通过 mov 指令把 1 写入到寄存器指定的内存中

在 JMM 中,重排序是十分重要的一环,特别是在并发编程中。如果 JVM 可以对它们进行任意排序以提高程序性能,也可能会给并发编程带来一系列的问题。例如,我上面讲到的 Double-Check 的单例问题,假设类中有其它的属性也需要实例化,这个时候,除了要实例化单例类本身,还需要对其它属性也进行实例化:

// 懒汉模式 + synchronized 同步锁 + double-check
public final class Singleton {private static Singleton instance= null;// 不实例化public List<String> list = null;//list 属性private Singleton(){list = new ArrayList<String>();}// 构造函数public static Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例if(null == instance){// 第一次判断,当 instance 为 null 时,则实例化对象,否则直接返回对象synchronized (Singleton.class){// 同步锁if(null == instance){// 第二次判断instance = new Singleton();// 实例化对象}} }return instance;// 返回已存在的对象}
}

在执行 instance = new Singleton(); 代码时,正常情况下,实例过程这样的:

  • 给 Singleton 分配内存;
  • 调用 Singleton 的构造函数来初始化成员变量;
  • 将 Singleton 对象指向分配的内存空间(执行完这步 singleton 就为非 null 了)。

如果虚拟机发生了重排序优化,这个时候步骤 3 可能发生在步骤 2 之前。如果初始化线程刚好完成步骤 3,而步骤 2 没有进行时,则刚好有另一个线程到了第一次判断,这个时候判断为非 null,并返回对象使用,这个时候实际没有完成其它属性的构造,因此使用这个属性就很可能会导致异常。在这里,Synchronized 只能保证可见性、原子性,无法保证执行的顺序。

这个时候,就体现出 Happens-Before 规则的重要性了。通过字面意思,你可能会误以为是前一个操作发生在后一个操作之前。然而真正的意思是,前一个操作的结果可以被后续的操作获取。这条规则规范了编译器对程序的重排序优化。

我们知道 volatile 关键字可以保证线程间变量的可见性,简单地说就是当线程 A 对变量 X 进行修改后,在线程 A 后面执行的其它线程就能看到变量 X 的变动。除此之外,volatile 在 JDK1.5 之后还有一个作用就是阻止局部重排序的发生,也就是说,volatile 变量的操作指令都不会被重排序。所以使用 volatile 修饰 instance 之后,Double-Check 懒汉单例模式就万无一失了。

// 懒汉模式 + synchronized 同步锁 + double-check
public final class Singleton {private volatile static Singleton instance= null;// 不实例化public List<String> list = null;//list 属性private Singleton(){list = new ArrayList<String>();}// 构造函数public static Singleton getInstance(){// 加同步锁,通过该函数向整个系统提供实例if(null == instance){// 第一次判断,当 instance 为 null 时,则实例化对象,否则直接返回对象synchronized (Singleton.class){// 同步锁if(null == instance){// 第二次判断instance = new Singleton();// 实例化对象}} }return instance;// 返回已存在的对象}
}

4、通过内部类实现

以上这种同步锁 +Double-Check 的实现方式相对来说,复杂且加了同步锁,那有没有稍微简单一点儿的可以实现线程安全的懒加载方式呢?

我们知道,在饿汉模式中,我们使用了 static 修饰了成员变量 instance,所以该变量会在类初始化的过程中被收集进类构造器即 方法中。在多线程场景下,JVM 会保证只有一个线程能执行该类的 方法,其它线程将会被阻塞等待。这种方式可以保证内存的可见性、顺序性以及原子性。

如果我们在 Singleton 类中创建一个内部类来实现成员变量的初始化,则可以避免多线程下重复创建对象的情况发生。这种方式,只有在第一次调用 getInstance() 方法时,才会加载 InnerSingleton 类,而只有在加载 InnerSingleton 类之后,才会实例化创建对象。具体实现如下:

