2023亚太杯数学建模思路 - 案例:感知机原理剖析及实现

文章目录

  • 1 感知机的直观理解
    • 2 感知机的数学角度
    • 3 代码实现
  • 4 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 感知机的直观理解

感知机应该属于机器学习算法中最简单的一种算法,其原理可以看下图:

在这里插入图片描述

比如说我们有一个坐标轴(图中的黑色线),横的为x1轴,竖的x2轴。图中的每一个点都是由(x1,x2)决定的。如果我们将这张图应用在判断零件是否合格上,x1表示零件长度,x2表示零件质量,坐标轴表示零件的均值长度和均值重量,并且蓝色的为合格产品,黄色为劣质产品,需要剔除。那么很显然如果零件的长度和重量都大于均值,说明这个零件是合格的。也就是在第一象限的所有蓝色点。反之如果两项都小于均值,就是劣质的,比如在第三象限的黄色点。

在预测上很简单,拿到一个新的零件,我们测出它的长度x1,质量x2,如果两项都大于均值,说明零件合格。这就是我们人的人工智能。

那么程序怎么知道长度重量都大于均值的零件就是合格的呢?
或者说

它是怎么学会这个规则的呢?
程序拿到手的是当前图里所有点的信息以及标签,也就是说它知道所有样本x的坐标为(x1, x2),同时它属于蓝色或黄色。对于目前手里的这些点,要是能找到一条直线把它们分开就好了,这样我拿到一个新的零件,知道了它的质量和重量,我就可以判断它在线的哪一侧,就可以知道它可能属于好的或坏的零件了。例如图里的黄、蓝、粉三条线,都可以完美地把当前的两种情况划分开。甚至x1坐标轴或x2坐标轴都能成为一个划分直线(这两个直线均能把所有点正确地分开)。

读者也看到了,对于图中的两堆点,我们有无数条直线可以将其划分开,事实上我们不光要能划分当前的点,当新来的点进来是,也要能很好地将其划分,所以哪条线最好呢?

怎样一条直线属于最佳的划分直线?实际上感知机无法找到一条最佳的直线,它找到的可能是图中所有画出来的线,只要能把所有的点都分开就好了。

得出结论:
如果一条直线能够不分错一个点,那就是一条好的直线
进一步来说:

如果我们把所有分错的点和直线的距离求和,让这段求和的举例最小(最好是0,这样就表示没有分错的点了),这条直线就是我们要找的。

2 感知机的数学角度

首先我们确定一下终极目标:甭管找最佳划分直线啥中间乱七八糟的步骤,反正最后生成一个函数f(x),当我们把新的一个数据x扔进函数以后,它会预测告诉我这是蓝的还是黄的,多简单啊。所以我们不要去考虑中间过程,先把结果定了。

在这里插入图片描述

瞧,f(x)不是出来了嘛,sign是啥?wx+b是啥?别着急,我们再看一下sigin函数是什么。

在这里插入图片描述

sign好像很简单,当x大于等于0,sign输出1,否则输出-1。那么往前递归一下,wx+b如果大于等于0,f(x)就等于1,反之f(x)等于-1。

那么wx+b是啥?
它就是那条最优的直线。我们把这个公式放在二维情况下看,二维中的直线是这样定义的:y=ax+b。在二维中,w就是a,b还是b。所以wx+b是一条直线(比如说本文最开始那张图中的蓝线)。如果新的点x在蓝线左侧,那么wx+b<0,再经过sign,最后f输出-1,如果在右侧,输出1。等等,好像有点说不通,把情况等价到二维平面中,y=ax+b,只要点在x轴上方,甭管点在线的左侧右侧,最后结果都是大于0啊,这个值得正负跟线有啥关系?emmm….其实wx+b和ax+b表现直线的形式一样,但是又稍有差别。我们把最前头的图逆时针旋转45度,蓝线是不是变成x轴了?哈哈这样是不是原先蓝线的右侧变成了x轴的上方了?其实感知机在计算wx+b这条线的时候,已经在暗地里进行了转换,使得用于划分的直线变成x轴,左右侧分别为x轴的上方和下方,也就成了正和负。

