《多GPU大模型训练与微调手册》

在这里插入图片描述

全参数微调

Lora微调

PTuning微调

多GPU微调预备知识

1. 参数数据类型 torch.dtype

在这里插入图片描述

1.1 半精度 half-precision
  • torch.float16:fp16 就是 float16,1个 sign(符号位),5个 exponent bits(指数位),10个 mantissa bits(小数位)

  • torch.bfloat16:bf 16 就是 brain float16,1个 :符号位,8个exponent bits(指数位),7个mantissa bits(小数位)

  • 区别:bf16 牺牲了精度(小数位),实现了比 fp16 更大的范围(多了三个指数位)。

1.2 全精度 single-precision
  • torch.float32:fp 32 就是 float32,1个 sign(符号位),8个 exponent bits(指数位),23个 mantissa bits(小数位)

2. 显卡环境

2.1 参数量与显存换算

例如,实验室是单机多卡:8卡A6000(40G)服务器 320G显存

① CUDA_VISIBLE_DEVICES 控制显卡可见性

通过CUDA_VISIBLE_DEVICES环境变量 控制哪些GPU可以被torch调用:

  • 代码控制
# 必须置于 import torch 之前,准确地说在 torch.cuda 的调用之前
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7'
import torch
torch.cuda.device_count()
# 8
  • 命令行控制
CUDA_VISIBLE_DEVICES=0,1 python train.py
② 推理换算
  • 模型加载
    (1)目前模型的参数绝大多数都是float32类型, 每个参数占用 4 个字节。所以一个粗略的计算方法就是,每10亿个参数(1 billion=10亿),占用4G显存 (实际应该是10^9 * 4 / 1024 / 1024 / 1024 = 3.725G,为了方便可以记为4G),即 1B Params= 4G VRAM。比如LLaMA的参数量为7000559616个Params,那么全精度加载这个模型参数需要的显存为:7000559616 * 4 /1024/1024/1024 = 26.08G
    (2)显存不够,可以用半精度fp16/bf16来加载,这样每个参数只占2个字节,所需显存就降为一半,只需要13.04G。
    (3)如果显存还不够,可以采用int8的精度,显存再降一半,仅需6.5G,但是模型效果会更差一些。
    (4)如果显存还是不够,int4精度显存再降一半,仅需3.26G。int4就是最低精度了,再往下模型推理效果就很难保证了。
    在这里插入图片描述

  • 模型推理:注意上面只是加载模型到显存,模型运算时的一些临时变量也需要申请空间,比如你beam search的时候。所以真正做推理的时候记得留一些Buffer,不然就容易OOM。如果显存还不够,就只能采用Memery Offload的技术,把部分显存的内容给挪到内存,但是这样会显著降低推理速度。

③ 训练换算

模型训练的时候显存使用包括如下几部分:

  1. 模型权重,计算方法和推理一样。
  2. 优化器:(1)如果你采用AdamW,每个参数需要占用8个字节,因为需要维护两个状态。也就说优化器使用显存是全精度(float32)模型权重的2倍。(2)如果采用bitsandbytes优化的AdamW,每个参数需要占用2个字节,也就是全精度(float32)模型权重的一半。(3)如果采用SGD,则优化器占用显存和全精度模型权重一样。
  3. 梯度:梯度占用显存和全精度(float32)模型权重一样。
  4. 计算图内部变量:有时候也叫Forward Activations。

如果模型想要训练,只看前3部分,需要的显存是至少推理的3-4倍。7B的全精度模型加载需要78G ~ 104G。 然后计算图内部变量这一部分只能在运行时候观测了,可以两个不同的batch的占用显存的差值大概估算出来。

优化的思路也就有了,目前市面上主流的一些计算加速的框架如DeepSpeed, Megatron等都在降低显存方面做了很多优化工作,比如量化,模型切分,混合精度计算,Memory Offload等等。

2.2 分布式架构

在这里插入图片描述
3种并行方式

  • 数据并行Data Paralleism:模型复制到不同GPU上,将数据切分后,分配到不同的GPU上。
  • 模型并行Model Paralleism:将模型切分后,分配到不同的GPU上。分为张量并行和流水线并行。
    • 张量并行Tensor Paralleism:对模型参数 tensor 切分,分配到不同的GPU进行计算,在参数更新的时候再进行同步。在这里插入图片描述
    • 流水线并行Pipeline Paralleism:对模型按层layer切分,分配到不同的GPU上进行计算。
      在这里插入图片描述
  • 混合并行Hybrid Paralleism:同时进行数据并行、张量并行、流水线并行。
    在这里插入图片描述