// 懒汉模式 内部类实现
public final class Singleton {public List<String> list = null;// list 属性private Singleton() {// 构造函数list = new ArrayList<String>();}// 内部类实现public static class InnerSingleton {private static Singleton instance=new Singleton();// 自行创建实例}public static Singleton getInstance() {return InnerSingleton.instance;// 返回内部类中的静态变量}
}

5、总结

单例的实现方式其实有很多,但总结起来就两种:饿汉模式和懒汉模式,我们可以根据自己的需求来做选择。

如果我们在程序启动后,一定会加载到类,那么用饿汉模式实现的单例简单又实用;如果我们是写一些工具类,则优先考虑使用懒汉模式,因为很多项目可能会引用到 jar 包,但未必会使用到这个工具类,懒汉模式实现的单例可以避免提前被加载到内存中,占用系统资源。

6、思考题

除了以上那些实现单例的方式,你还知道其它实现方式吗?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/157614.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java并发编程第12讲——cancelAcquire()流程详解及acquire方法总结

上篇文章介绍了AQS的设计思想以及独占式获取和释放同步状态的源码分析&#xff0c;但是还不够&#xff0c;一是感觉有点零零散散&#xff0c;二是里面还有很多细节没介绍到——比如cancelAcquire()方法&#xff08;重点&#xff09;&#xff0c;迫于篇幅原因&#xff0c;今天就…

Spring Cloud实战 |分布式系统的流量控制、熔断降级组件Sentinel如何使用

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…

数据的4个等级

除了可以将数据分为定量和定性的&#xff0c;数据还可以分为以下4个等级&#xff0c;每个等级都有不同的控制和数学操作等级&#xff1b; 定类等级&#xff08;nominal level&#xff09; 定序等级&#xff08;ordinal level&#xff09; 定距等级&#xff08;interval level&a…

【CVPR 2023】解读VideoFusion:基于噪声共享机制的视频生成

Diffusion Models视频生成-博客汇总 前言:达摩院开源的VideoFusion是为数不多同时开源模型和推理代码的视频生成工作,通过设计噪声分解机制有效提高视频的时空连贯性,在一些关键指标上远超GAN-based方法和2022年谷歌的VDM。更重要的是,Diffusers库以此为基础,写了关键的两…

同时创建多个websoket(初始化多个连接、断开的重连、每个连接定时发消息、每个连接存储接收的数据(vuex或者pinia))

可复制现成代码直接使用&#xff01;&#xff01; 1.下边的例子演示了创建10个WebSocket 实例&#xff0c;当其中某一个连接失败时&#xff0c;会自动进行重连 <template><div></div> </template><script setup> import { ref, reactive, onMo…

ssh和scp的基本使用

ssh和scp的基本使用 1&#xff0c;ssh 本地连接远程服务器 ssh userhostname第一次连接时输入密码会生成密钥&#xff0c;后续就可以直接连接了 ssh配置文件&#xff1a;/etc/ssh/sshd_config 2&#xff0c;scp 传输本地文件至远程服务器 命令格式 scp [参数] [原路径] […

求二叉树的最大密度(可运行)

最大密度&#xff1a;二叉树节点数值的最大值 如果没有输出结果&#xff0c;一定是建树错误&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; 我设置输入的是字符型数据&#xff0c;比较的ASCII值。 输入&#xff1a;FBE###CE### 输…

基于单片机设计的气压与海拔高度检测计(采用MPL3115A2芯片实现)

一、前言 随着科技的不断发展&#xff0c;在许多领域中&#xff0c;对气压与海拔高度的测量变得越来越重要。例如&#xff0c;对于航空和航天工业、气象预报、气候研究等领域&#xff0c;都需要高精度、可靠的气压与海拔高度检测装置。针对这一需求&#xff0c;基于单片机设计…

19.删除链表的倒数第 N 个节点

​题目来源&#xff1a; leetcode题目&#xff0c;网址&#xff1a;19. 删除链表的倒数第 N 个结点 - 力扣&#xff08;LeetCode&#xff09; 解题思路&#xff1a; 使用双指针找到倒数第 N1 个节点后删除链表的第 N 个节点即可。注意当 N 为链表长度时&#xff0c;倒数第 N1 …