那么,为啥是wx+b,而不叫ax+b?
在本文中使用零件作为例子,上文使用了长度和重量(x1,x2)来表示一个零件的属性,所以一个二维平面就足够,那么如果零件的品质和色泽也有关系呢?那就得加一个x3表示色泽,样本的属性就变成了(x1,x2,x3),变成三维了。wx+b并不是只用于二维情况,在三维这种情况下,仍然可以使用这个公式。所以wx+b与ax+b只是在二维上近似一致,实际上是不同的东西。在三维中wx+b是啥?我们想象屋子里一个角落有蓝点,一个角落有黄点,还用一条直线的话,显然是不够的,需要一个平面!所以在三维中,wx+b是一个平面!至于为什么,后文会详细说明。四维呢?emmm…好像没法描述是个什么东西可以把四维空间分开,但是对于四维来说,应该会存在一个东西像一把刀一样把四维空间切成两半。能切成两半,应该是一个对于四维来说是个平面的东西,就像对于三维来说切割它的是一个二维的平面,二维来说是一个一维的平面。总之四维中wx+b可以表示为一个相对于四维来说是个平面的东西,然后把四维空间一切为二,我们给它取名叫超平面。由此引申,在高维空间中,wx+b是一个划分超平面,这也就是它正式的名字。

正式来说:
wx+b是一个n维空间中的超平面S,其中w是超平面的法向量,b是超平面的截距,这个超平面将特征空间划分成两部分,位于两部分的点分别被分为正负两类,所以,超平面S称为分离超平面。

细节:

w是超平面的法向量:对于一个平面来说w就是这么定义的,是数学知识,可以谷歌补习一下

b是超平面的截距:可以按照二维中的ax+b理解

特征空间:也就是整个n维空间,样本的每个属性都叫一个特征,特征空间的意思是在这个空间中可以找到样本所有的属性组合

在这里插入图片描述
我们从最初的要求有个f(x),引申到能只输出1和-1的sign(x),再到现在的wx+b,看起来越来越简单了,只要能找到最合适的wx+b,就能完成感知机的搭建了。前文说过,让误分类的点距离和最大化来找这个超平面,首先我们要放出单独计算一个点与超平面之间距离的公式,这样才能将所有的点的距离公式求出来对不?

在这里插入图片描述

先看wx+b,在二维空间中,我们可以认为它是一条直线,同时因为做过转换,整张图旋转后wx+b是x轴,那么所有点到x轴的距离其实就是wx+b的值对不?当然了,考虑到x轴下方的点,得加上绝对值->|wx+b|,求所有误分类点的距离和,也就是求|wx+b|的总和,让它最小化。很简单啊,把w和b等比例缩小就好啦,比如说w改为0.5w,b改为0.5b,线还是那条线,但是值缩小两倍啦!你还不满意?我可以接着缩!缩到0去!所以啊,我们要加点约束,让整个式子除以w的模长。啥意思?就是w不管怎么样,要除以它的单位长度。如果我w和b等比例缩小,那||w||也会等比例缩小,值一动不动,很稳。没有除以模长之前,|wx+b|叫函数间隔,除模长之后叫几何间隔,几何间隔可以认为是物理意义上的实际长度,管你怎么放大缩小,你物理距离就那样,不可能改个数就变。在机器学习中求距离时,通常是使用几何间隔的,否则无法求出解。

在这里插入图片描述
对于误分类的数据,例如实际应该属于蓝色的点(线的右侧,y>0),但实际上预测出来是在左侧(wx+b<0),那就是分错了,结果是负,这时候再加个符号,结果就是正了,再除以w的模长,就是单个误分类的点到超平面的举例。举例总和就是所有误分类的点相加。

上图最后说不考虑除以模长,就变成了函数间隔,为什么可以这么做呢?不考虑wb等比例缩小这件事了吗?上文说的是错的吗?

有一种解释是这样说的:感知机是误分类驱动的算法,它的终极目标是没有误分类的点,如果没有误分类的点,总和距离就变成了0,w和b值怎样都没用。所以几何间隔和函数间隔在感知机的应用上没有差别,为了计算简单,使用函数间隔。