下面3个分布式框架都是基于 Pytorch 的并行框架:

  • DP(torch.nn.DataParallel)单机-单进程多线程进行实现的,它使用一个进程来计算模型权重,在每个batch处理期间将数据分发到每个GPU,每个GPU 分发到 batch_size/N 个数据,各个GPU的forward结果汇聚到master GPU上计算loss,计算梯度更新master GPU参数,将参数复制给其他GPU。(数据并行
  • DDP(torch.nn.DistributedDataParallel):可以单机/多机-多进程进行实现的,每个GPU对应的进程都有独立的优化器,执行自己的更新过程。每个进程都执行相同的任务,并且每个进程都与所有其他进程通信。进程(GPU)之间只传递梯度,这样网络通信就不再是瓶颈。(数据并行
  • FSDP(torch.distributed.fsdp.FullyShardedDataParallel):Pytorch最新的数据并行方案,在1.11版本引入的新特性,目的主要是用于训练大模型。我们都知道Pytorch DDP用起来简单方便,但是要求整个模型加载到一个GPU上,维护模型参数、梯度和优化器状态的每个 GPU 副本。FSDP则可以在数据并行的基础上,将模型参数和优化器分片分配到 GPU,这使得大模型的训练权重得以加载。(数据并行+模型并行

这些在前面的博客已经讲过:

  • 分布式并行训练(DP、DDP、DeepSpeed)
  • pytorch单精度、半精度、混合精度、单卡、多卡(DP / DDP)、FSDP、DeepSpeed模型训练
2.3 分布式工具

前面的分布式框架使用起来较为麻烦,因此分布式工具在底层对torch的分布式框架进行封装,实现更加方便的分布式训练和微调:

  • DerepSpeed(微软开发)
  • Accelerate(Huggingface开发)
① DerepSpeed—Zero

DerepSpeed的原理是基于微软的研究:Zero(零冗余优化),研究哪些部分是占用存储空间的,并对这些占用存储的数据进行优化。
在这里插入图片描述

存储空间的消耗 Memory Consumption主要包含两部分:

  • Model States(主):模型参数Parameters梯度Gradients优化器Optimizer_State
  • Residual States(次):前向传播激活值Activations临时缓存区Temporal Buffers内存碎片Unusable Fragmented Memory
    在这里插入图片描述

知道了什么东西会占存储,以及它们占了多大的存储之后,我们就可以来谈如何优化存储了。注意到,在整个训练中,有很多states并不会每时每刻都用到;因此提出了三种Zero优化方法:

  • Zero-DP优化Model States):作者采取三个方法优化内存,Pos、Pg、Pp。大体思路都是一样的,把每个模型的参数、梯度、优化器状态分别平均分给所有的gpu,当时计算需要用到其他gpu的内容时,通过GPU之间的通讯传输,以通讯换内存。其中前两个方法不增加通讯成本,第三个方法会增加GPU之间的通信成本。
    在这里插入图片描述

  • Zero-R优化Residual States):(1)激活函数:在前向传播计算完成激活函数之后,对把激活值丢弃,由于计算图还在,等到反向传播的时候,再次计算激活值,算力换内存。或者采取一个与cpu执行一个换入换出的操作。(2)临时缓冲区:模型训练过程中经常会创建一些大小不等的临时缓冲区,比如对梯度进行All Reduce啥的,解决办法就是预先创建一个固定的缓冲区,训练过程中不再动态创建,如果要创建临时数据,在固定缓冲区创建就好。(3)内存碎片:显存出现碎片的一大原因是时候gradient checkpointing后,不断地创建和销毁那些不保存的激活值,解决方法是预先分配一块连续的显存,将常驻显存的模型状态和checkpointed activation存在里面,剩余显存用于动态创建和销毁discarded activation复用了操作系统对内存的优化,不断内存整理。

  • 混合精度训练:对于模型,我们肯定希望其参数越精准越好,也即我们用fp32(单精度浮点数,存储占4byte)来表示参数W。但是在forward和backward的过程中,fp32的计算开销也是庞大的。那么能否在计算的过程中,引入fp16或bf16(半精度浮点数,存储占2byte),来减轻计算压力呢?于是,混合精度训练(float2hlaf)就产生了,它的步骤如下图:
    在这里插入图片描述

