用于神经网络的FLOP和Params计算工具

用于神经网络的FLOP和Params计算工具

1. FlopCountAnalysis

pip install fvcore
import torch
from torchvision.models import resnet152, resnet18
from fvcore.nn import FlopCountAnalysis, parameter_count_tablemodel = resnet152(num_classes=1000)tensor = (torch.rand(1, 3, 224, 224),)#分析FLOPs
flops = FlopCountAnalysis(model, tensor)
print("FLOPs: ", flops.total())def print_model_parm_nums(model):total = sum([param.nelement() for param in model.parameters()])print('  + Number of params: %.2fM' % (total / 1e6))print_model_parm_nums(model)

2. flopth

https://github.com/vra/flopth

pip install flopth 

Running on models in torchvision.models

$ flopth -m alexnet 
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| module_name   | module_type       | in_shape    | out_shape   | params   | params_percent   | params_percent_vis             | flops    | flops_percent   | flops_percent_vis   |
+===============+===================+=============+=============+==========+==================+================================+==========+=================+=====================+
| features.0    | Conv2d            | (3,224,224) | (64,55,55)  | 23.296K  | 0.0381271%       |                                | 70.4704M | 9.84839%        | ####                |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.1    | ReLU              | (64,55,55)  | (64,55,55)  | 0.0      | 0.0%             |                                | 193.6K   | 0.027056%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.2    | MaxPool2d         | (64,55,55)  | (64,27,27)  | 0.0      | 0.0%             |                                | 193.6K   | 0.027056%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.3    | Conv2d            | (64,27,27)  | (192,27,27) | 307.392K | 0.50309%         |                                | 224.089M | 31.3169%        | ###############     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.4    | ReLU              | (192,27,27) | (192,27,27) | 0.0      | 0.0%             |                                | 139.968K | 0.0195608%      |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.5    | MaxPool2d         | (192,27,27) | (192,13,13) | 0.0      | 0.0%             |                                | 139.968K | 0.0195608%      |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.6    | Conv2d            | (192,13,13) | (384,13,13) | 663.936K | 1.08662%         |                                | 112.205M | 15.6809%        | #######             |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.7    | ReLU              | (384,13,13) | (384,13,13) | 0.0      | 0.0%             |                                | 64.896K  | 0.00906935%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.8    | Conv2d            | (384,13,13) | (256,13,13) | 884.992K | 1.44841%         |                                | 149.564M | 20.9018%        | ##########          |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.9    | ReLU              | (256,13,13) | (256,13,13) | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.10   | Conv2d            | (256,13,13) | (256,13,13) | 590.08K  | 0.965748%        |                                | 99.7235M | 13.9366%        | ######              |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.11   | ReLU              | (256,13,13) | (256,13,13) | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.12   | MaxPool2d         | (256,13,13) | (256,6,6)   | 0.0      | 0.0%             |                                | 43.264K  | 0.00604624%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| avgpool       | AdaptiveAvgPool2d | (256,6,6)   | (256,6,6)   | 0.0      | 0.0%             |                                | 9.216K   | 0.00128796%     |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.0  | Dropout           | (9216)      | (9216)      | 0.0      | 0.0%             |                                | 0.0      | 0.0%            |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.1  | Linear            | (9216)      | (4096)      | 37.7528M | 61.7877%         | ############################## | 37.7487M | 5.27547%        | ##                  |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.2  | ReLU              | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 4.096K   | 0.000572425%    |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.3  | Dropout           | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 0.0      | 0.0%            |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.4  | Linear            | (4096)      | (4096)      | 16.7813M | 27.4649%         | #############                  | 16.7772M | 2.34465%        | #                   |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.5  | ReLU              | (4096)      | (4096)      | 0.0      | 0.0%             |                                | 4.096K   | 0.000572425%    |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.6  | Linear            | (4096)      | (1000)      | 4.097M   | 6.70531%         | ###                            | 4.096M   | 0.572425%       |                     |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+FLOPs: 715.553M
Params: 61.1008M

Running on custom models

# file path: /tmp/my_model.py
# model name:  MyModel
import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)def forward(self, x1):x1 = self.conv1(x1)x1 = self.conv2(x1)x1 = self.conv3(x1)x1 = self.conv4(x1)return x1
$ flopth -m MyModel -p /tmp/my_model.py -i 3 224 224
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name   | module_type   | in_shape    | out_shape   |   params | params_percent   | params_percent_vis   | flops    | flops_percent   | flops_percent_vis   |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4         | Conv2d        | (3,224,224) | (3,224,224) |       84 | 25.0%            | ############         | 4.21478M | 25.0%           | ############        |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+FLOPs: 16.8591M
Params: 336.0