在这里插入图片描述
以上是损失函数的正式定义,在求得划分超平面的终极目标就是让损失函数最小化,如果是0的话就相当完美了。
在这里插入图片描述

感知机使用梯度下降方法求得w和b的最优解,从而得到划分超平面wx+b,关于梯度下降及其中的步长受篇幅所限可以自行谷歌。

3 代码实现

#coding=utf-8
#Author:Dodo
#Date:2018-11-15
#Email:lvtengchao@pku.edu.cn
'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
正确率:81.72%(二分类)
运行时长:78.6s
'''
import numpy as np
import time
def loadData(fileName):'''加载Mnist数据集:param fileName:要加载的数据集路径:return: list形式的数据集及标记'''print('start to read data')# 存放数据及标记的listdataArr = []; labelArr = []# 打开文件fr = open(fileName, 'r')# 将文件按行读取for line in fr.readlines():# 对每一行数据按切割福','进行切割,返回字段列表curLine = line.strip().split(',')# Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1if int(curLine[0]) >= 5:labelArr.append(1)else:labelArr.append(-1)#存放标记#[int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型#[int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)dataArr.append([int(num)/255 for num in curLine[1:]])#返回data和labelreturn dataArr, labelArr
def perceptron(dataArr, labelArr, iter=50):'''感知器训练过程:param dataArr:训练集的数据 (list):param labelArr: 训练集的标签(list):param iter: 迭代次数,默认50:return: 训练好的w和b'''print('start to trans')#将数据转换成矩阵形式(在机器学习中因为通常都是向量的运算,转换称矩阵形式方便运算)#转换后的数据中每一个样本的向量都是横向的dataMat = np.mat(dataArr)#将标签转换成矩阵,之后转置(.T为转置)。#转置是因为在运算中需要单独取label中的某一个元素,如果是1xN的矩阵的话,无法用label[i]的方式读取#对于只有1xN的label可以不转换成矩阵,直接label[i]即可,这里转换是为了格式上的统一labelMat = np.mat(labelArr).T#获取数据矩阵的大小,为m*nm, n = np.shape(dataMat)#创建初始权重w,初始值全为0。#np.shape(dataMat)的返回值为m,n -> np.shape(dataMat)[1])的值即为n,与#样本长度保持一致w = np.zeros((1, np.shape(dataMat)[1]))#初始化偏置b为0b = 0#初始化步长,也就是梯度下降过程中的n,控制梯度下降速率h = 0.0001#进行iter次迭代计算for k in range(iter):#对于每一个样本进行梯度下降#李航书中在2.3.1开头部分使用的梯度下降,是全部样本都算一遍以后,统一#进行一次梯度下降#在2.3.1的后半部分可以看到(例如公式2.6 2.7),求和符号没有了,此时用#的是随机梯度下降,即计算一个样本就针对该样本进行一次梯度下降。#两者的差异各有千秋,但较为常用的是随机梯度下降。for i in range(m):#获取当前样本的向量xi = dataMat[i]#获取当前样本所对应的标签yi = labelMat[i]#判断是否是误分类样本#误分类样本特诊为: -yi(w*xi+b)>=0,详细可参考书中2.2.2小节#在书的公式中写的是>0,实际上如果=0,说明改点在超平面上,也是不正确的if -1 * yi * (w * xi.T + b) >= 0:#对于误分类样本,进行梯度下降,更新w和bw = w + h *  yi * xib = b + h * yi#打印训练进度print('Round %d:%d training' % (k, iter))#返回训练完的w、breturn w, b
def test(dataArr, labelArr, w, b):'''测试准确率:param dataArr:测试集:param labelArr: 测试集标签:param w: 训练获得的权重w:param b: 训练获得的偏置b:return: 正确率'''print('start to test')#将数据集转换为矩阵形式方便运算dataMat = np.mat(dataArr)#将label转换为矩阵并转置,详细信息参考上文perceptron中#对于这部分的解说labelMat = np.mat(labelArr).T#获取测试数据集矩阵的大小m, n = np.shape(dataMat)#错误样本数计数errorCnt = 0#遍历所有测试样本for i in range(m):#获得单个样本向量xi = dataMat[i]#获得该样本标记yi = labelMat[i]#获得运算结果result = -1 * yi * (w * xi.T + b)#如果-yi(w*xi+b)>=0,说明该样本被误分类,错误样本数加一if result >= 0: errorCnt += 1#正确率 = 1 - (样本分类错误数 / 样本总数)accruRate = 1 - (errorCnt / m)#返回正确率return accruRate
if __name__ == '__main__':#获取当前时间#在文末同样获取当前时间,两时间差即为程序运行时间start = time.time()#获取训练集及标签trainData, trainLabel = loadData('../Mnist/mnist_train.csv')#获取测试集及标签testData, testLabel = loadData('../Mnist/mnist_test.csv')#训练获得权重w, b = perceptron(trainData, trainLabel, iter = 30)#进行测试,获得正确率accruRate = test(testData, testLabel, w, b)#获取当前时间,作为结束时间end = time.time()#显示正确率print('accuracy rate is:', accruRate)#显示用时时长print('time span:', end - start)