  1. get fp32:存储一份fp32的Model States:parameter,momentum和variance
  2. fp32-to-fp16:在forward开始之前,额外开辟一块存储空间,将fp32 parameter减半到fp16 parameter。
  3. fp16 computing:正常做forward和backward,在此之间产生的activation和gradients,都用fp16进行存储。
  4. update fp32 model states:用fp16 gradients去更新fp32下的model states。
  • Zero-OffloadGPU显存不够,CPU内存来凑。如下图,左边是正常的计算图,右侧是Zero-Offload的计算图。(⭕️表示state,正方形表示计算图,箭头表示数据流向、M表示模型参数,float2half表示32位转16位)其实就是forward和backward在GPU上计算参数更新在CPU上。因为CPU与GPU通信数据开销很大,所以CPU和GPU传播的是gradient16,这样保证传播数据量最小。
    在这里插入图片描述

  • Zero-InfinityGPU内存不够,SSD外存来凑
    在这里插入图片描述

②Accelerate—Huggingface

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/156790.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1.Gin 介绍

1.Gin 介绍 介绍 Gin 是一个 Go (Golang) 编写的轻量级 http web 框架,运行速度非常快,如果你是性能和高效的追求者,我们推荐你使用 Gin 框架。 Gin 最擅长的就是 Api 接口的高并发,如果项目的规模不大,业务相对简单&a…

【学习记录】从0开始的Linux学习之旅——编译linux内核

一、学习背景 从接触嵌入式至今,除了安装过双系统接触了一丢丢linux外,linux在我眼中向来是个传说。而如今得到了一块树莓派,于是决心把linux搞起来。 二、概念学习 Linux操作系统通常是基于Linux内核,并结合GNU项目中的工具和应…

idea Maven Helper插件使用方法

idea Maven Helper插件使用方法 文章目录 idea Maven Helper插件使用方法📆1.安装mavenhelper🖥️2.使用教程📌3.解决冲突📇4.列表展示依赖🧣5.tree展示依赖🖥️6.搜索依赖🖊️7.最后总结 &…

JSP编写自己的第一个WebServlet实现客户端与服务端交互

我们在项目中找到java目录 下面有一个包路径 然后 我们在下面创建一个类 我这里叫 TransmissionTest 当然 名字是顺便取的 参考代码如下 package com.example.dom;import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.servlet…

Echarts+vue+java+mysql实现数据可视化

一、折线图,柱状图 https://echarts.apache.org/zh/index.html echarts 官网 更多配置项可以去官网查看 在开始项目之前,确保您已经安装了以下工具和技术: MySQL 数据库:用于存储和管理数据。Java 后端:用于创建后端应…

gzip 压缩优化大 XML 响应的处理方法

当处理大型XML响应时,我们经常会面临内存限制和性能问题。 在处理这个问题时,我们可以使用Python的requests库和lxml库来解决。下面是解决方案的步骤: 1. 使用requests库发送HTTP请求获取XML响应。 2. 检查响应的Content-Encoding标头&…

C语言scanf_s函数的使用

因为scanf函数存在缓冲区溢出的可能性;提供了scanf_s函数;增加一个参数; scanf_s最后一个参数是缓冲区的大小,表示最多读取n-1个字符; 下图代码; 读取整型数可以不指定长度;读取char&#xf…

机器视觉兄弟们,新工作之前,不要过度准备

大家对工作的渴望我感同身受,有人去机器视觉培训机构培训,有人默默无闻地努力学习,不都是为了一份高新好工作吗? 实际上是: 技术高的人,劳动力贬值。 技术低的人,没有生存空间。 你有野心&…

dvwa 代码注入impossible代码审计

dvwa 代码注入impossible代码审计 <?phpif( isset( $_POST[ Submit ] ) ) {// Check Anti-CSRF tokencheckToken( $_REQUEST[ user_token ], $_SESSION[ session_token ], index.php ); // 检查token值是否正确// Get input$target $_REQUEST[ ip ]; $target stripslas…

【Python数据结构与算法】--- 递归算法应用-五行代码速解汉诺塔问题.