3. calflops

https://github.com/MrYxJ/calculate-flops.pytorch/tree/main

pip install calflops
from calflops import calculate_flops
from torchvision import modelsmodel = models.alexnet()
batch_size = 1
input_shape = (batch_size, 3, 224, 224)
flops, macs, params = calculate_flops(model=model, input_shape=input_shape,output_as_string=True,output_precision=4)
print("Alexnet FLOPs:%s   MACs:%s   Params:%s \n" %(flops, macs, params))
#Alexnet FLOPs:4.2892 GFLOPS   MACs:2.1426 GMACs   Params:61.1008 M 
  1. from thop import profile

https://github.com/Lyken17/pytorch-OpCounter

pip install thop
from torchvision.models import resnet50
from thop import profile
model = resnet50()
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))
class YourModule(nn.Module):# your definition
def count_your_model(model, x, y):# your rule hereinput = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ), custom_ops={YourModule: count_your_model})

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/154674.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue-waterfall2 实现瀑布流,及总结的问题

注意:引入需要在主界面引入,直接在组件中引用会有问题 1.安装 npm install vue-waterfall21.8.20 --save (提示:一定要安装1.8.20,最新版会有一部分问题) 2.打开main.js文件 import waterfall from v…

微服务实战系列之Gateway

前言 人类世界自工业革命以来,无论从金融、货币、制度,还是科技、资源、社会各个方面,都发生了翻天覆地的变化。物质极大丰富,从而也推动了科技的极速发展。当计算机问世也仅仅不到80年,而如今我们的生活中处处有它的影…

云原生Docker系列 | Docker私有镜像仓库公有镜像仓库使用

云原生Docker系列 | Docker私有镜像仓库&公有镜像仓库使用 1. 使用公有云镜像仓库1.1. 阿里云镜像仓库1.2. 华为云镜像仓库1.3. 腾讯云镜像仓库2. 使用Docker Hub镜像仓库3. 使用Harbor构建私有镜像仓库4. 搭建本地Registry镜像仓库1. 使用公有云镜像仓库 1.1. 阿里云镜像…

GNSS位移监测站系统是什么

WX-WY4G 一、GNSS位移监测站系统的工作原理GNSS位移监测站系统是一种基于导航卫星系统(GNSS)的高精度位移监测技术。它通过接收和处理来自卫星的信号,对地表物体的位置进行精度的实时监测。这个系统具有可靠性的特点,被广泛应用于…

ubuntu20.04.1网络图标突然消失,无法上网

故障:打开虚拟机进入Ubuntu系统后,打开火狐浏览器,发现无法连接网络。 解决办法:因为刚接触Linux系统,就在网上找各种资料,试了各种办法无果,最后发现有可能网络配置文件被更改。 打开控制台输…

JavaScript编程基础 – 函数进阶

JavaScript编程基础 – 函数进阶 JavaScript Programming Essentials – Perfect Functions “函数的第一条原则是要小,函数的第二条原则是要更小。“ – 罗伯特.C.马丁 前文讲述过函数多取决于数学的函数概念,以此来定义JavaScript编程语言的函数&…

C++类与对象(3)—拷贝构造函数运算符重载

目录 一、拷贝构造函数 1、定义 2、特征 3、内置与自定义类型 4、const修饰参数 5、默认生成 浅拷贝 深拷贝 6、总结 二、运算符重载 1、定义 2、判断是否相等 3、比较大小 4、赋值 5、总结 一、拷贝构造函数 1、定义 拷贝构造函数:只有单个形参…

EL-input添加双击或者单击事件

#El-lement UI # 这个框架确实给我们带来了很多好处,最近一直忙于项目,没时间来写文章,最近有个问题困扰我很久,最终却很简单的解决了,记下来希望能帮助更多的人。 大家都知道el-input是无法直接添加click或者dblcli…

day61

今日内容概要 前后端数据传输的编码格式 Ajax提交json格式的数据 Ajax提交文件数据 Ajax实现弹窗的二次确认 批量增加数据 分页的原理及推导 分页类的使用 cookie和session的介绍 Django操作cookie、session 前后端数据传输的编码格式 我们只研究post请求方式的编码格…

axios的封装之axios是基于什么封装的?