4 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/154866.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Prometheus+Grafana环境搭建(window)

PrometheusGrafana环境搭建 1&#xff1a;配置Prometheus 1.1: 下载Prometheus安装包 官方下载地址 找到对应的win版本进行下载并解压 1.2 下载Window数据采集 官方下载地址 下载以管理员运行&#xff0c;安装成功后在服务里会出现一个"windows_exporter"采集…

光伏、储能双层优化配置接入配电网研究(附带Matlab代码)

由于能源的日益匮乏&#xff0c;电力需求的不断增长等&#xff0c;配电网中分布式能源渗透率不断提高&#xff0c;且逐渐向主动配电网方向发展。此外&#xff0c;需求响应(demand response&#xff0c;DR)的加入对配电网的规划运行也带来了新的因素。因此&#xff0c;如何综合考…

【LittleXi】CCPC2023 深圳站 总结

【LittleXi】CCPC2023 深圳站 总结 赛前 1、赛前vp了香港&#xff0c;rank13&#xff0c;还行 2、玩了一把div2&#xff0c;上了75分&#xff0c;感觉不如南京之前CF献祭的100分 3、比赛前一晚打了一把abc&#xff0c;只能说消耗了脑力&#xff0c;下次比赛前不玩了 热身赛…

小趴菜教你如何用Python开发手机App..

Python语言虽然很万能&#xff0c;但用它来开发app还是显得有点不对路&#xff0c;因此用Python开发的app应当是作为编码练习、或者自娱自乐所用&#xff0c;加上目前这方面的模块还不是特别成熟&#xff0c;bug比较多&#xff0c;总而言之&#xff0c;劝君莫轻入。 准备工作 …

白银投资的升值空间及未来趋势

在投资多样化的今天&#xff0c;人们可选择的投资产品也越来越多。白银作为具有较高价值的贵金属&#xff0c;一直以来便是仅次于黄金的贵金属投资品种&#xff0c;今年来也受到更多投资者的关注。那么白银的升值空间及未来趋势如何&#xff1f;是否值得投资&#xff1f;这边将…

做医疗影像心脏方面的看过来:医学图像重建的心脏 MRI 数据集

本文发布了CMRxRecon数据集&#xff0c;包括来自 300 名受试者的多对比度、多视图、多切片和多通道 CMR 成像数据&#xff0c;还由经验丰富的放射科医生提供了所有受试者的心肌和心室的手动分割。单位&#xff1a;复旦, 香港理工大学, 厦大等 心脏磁共振成像&#xff08;CMR&a…

神经网络中BN层简介及位置分析

1. 简介 Batch Normalization是深度学习中常用的技巧&#xff0c;Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (Ioffe and Szegedy, 2015) 第一次介绍了这个方法。 这个方法的命名&#xff0c;明明是Standardization, 非…

PostgreSQL 入门

文章目录 PostgreSQL介绍PostgreSQL和MySQL的区别PostgreSQL的安装PostgreSQL的配置远程连接配置配置数据库的日志 PostgreSQL基本操作用户操作权限操作 图形化界面安装总结 PostgreSQL介绍 PostgreSQL是一个功能强大的 开源 的关系型数据库&#xff0c;底层基于C实现。其开源…

模板初阶学习

✨前言✨ &#x1f4d8; 博客主页&#xff1a;to Keep博客主页 &#x1f646;欢迎关注&#xff0c;&#x1f44d;点赞&#xff0c;&#x1f4dd;留言评论 ⏳首发时间&#xff1a;2023年11月21日 &#x1f4e8; 博主码云地址&#xff1a;博主码云地址 &#x1f4d5;参考书籍&…

【刷题专栏—突破思维】LeetCode 138. 随机链表的复制

前言 随机链表的复制涉及到复制一个链表&#xff0c;该链表不仅包含普通的next指针&#xff0c;还包含random指针&#xff0c;该指针指向链表中的任意节点或空节点。 文章目录 原地修改链表 题目链接&#xff1a; LeetCode 138. 随机链表的复制 原地修改链表 题目介绍&#xf…