&#x1f308;个人主页: Aileen_0v0 &#x1f525;系列专栏:PYTHON数据结构与算法学习系列专栏&#x1f4ab;"没有罗马,那就自己创造罗马~" 汉诺塔 两层汉诺塔的演示 三层汉诺塔的走法演示 我不知道有没有朋友跟我一样有一个疑问,如果我们顶端的先放到中间柱子呢?…

交替最小二乘法

前置概念导入 协同过滤&#xff08;Collaborative Filtering&#xff09;&#xff1a;这是一种推荐系统的方法&#xff0c;依据用户之间或物品之间的相似性来进行推荐。协同过滤通常分为两种主要类型&#xff1a;用户基于&#xff08;user-based&#xff09;和物品基于&#xf…

享元模式 rust和java的实现

文章目录 享元模式介绍实现javarust实现代码 rust仓库rust仓库 享元模式 享元模式&#xff08;Flyweight Pattern&#xff09;主要用于减少创建对象的数量&#xff0c;以减少内存占用和提高性能。这种类型的设计模式属于结构型模式&#xff0c;它提供了减少对象数量从而改善应…

Tensorrt 实现 yolov5-cls 遇到的问题

yolov5-6.2增加了分类训练、验证、预测和导出&#xff08;所有 11 种格式&#xff09;&#xff0c;还提供了 ImageNet 预训练的 YOLOv5m-cls、ResNet&#xff08;18、34、50、101) 和 EfficientNet (b0-b3) 模型. 官方Git : https://github.com/ultralytics/yolov5 分类模型与…

安装gitlab

安装gitlab 环境 关闭防火墙以及selinux&#xff0c;起码4核8G 内存至少 3G 不然启动不了 下载环境 gitlab官网&#xff1a;GitLab下载安装_GitLab最新中文基础版下载安装-极狐GitLab rpm包下载地址&#xff1a; [Yum - Nexus Repository Manager (gitlab.cn)](https://pack…

C语言回文数(1106:回文数(函数专题))

题目描述 一个正整数&#xff0c;如果从左向 右读&#xff08;称之为正序数&#xff09;和从右向左读&#xff08;称之为倒序数&#xff09;是一样的&#xff0c;这样的数就叫回文数。输入两个整数m和n&#xff08;m<n)&#xff0c;输出区间[m&#xff0c;n]之间的回文数。 …

「C++」AVL树的实现(动图)

&#x1f4bb;文章目录 AVL树概念AVL的查找AVL树的插入 代码部分AVL树的定义查找插入旋转 &#x1f4d3;总结 AVL树 概念 AVL树又名高度平衡的二叉搜索树&#xff0c;由G. M. Adelson-Velsky和E. M. Landis发明&#xff0c;顾名思义&#xff0c;其任意节点的左右子树最大高度…

第十一章 目标检测中的NMS(工具)

精度提升 众所周知&#xff0c;非极大值抑制NMS是目标检测常用的后处理算法&#xff0c;用于剔除冗余检测框&#xff0c;本文将对可以提升精度的各种NMS方法及其变体进行阶段性总结。 总体概要&#xff1a; 对NMS进行分类&#xff0c;大致可分为以下六种&#xff0c;这里是依…

Android File Transfer(安卓文件传输工具)

Android File Transfer 是一款安卓文件传输工&#xff0c;它允许在Mac操作系统和Android设备之间进行文件传输。 该软件通过USB连接将文件从Mac电脑传输到连接的Android设备&#xff0c;或者反过来从Android设备传输文件到Mac电脑。这包括照片、视频、音乐、文档和其他文件类型…

基于SDN技术构建多平面业务承载网络

随着企业数字化的浪潮席卷各个行业&#xff0c;传统网络架构面临着更为复杂和多样化的挑战。企业正在寻找一种全面适应数字化需求的网络解决方案。随着软件定义网络&#xff08;SDN&#xff09;的发展&#xff0c;“多业务SDN一张网”解决方案为企业提供了一种全新的网络架构&a…

2023年中职“网络安全“—Linux系统渗透提权②

2023年中职"网络安全"—Linux系统渗透提权② Linux操作系统渗透测试任务环境说明&#xff1a;1. 使用渗透机对服务器信息收集&#xff0c;并将服务器中SSH服务端口号作为flag提交&#xff1b;2. 使用渗透机对服务器信息收集&#xff0c;并将服务器中主机名称作为flag…