Google Play 搜索不到应用

Google Play搜索不到已上架应用 这可能是由于多种原因造成的。首先&#xff0c;请确保你的应用在 Google Play 商店上已经成功上架&#xff0c;并且通过了审核。 如果你的应用已经上架&#xff0c;但在搜索时无法找到&#xff0c;可能有以下一些原因&#xff1a; 「1.索引延迟…

wpf devexpress实现输入验证使用验证规则

打开此项目 目标是一个registration form行为像google registration form。打开Google registration form 研究它的行为。当form是第一次显示&#xff0c;它的“Register”按钮应该启动&#xff1b;编辑器没有提示任何输入错误。输入First Name编辑器字段&#xff0c;清理输入…

端到端数据保护浅析

作为最重要的数据保护方式之一&#xff0c;NVMe端到端数据保护被众多企业用户所看重&#xff0c;它可以有效降低静默错误的发生&#xff0c;保护范围涵盖数据自Host端生成直至写入SSD NAND当中&#xff0c;以及从SSD NAND读取直至返回Host的全部流程。它使得数据不论是在SSD内部…

服务器安全怎么保障,主机安全软件提供一站式保护

服务器主机安全是指保护服务器主机免受未经授权的访问、破坏、窃取或滥用。 现在如今大部分公司、单位的相关数据都是存储在云端服务器上&#xff0c;这样即方便查询也方便保存。 可是一旦服务器主机受到威胁&#xff0c;损失将会不可估计。 以下是一些服务器主机安全的建议…

支付宝生僻字选择器

本文的数据来源于支付宝网页版本生僻字选择器。 let rareWords[{spell: "a",words: ["奡", "靉", "叆"]}, {spell: "b",words: ["仌", "昺", "竝", "霦", "犇", "愊…

粒子系统three.js

Three.js是一个非常流行的JavaScript 3D库&#xff0c;它提供了许多强大的功能来创建各种3D场景和动画效果。其中粒子系统是Three.js中非常重要的一部分&#xff0c;它可以用于创建各种特效&#xff0c;如火焰、烟雾、雨雪等等。本文将详细讲解Three.js中粒子系统的使用。 1. …

MySQL数据库——存储过程-条件处理程序(通过SQLSTATE指定具体的状态码,通过SQLSTATE的代码简写方式 NOT FOUND)

目录 介绍 案例 通过SQLSTATE指定具体的状态码 通过SQLSTATE的代码简写方式 NOT FOUND 介绍 条件处理程序&#xff08;Handler&#xff09;可以用来定义在流程控制结构执行过程中遇到问题时相应的处理步骤。具体语法为&#xff1a; DECLARE handler_action HANDLER FOR c…

Linux调度域与调度组

引入调度域的讨论可以参考这篇文章。这篇笔记重点分析了内核调度域相关的数据结构以及内核用于构建调度域的代码实现&#xff0c;以此来加深对调度域的理解。调度域是调度器进行负载均衡的基础。 调度域拓扑层级 整个系统的调度域组成一个层级结构&#xff0c;内核设计了stru…

上海亚商投顾:沪指冲高回落 短剧、地产股集体走强

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 三大指数早盘冲高&#xff0c;创业板指盘初涨超1%&#xff0c;午后则集体下行翻绿&#xff0c;北证50一度大涨…

MyBatis:关联查询

MyBatis 前言关联查询附懒加载对象为集合时的关联查询 前言 在 MyBatis&#xff1a;配置文件 文章中&#xff0c;最后介绍了可以使用 select 标签的 resultMap 属性实现关联查询&#xff0c;下面简单示例 关联查询 首先&#xff0c;先创建 association_role 和 association_…

【nacos】Java调用nacos SDK获取配置信息为null

通过 Nacos 提供的 Java 客户端 SDK 来获取配置信息&#xff0c;但是结果是null <!--添加maven依赖 --> <dependency><groupId>com.alibaba.nacos</groupId><artifactId>nacos-client</artifactId><version>2.1.2</version> …