拖拽场景遇到 iframe 无法拖拽的问题解决方案

描述一个场景&#xff1a;在网页中&#xff0c;分为上下两部分布局&#xff0c;下半部分显示操作日志&#xff0c;下半部分的区域高度是可拖拽调整的&#xff0c;但是如果下半部分嵌入一个 iframe 的时候&#xff0c;往上拖拽可以&#xff0c;但是往下拖拽&#xff0c;一旦到了…

分类问题的评价指标

一、logistic regression logistic regression也叫做对数几率回归。虽然名字是回归&#xff0c;但是不同于linear regression&#xff0c;logistic regression是一种分类学习方法。 同时在深度神经网络中&#xff0c;有一种线性层的输出也叫做logistic&#xff0c;他是被输入…

以太网_寻址

【架构图】 【ipconfig/all】 MAC地址&#xff1a;作用于本地网络&#xff0c;数据包发送到本地交换机或路由器后经判断目的地址是本地网络地址会转发给当前MAC地址对应的网线端口。 IP地址&#xff1a;供路由器寻址&#xff0c;会跟子网掩码进行运算&#xff0c;属于同一网络…

git问题: git@10.18.*.*: Permission denied (publickey,password)

遇到的问题&#xff1a; openSSH版本太高&#xff0c;openssh高版本默认禁止ssh-rsa加密算法&#xff0c;直接换ed25519 执行以下命令&#xff1a; 在.ssh目录下执行&#xff1a;ssh-keygen -t ed25519 -C “youremail.com” ssh-add ~/.ssh/id_ed25519 将id_ed25519.pub添加…

BigDecimal的常见陷阱

文章目录 BigDecimal概述BigDecimal常见陷阱1.使用BigDecimal的构造函数传入浮点数2.使用equals()方法进行数值比较3.使用不正确的舍入模式 总结&#xff1a; BigDecimal概述 BigDecimal 是 Java 中的一个类&#xff0c;用于精确表示和操作任意精度的十进制数。它提供了高精度的…

UE 材质,如何只取0~1之间的值,其余值抛弃

假如0~1&#xff0c;floor为0&#xff0c;abs为0&#xff0c;Saturate为0&#xff0c;1-x为1&#xff0c;很好 假如1~2&#xff0c;floor为1&#xff0c;abs为1&#xff0c;Saturate为1&#xff0c;1-x为0&#xff0c;很好 假如2~3&#xff0c;floor为2&#xff0c;abs为2&am…

软件测试/人工智能丨引领未来:软件测试中的人工智能

在数字化潮流的推动下&#xff0c;软件测试领域正在经历一场革命性的变革&#xff0c;而这场变革的关键推手正是人工智能&#xff08;AI&#xff09;。AI的引入不仅加速了测试过程&#xff0c;而且赋予了测试领域新的可能性&#xff0c;将我们带入了一个前所未有的未来。 智能…

【MySQL--->用户管理】

文章目录 [TOC](文章目录) 一、用户管理表二、基本操作三、用户权限分配给用户某个数据库中某个表的某个权限. grant 权限 on 库.表名 to 用户名主机名. ![在这里插入图片描述](https://img-blog.csdnimg.cn/fe8eb171ef9343c3a09bd64d4f0db5c1.png)分配给用户某个数据库中全部表…

13.Oracle通过JDBC连接Java

Oracle通过JDBC连接Java 一、什么是JDBC二、Oracle通过JDBC连接Java1、导入jar包1.1 下载jar包1.2 将jar包导入到java项目中1.3编译jar包 2、连接数据库2.1 编写jdbc工具类2.2 对数据进行基本操作 一、什么是JDBC JDBC&#xff08;Java Database Connectivity&#xff09;是Jav…

微波功率计/频率计-87234系列USB峰值/平均功率计

仪器仪表 苏州新利通 87234系列 USB峰值/平均功率计 频率范围覆盖&#xff1a;50MHz&#xff5e;67GHz 一款基于USB 2.0接口的二极管检波式宽带功率测量仪器 国产思仪功率计 01 产品综述 87234D/E/F/L USB峰值/平均功率计是一款基于USB 2.0接口的二极管检波式宽带功率测…