axios的封装_axios是基于什么封装的 axios是基于JavaScript的XMLHttpRequest 和 Promise 对象进行封装的使用axios发送GET请求的示例axios 拦截器 axios的封装_axios是基于什么封装的 axios是基于JavaScript的XMLHttpRequest 和 Promise 对象进行封装的 在浏览器中&#xff…

利用 React 和 Bootstrap 进行强大的前端开发

文章目录 介绍React 和 Bootstrap设置环境使用 Bootstrap 创建 React 组件React-Bootstrap 组件结论 介绍 创建响应式、交互式和外观引人入胜的 Web 界面是现代前端开发人员的基本技能。幸运的是,借助 React 和 Bootstrap 等工具的出现,制作这些 UI 变得…

Tomcat 基线安全加固操作

目录 账号管理、认证授权 日志配置 通信协议 设备其他安全要求 账号管理、认证授权 ELK-tomcat-01-01-01 编号 ELK-Tomcat-01-01-01 名称 为不同的管理员分配不同的账号 实施目的 应按照用户分配账号,避免不同用户间共享账号,提高安全性。 问题影响 …

conda创建pytorch环境报错

昨天训练数据的时候,发现Anaconda占用C盘达到了20G(暑假在cmd状态下安装的,默认下载到了C盘),心道再创建几个环境,C盘就要爆红了,于是重装Anaconda到了D盘,不过之后的初始化并不顺利…

Jtti:windows中apache怎么实现负载均衡

Jtti:windows中apache怎么实现负载均衡 在Windows环境下,你可以使用Apache HTTP Server搭建负载均衡集群。Apache提供了一个模块叫做mod_proxy,它可以用来实现反向代理和负载均衡。以下是一个简单的步骤来配置Apache负载均衡: 步骤…

Codesys数据类型(2.7):扩展数据类型之 别名 详解

Codesys代码代写,程序开发,软件定制,bug修改,问题咨询: T宝搜索店铺【林磊教育】 定义及声明 别名的目的是声明出 基本数据类型,结构体,枚举、共用体(UNION)、功能块、指针备用名字&#xff0c…

django及DRF流程源码分析

Django执行流程: 1.nginx作为接入层,通过反向代理,监听80端口获取请求连接 2.将请求交给wsgi server 3.wsgi server调用django的wsgi.py 处理请求 4.WSGIHandler的__call__函数就是整个逻辑处理流程 5.WSGIHandler __init__中的加载中间件,对request对象…

【ARM AMBA AXI 入门 16 - AXI 写响应通道 BVALID | BREADY | BRESP 详细介绍】

请阅读【ARM AMBA AXI 总线 文章专栏导读】 文章目录 AXI 写响应通道BVALIDBREADYBRESP举例BRESP[2:0] 编码AXI 写响应通道 在 ARM AMBA AXI 协议中,写响应通道包括以下三个信号,用来完成写事务的确认和状态传递: BVALID 这是一个从设备(Slave)发出的信号,表明与当前…

生态系统NPP及碳源、碳汇模拟实践技术应用

由于全球变暖、大气中温室气体浓度逐年增加等问题的出现,“双碳”行动特别是碳中和已经在世界范围形成广泛影响。碳中和可以从碳排放(碳源)和碳固定(碳汇)这两个侧面来理解。陆地生态系统在全球碳循环过程中有着重要作…

【HarmonyOS】低代码平台组件拖拽使用技巧之常用基础组件(上)

【关键字】 HarmonyOS、低代码平台、组件拖拽、常用基础组件、基础容器 1、写在前面 之前是花了一些时间介绍了在低代码平台中滚动容器、网格布局、页签容器、列表这几种容器的拖拽技巧及使用方法,今天我会继续来介绍咱们在应用开发中可能会经常用到的一些基础容器…

Flutter dio Http请求之Cookie管理

在应用开发过程中,我们进行Http通讯时会使用Cookie进行验证,今天我们就着重讲解Flutter 网络请求插件dio的cookie使用。 首先,我们要进行插件引用 # HTTP 请求 dio: ^5.1.1 cookie_jar: ^4.0.8 dio_cookie_manager: ^3.0.0# 获取沙盒路径 p…